CHAPTER 25—120 to 0 Ma Tectonic Evolution of the Southwest Pacific and Analogous Geological Evolution of the 600 to 220 Ma Tasman Fold Belt System

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 25—120 to 0 Ma Tectonic Evolution of the Southwest Pacific and Analogous Geological Evolution of the 600 to 220 Ma Tasman Fold Belt System Geological Society of Australia Special Publication 22, 377–397 CHAPTER 25—120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System A. J. CRAWFORD1*, S. MEFFRE1 AND P. A. SYMONDS2 1 Centre for Ore Deposit Research, University of Tasmania, Hobart, Tas 7005, Australia. 2 Geoscience Australia, GPO Box 378, Canberra, ACT 2600, Australia. * Corresponding author: [email protected] We review the tectonic evolution of the SW Pacific east of Australia from ca 120 Ma until the present. A key factor that developed early in this interval and played a major role in the subsequent geodynamic history of this region was the calving off from eastern Australia of several elongate microcontinental rib- bons, including the Lord Howe Rise and Norfolk–New Caledonia Ridge. These microcontinental ribbons were isolated from Australia and from each other during a protracted extension episode from ca 120 to 52 Ma, with oceanic crust accretion occurring from 85 to 52 Ma and producing the Tasman Sea and the South Loyalty Basin. Generation of these microcontinental ribbons and intervening basins was assisted by emplacement of a major mantle plume at 100 Ma beneath the southern part of the Lord Howe Rise, which in turn contributed to rapid and efficient eastward trench rollback. A major change in Pacific plate motion at ca 55 Ma initiated east-directed subduction along the recently extinct spread- ing centre in the South Loyalty Basin, generating boninitic lithosphere along probably more than 1000 km of plate boundary in this region, and growth of the Loyalty–D’Entrecasteaux arc. Continued sub- duction of South Loyalty Basin crust led to the arrival at about 38 Ma of the 70–60 million years old west- ern volcanic passive margin of the Norfolk Ridge at the trench, and west-directed emplacement of the New Caledonia ophiolite. Lowermost allochthons of this ophiolite are Maastrichtian and Paleocene rift tholeiites derived from the underthrusting passive margin. Higher allochthonous sheets include a poorly exposed boninitic lava slice, which itself was overridden by the massive ultramafic sheets that cover large parts of New Caledonia and are derived from the colliding forearc of the Loyalty–D’Entrecasteaux arc. Post-collisional extensional tectonism exhumed the underthrust passive margin, parts of which have blueschist and eclogite facies metamorphic assemblages. Following locking of this subduction zone at 38–34 Ma, subduction jumped eastward, to form a new west-dipping subduction zone above which formed the Vitiaz arc, that contained elements which today are located in the Tongan, Fijian, Vanuatu and Solomons arcs. Several episodes of arc splitting fragmented the Vitiaz arc and produced first the South Fiji Basin (31–25 Ma) and later (10 Ma to present) the North Fiji Basin. Collision of the Ontong Java Plateau, a large igneous province, with the Solomons section of the Vitiaz arc resulted in a reversal of subduction polarity, and growth of the Vanuatu arc on clockwise-rotating, older Vitiaz arc and South Fiji Basin crust. Continued rollback of the trench fronting the Tongan arc since 6 Ma has split this arc and produced the Lau Basin–Havre Trough. This southwest Pacific style of crustal growth above a rolling-back slab is applied to the 600–220 Ma tectonic development of the Tasman Fold Belt System in southeastern Australia, and explains key aspects of the geological evolution of eastern Australia. In particular, collision between a plume-trig- gered 600 Ma volcanic passive margin and a 510–515 Ma boninitic forearc of an intra-oceanic arc had the same relative orientation and geological effects as that which produced New Caledonia. A new subduction system formed probably at least several hundred kilometres east of the collision zone and produced the Macquarie arc, in which the oldest lavas were erupted ca 480 Ma. Continued slab roll- back induced regional extension and the growth of narrow linear troughs in the Macquarie arc, which persisted until terminal deformation of this fold belt in the late-Middle to Late Devonian. A similar pattern of tectonic development generated the New England Fold Belt between the Late Devonian and Late Triassic. Parts of the New England Fold Belt have been broken from Australia and moved oceanward to locations in New Zealand, and on the Lord Howe Rise and Norfolk–New Caledonia Rise, during the post- 120 Ma breakup. Given that the Tasman Fold Belt System grew between 600 and 220 Ma by crustal accretion like the southwest Pacific since 120 Ma, facing the open Pacific Ocean, we question whether the eastern (Australia–Antarctica) part of the Neoproterozoic Rodinian supercontinent was joined to Laurentia. KEY WORDS: Australia, Lachlan Fold Belt, southwest Pacific, subduction, Tasman Fold Belt, tectonics. INTRODUCTION north–south-oriented