New Methods for the Synthesis of Organozinc and Organocopper Reagents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on the Acid-Base Properties of the Znbr2nabr Molten Salt System
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Okayama University Scientific Achievement Repository Chemistry Physical & Theoretical Chemistry fields Okayama University Year 1992 Studies on the acid-base properties of the ZnBr2NaBr molten salt system Hidetaka Hayashi Kiyofumi Uno Okayama University Kyoto University Zen-ichiro Takehara Akira Katagiri Kyoto University Kyoto University This paper is posted at eScholarship@OUDIR : Okayama University Digital Information Repository. http://escholarship.lib.okayama-u.ac.jp/physical and theoretical chemistry/23 386 J. Electrochem. Soc., Vol. 140, No. 2, February 1993 The Electrochemical Society, Inc. 8. T. Yoshida, K. Okabayashi, T. Assoka, and K. Abe, Ab- ics: Materials and Devices for Transmittance Con- stract 380, p. 552, The Electrochemical Society Ex- trol, C. M. Lampert and C. G. Granqvist, Editors, tended Abstracts, Vol. 88-2, Chicago, IL, Meeting, p. 482, SPIE Optical Engineering Press, Bellingham, Oct. 9-14, 1988. WA (1990). 9. K. Honda, M. Fu]ita, H. Ishida, R. Yamamoto, and K. 21. S. Hub, A. Tranchant, and R. Messina, Electrochim. Ohgaki, This Journal, 135, 3151 (1988). Acta, 33, 997 (1988). 10. T. Kase, T. Miyamoto, T. Yoshimoto, u Ohsawa, H. 22. K. Ho, D. E. Singleton, and C. G. Greenberg, This Jour- Inaba, and K. Nakasi, in Large Area Chromogenics: nal, 137, 3858 (1990). Materials and Devices .for Transmittance Control, 23. J. P. Randin, in Large Area Chromogenics: Materials C. M. Lampert and C. G. Granqvist, Editors, p. 504, and Devices for Transmittance Control, C. M. Lain- SPIE Optical Engineering Press, Bellingham, WA pert and C. -
Notable Reactivity of Acetonitrile Towards Li2o2/Lio2 Probed By
Topics in Catalysis https://doi.org/10.1007/s11244-018-1072-5 ORIGINAL ARTICLE Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge Tatiana K. Zakharchenko1 · Alina I. Belova1 · Alexander S. Frolov1 · Olesya O. Kapitanova1 · Juan‑Jesus Velasco‑Velez2 · Axel Knop‑Gericke2,5 · Denis Vyalikh3,4 · Daniil M. Itkis1 · Lada V. Yashina1 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible reactions between electrolyte and discharge product Li 2O2 and/or intermediate LiO2. Among many solvents that are used as electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2 + MeCN mixture. We have dem- onstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably the Coulombic efficiency of the battery. Keywords Li–O2 battery · In situ NAP XPS · Acetonitrile · Side reactions 1 Introduction Li–O2 batteries promise extraordinary high specific energy that makes them interesting for the next generation power technologies [1, 2]. -
Catalog 2014-2015
RIEKE METALS, INC. Catalog 2014-2015 Founders of Rieke Metals, Inc. Dr. Reuben D. Rieke grew up in Fairfax, Minnesota. He received a Bachelor of Chemistry degree from the University of Minnesota-Minneapolis, doing undergraduate research with Professor Wayland E. Noland. He received a Ph.D. from the University of Wisconsin-Madison in 1966 under the direction of Professor Howard E. Zimmerman. He then did postgraduate work with Professor Saul Winstein at UCLA. He taught at the University of North Carolina at Chapel Hill from 1966 to 1976, at North Dakota State University in Fargo from 1976 to 1977, and at the University of Nebraska-Lincoln from 1977 to 2004. Loretta Rieke was born and raised in New York City. She earned a Bachelor of Science from Queens College and did graduate studies at the University of Wisconsin-Madison. High Quality Compounds The formula: Provide unique research reagents to the world with exceptional speed and attention to detail. Since 1991, Rieke Metals, Inc has been doing just that by supplying active metals, Grignard and organic semi-conducting polymers and monomers. Headquartered in Lincoln, Nebraska, the facility produces and supplies over 10,000 research compounds. We provide quantities from grams to kilograms, ensuring high purity and service every step of the way. High Quality Service Rieke Metals is run by scientists, and we understand that research is not simple. That’s why RMI strives to make your work easier. With thousands of compounds in stock, orders are processed immediately and shipped the same day. Material electronically provided for immediate information. Technical service is only a phone call away with Rieke Metals. -
Zinc/Bromine Batteries