fold belts (Figure 1) that record a con- tinuing history of crustal growth from 600 Ma until at least The Tasman Fold Belt System makes up most of the crust the Triassic. Taking into account the 800–600 Ma Adelaide of eastern Australia and consists of three broadly Rift Complex further west, this eastward younging of the 378 A. J. Crawford, S. Meffre and P. A. Symonds Figure 1 Generalised map of the Tasman Fold belt System and Adelaide Rift Complex showing constituent fold belts (modified from Scheibner 1996). fold belts has been ascribed by several generations of Phanerozoic, of fold belts that display all or most of the Australian geologists to the progressive accretion to the stratotectonic features of these collisional accretion fold Australian Mesoproterozoic nucleus of outboard elements belts, it is clear that they have been important in the growth along the southwestern margin of the remarkably long-lived of continental crust. Pacific Ocean (Crook 1980). There is consensus that conti- Interpreting the eastern Australian fold belts in an actu- nent–continent collisions have not been involved in gener- alistic framework relies heavily on an understanding of the ating eastern Australian continental crust (Coney 1992; temporal evolution of modern western Pacific-type subduc- Veevers 2000a; Collins in press). tion-related settings. Implicit in this ‘the present is the key The Tasman Fold Belt System formed by collisions of to the past’ framework is that the processes and products of arcs or microcontinents with continents, a process the modern western Pacific arc–backarc basin systems (and Scheibner (1996 p. 21) referred to as ‘collisional accretion’. their relative dispositions?) are akin to those operating at Such a mechanism of continental growth is not restricted to least as far back as 600–500 Ma around the proto-Pacific. the present western Pacific margin. A broadly similar tec- Therefore, a broad-ranging knowledge of modern western tonic style is recorded from the Altaids of Asia (Sengor & Pacific geodynamics and the tectonic settings of magma Natal’in 1996), the Pan-African fold belts of the Arabian genesis is a prerequisite to successfully unravelling the geo- Shield (Johnson et al. 1987), and the Cordilleran mountain logical evolution of the Neoproterozoic–Palaeozoic fold belt of western North America (Coney 1987). Given the belts of eastern Australia. In fact, it could be convincingly global distribution, since at least the start of the argued that the geodynamic evolution of the eastern margin Tectonic evolution: SW Pacific 379 of the Australian plate since ca 120 Ma, including the open- transport of crustal elements originally contiguous with ing of several major and minor ocean basins, and formation eastern Australia (including growth of at least two marginal of several microcontinents and intra-oceanic arc systems, is basins floored by oceanic crust), it is difficult to conceive simply a continuation of the same regime of tectono-mag- the 90–45 Ma plate boundary east of Australia being any- matic events that formed the continental crust of Australia thing but a convergent boundary. over the preceding 500 million years. In this paper, we first examine the post-120 Ma geody- Tasman Sea–New Caledonia Basin–South Loyalty namic and tectono-magmatic evolution of the eastern mar- Basin opening gin of the Australian plate between the Tonga–Kermadec– Fiji–Vanuatu–Solomons arc systems and the eastern GEOPHYSICAL RECORD Australian continental margin. Armed with this informa- tion, we then investigate the geological evolution of south- The New Caledonia Basin lies east of the Lord Howe Rise eastern Australia since 600 Ma, and identify key and west of the Norfolk–New Caledonia Ridge (Figure 2). components of former plate-margin settings now incorpo- Most studies suggest that extension in the New Caledonia rated into the continental crust of this region. A comparison Basin commenced in the Early Cretaceous and that this of the active (and recently inactive) in situ crustal elements basin is underlain by extended continental lithosphere of the western Pacific east of Australia with the cratonised (Etheridge et al. 1989; Uruski & Wood 1991; Sdrolias et al. crust of southeastern Australia lends insight into the 2002), although Sutherland (1999) suggested that the processes that generate continental crust, and into crustal southern part may have a limited amount of oceanic-type growth western Pacific-style. crust. Sdrolias et al. (2002) have proposed that the New Caledonia Basin formed as a backarc rift behind the Norfolk Ridge volcanic arc above a west-dipping Benioff FRAGMENTATION OF CONTINENTAL CRUST zone involving subduction of Cretaceous (before 120–100 OVER A RETREATING SLAB Ma) Pacific Ocean crust. Ocean crust accretion in the Tasman Sea commenced Eastern margin of the Australian Plate 120–45 Ma around 84 Ma southeast of Tasmania, and propagated northward; by 64 Ma the Coral Sea commenced opening The nature of the eastern boundary of the Australian Plate (Gaina et al. 1998). All spreading between the Lord Howe between 120 and 45 Ma is poorly understood.