SAND2000-0893 CHAPTER 37 ZINC/BROMINE BATTERIES Paul C. Butler, Phillip A. Eidler, Patrick G. Grimes, Sandra E. Klassen, and Ronald C. Miles 37.1 GENERAL CHARACTERISTICS The zinc/bromine battery is an attractive technology for both utility-energy storage and electric-vehicle applications. The major advantages and disadvantages of this battery technology are listed in Table 37.1. The concept of a battery based on the zinc/bromine couple was patented over 100 years ago,’ but development to a commercial battery was blocked by two inherent properties: (1) the tendency of zinc to form dendrites upon deposition and (2) the high volubility of bromine in the aqueous zinc bromide electrolyte. Dendritic zinc deposits could easily short-circuit the cell, and the high volubility of bromine allows diffusion and direct reaction with the zinc electrode, resulting in self-discharge of the cell. Development programs at Exxon and Gould in the mid-1970s to early 1980s resulted in designs which overcame these problems, however, and allowed development to proceed.’ The Gould technology was developed further by the Energy Research Corporation but a high level of activity was not maintained. s-’ In the mid-1980s Exxon licensed its TABLE 37.1 Major Advantages and Disadvantages of Zinc/Bromine Battery Technology Advantages Disadvantages Circulating electrolyte allows for ease of thermal Auxiliary systems are required for circulation management and uniformity of reactant supply to and temperature control each cell System design must ensure safety as for all Good -
A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory
sensors Article A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory Niraj Verma 1,† , Yunwen Tao 1,†, Wenli Zou 2, Xia Chen 3, Xin Chen 4, Marek Freindorf 1 and Elfi Kraka 1,* 1 Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; [email protected] (N.V.); [email protected] (Y.T.); [email protected] (M.F.) 2 Institute of Modern Physics, Northwest University, Xi’an 710127, China; [email protected] 3 Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; [email protected] 4 Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 20 March 2020; Accepted: 15 April 2020; Published: 21 April 2020 Abstract: Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. -
Itetall IC BROMIDES AS CATALYSTS in THE
QUANTITATIVE COMPARISON OF ;itETALL IC BROMIDES AS CATALYSTS IN THE FRIED.liL-CRAFTS KETONE SYNTHESIS i QUANTITATIVE COMPARISON OF MET ALLIC BROMIDES AS CATAL YSTS IN THE FRIEDEL-CRAFTS KETONE SYNTHESIS By Peter Taketoshi M,, ori Bachelor of .Arts Park College Parkville, Missouri 1945 Submitted to the Department of Chemistry Oklahoma Agricultural and Mechanical College In partial fulfillment of the r equirement for t he Degree of Master of Science 194'~ ii \ APPROVED BY: Chairman, Thesis Committee Head of the Department ~he~ ( ~uate~~ School 2174~10 iii ACKNOWLEDGEMENT The author wis hes to express his s i neere gr atitude to Dr . O. C. Dermer under whose guidance t his work has been accomplished . He also wi s hes to express hi s a ppreciation to the Chemi stry Department for t he s uppl y of chemicals used. iv TABLE OF CONTENTS "P age Introduction • • l Historical • • • • 2 Experimental • • • • 5 Procadure • • • • • • • • 9 Table of results . • • • • • • • 12 Discussion of results • .. • • • • • • 15 Summary • • • • • • • • 22 Bibliography • • • • • • • • • • 23 Biography • • • • • • • • • • • 25 1 I NTRODCCT ION T~lis is a continuation of the s t udy of catalystf for the Friedel Crafts ketone synt hesis star ted by Wilson ( .38 ), a nd continued by Suguj. tan (34), Johnson (17), and Billme ier (4). Ma ny metallic chlorides have been used in t his reacti on, but metallic bromides, as cat alyst s, have been rather neelected . It is the purpose of this work to study the ef fectiveness of some of the metallic bromides by following essentially the experimental pro cedure of Billmeier (4). 2 HISTORICAL In 1877, the French chemist Friedel and his American colleague Crafts (12) discovered the f amous Friedel-Crafts reaction, which now has s uch great industrial a pplication (7 , 13, 18, 35). -
Safety Review of Bromine- Based Electrolytes for Energy Storage Applications
PP127316 Safety Review of Bromine- Based Electrolytes for Energy Storage Applications ICL Industrial Products Report No.: 1, Rev. 1 Date: February 26, 2016 Project name: PP127316 DNV USA, Inc. Report title: Safety Review of Bromine-Based Electrolytes for 5777 Frantz Rd Energy Storage Applications Dublin, OH 43017 Customer: ICL Industrial Products, Tel: +1-614-761-1214 Address Contact person: Sharona Atlas and David Murphy Date of issue: February 26, 2016 Project No.: PP127316 Organization unit: OAPUS304 Report No.: 1, 1 Document No.: No Task and objective: Create/Propose a Safety Testing Plan. To review Con Edison’s existing safety related materials and identify gaps by cross checking with relevant standards in the industry. Assess the risk and consequences of potential hazards that may occur to the TESS. Recommend the approach and relevant testing in order to fill the identified gaps. Davion M. Hill Prepared by: Verified by: Approved by: [Davion Hill, Ph.D.] William Kovacs III, P.E. [Name] [Group Leader, Energy & Materials] Senior Engineer – Oil & Gas Fatigue and [title] Fracture Rev. No. Date Reason for Issue Prepared by Verified by Approved by Table of contents 1 EXECUTIVE SUMMARY ..................................................................................................... 