Recommended publications
  • Ophiolite in Southeast Asia
    Ophiolite in Southeast Asia CHARLES S. HUTCHISON Department of Geology, University of Malaya, Kuala Lumpur, Malaysia ABSTRACT semblages are classified into definite ophiolite, tentatively identified ophiolite, and associations that have previously been named No fewer than 20 belts of mafic-ultramafic assemblages have ophiolite but that are not. Each of the ophiolite or other been named "ophiolite" in the complex Southeast Asia region of mafic-ultramafic associations is listed in Table 1, with brief reasons Sundaland. Fewer than half of these can be confidently classified as for its classification, particularly in regard to the petrography of the ophiolite. The only well-documented complete ophiolite, with con- rock suite and the nature of its sedimentary envelope. The basis for tinuous conformable sections from mantle harzburgite through identification (or rejection) of these rock associations as ophiolite is gabbro to spilite, occurs in northeast Borneo and the neighboring discussed in the following section. Philippine Islands. It contains a record of oceanic lithospheric his- tory from Jurassic to Tertiary and has a Miocene emplacement age. OPHIOLITE FORMATION All other ophiolite belts of the region are either incomplete or dis- membered. The Sundaland region probably has examples of several The oceanic lithosphere, with its thin oceanic crust formed along types of emplacement mechanism and emplacement ages ranging the spreading axes of divergent plate junctures, is thought to be from early Paleozoic to Cenozoic. Key words: Sundaland, plate consumed at arc-trench systems of convergent plate junctures (Fig. tectonics. 2). Minor subtractions of crustal and mantle material from de- scending slabs of oceanic lithosphere are thought to be added to INTRODUCTION belts of mélange, and imbricate slices are caught in crustal subduc- tion zones at the trenches (Dickinson, 1972).
    [Show full text]
  • Hydrothermal Alteration of a Supra-Subduction Zone Ophiolite Analog, Tonga
    AN ABSTRACT OF THE THESIS OF Melanie C. Kelman for the degree of Master of Science in Geology presented on May 29, 1998. Title: Hydrothermal Alteration of a Supra-Subduction Zone Ophiolite Analog, Tonga. Southwest Pacific. Abstract approved: Redacted for Privacy Sherman Bloomer The basement of the Tonga intraoceanic forearc comprises Eocene arc volcanic crust formed during the earliest phases of subduction. Volcanic rocks recovered from the forearc include boninites and arc tholeiites, apparently erupted into and upon older mid- oceanic ridge tholeiites. Rock assemblages suggest that the forearc basement is a likely analog for large supra-subduction zone (SSZ) ophiolites not only in structure and Ethology, but also in the style of hydrothermal alteration. Dredged volcanic samples from the central Tonga forearc (20-24° S) exhibit the effects of seafloor weathering, low (<200°C, principally <100°C) alteration, and high temperature (>200°C) alteration. Tholeiites and arc tholeiites are significantly more altered than boninites. Seafloor weathering is due to extensive interaction with cold oxidizing seawater, and is characterized by red-brown staining and the presence of Fe- oxyhydroxides. Low temperature alteration is due to circulation of evolving seawater- derived fluids through the volcanic section until fluid pathways were closed by secondary mineral precipitation. Low temperature alteration is characterized by smectites, celadonite, phillipsite, mixed-layer smectite/chlorite, carbonates, and silica. All phases fill veins and cavities; clay minerals and silica also replace the mesostasis and groundmass phases. Low temperature alteration enriches the bulk rock in K, Ba, and Na, and mobilizes other elements to varying extents. The few high temperature samples are characterized by mobilizes other elements to varying extents.