2 2 APPROACH ..................................................................................................................... 1 3 BOWTIE MODEL ............................................................................................................. -
List of Lists
United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals -
Selection of Catalyst for Group Transfer Polymerization of 1-Butadienyloxytrimethylsilane
Polymer Journal, Vol. 24, No. 7, pp 669-677 (1992) Selection of Catalyst for Group Transfer Polymerization of 1-Butadienyloxytrimethylsilane Hiroshi SuMI, Tadamichi HIRABAYASHI, Yoshihito INAI, and Kenji YoKOTA Department of Materials Science & Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan (Received November 19, 1991) ABSTRACT: Catalytic activity of various Lewis acids in the group transfer polymerization (GTP) of 1-butadienyloxytrimethylsilane (BdTMS) initiated with benzaldehyde was investigated. Among the Lewis acids studied, three zinc halides (ZnBr2 , Znl2 , ZnC1 2) and HgBr2 gave soluble polymers with narrow molecular weight distributions in quantitative yields. The polymerizations proceeded apparently on the insoluble solid catalyst. The other soluble Lewis acid catalysts, including (C2H 5),A1Cl, A1Cl 3 , SnC14 , SnBr4 , and TiBr4 , gave polymers in moderate to poor yields and often gelled polymers. Through 1 H NMR monitoring of the polymerization, time vs. monomer and initiator consumption curves were obtained, and then initiation and propagation rates were estimated from slopes of the curves. Both rates were enhanced in an order of ZnBr2 >Znl2 >ZnC12 . This order is consistent with that of chemical shifts of formyl carbon of equimolar mixture of ZnX2 with benzaldehyde, as well as crotonaldehyde which is a model for a polymer end, in chloroform-d. This order was also compatible with the decreasing order in MwiM. values of the resulting polymers. Thus, use of ZnBr2 as the catalyst resulted -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Chemical Compatibility Chart
Chemical Compatibility Chart www.topworx.com Rating Guide: A Good B Fair C Questionable D Poor Blank Insuffi cient Data Epoxy Polycarbonate PBT Brass 316 S.S. 304 S.S. 400 S.S. Aluminum Viton Buna N Neoprene EPDM Silicone Acetaldehyde A A A B D D C A A Acetamide A A B B A B A B Acetate Solvent B A A A A D C D A C Acetic Acid, Glacial A D A C D A D C D B B Acetic Acid, 20% C B D D A B D A B B A A B Acetic Acid, 80% C B D D A C D A B C C A B Acetic Acid A B D D A C D A B C C A C Acetic Anhydride D A A D A D D A B C Acetone A D B A A A B A D D C A B Acetyl Bromide Acetyl Chloride (dry) A A A A A A D D C Acetylene A A A A A A A A A B A B Acrylonitrile A A A B D D C D D Alcohols: Amyl D A A A A B B B A A D Benzyl A A A B A A C B Butyl A B A A A B A A A B B Diacetone A A A A D D D A D Ethyl A B A A A A A B A C A A B Hexyl A A A A C A A C B Isobutyl A A A B A B A A A Isopropyl A A A B A B B A A Methyl B A A A B A A A A Octyl A A A B A B B B A B Propyl A A A A A A A A A A Chemical Compatibility Chart (cont.) www.topworx.com Epoxy Polycarbonate PBT Brass 316 S.S. -
Synthesis and Properties of Diorganomagnesium Compounds
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-1967 Synthesis and Properties of Diorganomagnesium Compounds Conrad William Kamienski University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemistry Commons Recommended Citation Kamienski, Conrad William, "Synthesis and Properties of Diorganomagnesium Compounds. " PhD diss., University of Tennessee, 1967. https://trace.tennessee.edu/utk_graddiss/3077 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Conrad William Kamienski entitled "Synthesis and Properties of Diorganomagnesium Compounds." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Jerome F. Eastham, Major Professor We have read this dissertation and recommend its acceptance: Bruce M. Anderson, George K. Schwitzer, David A. Shirley Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Novemb er 27, 1967 To the Graduate Council: I am submitting herewith a dissertation written by Conrad Wiliiam Kamienski entitled "Synthesis and Properties of Diorgano magnesium Compounds." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a maj or in Chemistry .