    [Show full text]
  • Preliminary Catalog of the Sedimentary Basins of the United States
    Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • GEOG 101 PLACE NAME LIST for EXAM THREE
    GEOG 101 PLACE NAME LIST for EXAM THREE Each exam will have a place name location map section based on the list below, plus countries and political units. Consult the appropriate maps in the atlas and textbook to locate these places. The atlas has a detailed INDEX. Exam III will focus on place names from Asia and Oceania. This section of the exam will be in the form of a matching question. You will match the names to numbers on a map. ________________________________________________________________________________ I. CONTINENTS Australia Asia ________________________________________________________________________________ II. OCEANS Pacific Indian Arctic ________________________________________________________________________________ III. ASIA Seas/Gulfs/Bays/Lakes: Caspian Sea Sea of Japan Arabian Sea South China Sea Red Sea Aral Sea Lake Baikal East China Sea Bering Sea Persian Gulf Bay of Bengal Sea of Okhotsk ________________________________________________________________________________ Islands: New Guinea Taiwan Sri Lanka Singapore Maldives Sakhalin Sumatra Borneo Java Honshu Philippines Luzon Mindanao Cyprus Hokkaido ________________________________________________________________________________ Straits/Canals: Str. of Malacca Bosporas Dardanelles Suez Canal Str. of Hormuz ________________________________________________________________________________ Rivers: Huang Yangtze Tigris Euphrates Amur Ob Mekong Indus Ganges Brahmaputra Lena _______________________________________________________________________________ Mountains, Plateaus,
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP CP-37 U.S. GEOLOGICAL SURVEY Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant 1:10,000,000 ICIRCUM-PACIFIC i • \ COUNCIL AND MINERAL RESOURCES 1991 CIRCUM-PACIFIC COUNCIL FOR ENERGY AND MINERAL RESOURCES Michel T. Halbouty, Chairman CIRCUM-PACIFIC MAP PROJECT John A. Reinemund, Director George Gryc, General Chairman Erwin Scheibner, Advisor, Tectonic Map Series EXPLANATORY NOTES FOR THE TECTONIC MAP OF THE CIRCUM-PACIFIC REGION SOUTHWEST QUADRANT 1:10,000,000 By Erwin Scheibner, Geological Survey of New South Wales, Sydney, 2001 N.S.W., Australia Tadashi Sato, Institute of Geoscience, University of Tsukuba, Ibaraki 305, Japan H. Frederick Doutch, Bureau of Mineral Resources, Canberra, A.C.T. 2601, Australia Warren O. Addicott, U.S. Geological Survey, Menlo Park, California 94025, U.S.A. M. J. Terman, U.S. Geological Survey, Reston, Virginia 22092, U.S.A. George W. Moore, Department of Geosciences, Oregon State University, Corvallis, Oregon 97331, U.S.A. 1991 Explanatory Notes to Supplement the TECTONIC MAP OF THE CIRCUM-PACIFTC REGION SOUTHWEST QUADRANT W. D. Palfreyman, Chairman Southwest Quadrant Panel CHIEF COMPILERS AND TECTONIC INTERPRETATIONS E. Scheibner, Geological Survey of New South Wales, Sydney, N.S.W. 2001 Australia T. Sato, Institute of Geosciences, University of Tsukuba, Ibaraki 305, Japan C. Craddock, Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. TECTONIC ELEMENTS AND STRUCTURAL DATA AND INTERPRETATIONS J.-M. Auzende et al, Institut Francais de Recherche pour 1'Exploitacion de la Mer (IFREMER), Centre de Brest, B.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Tsunami Risk Analysis of the East Coast of the United States
    Tsunami Risk Analysis of the East Coast of the United States INTRODUCTION METHODOLOGY In the wake of the 2004 Indian Ocean tsunami and the 2011 Japan tsunami and Given the large area of the east coast, a rudimentary analysis was performed. corresponding nuclear disaster, much more attention has been focused on coastal Elevation is the most important factor in analyzing the risk of flooding in a coastal vulnerability to tsunamis. Areas near active tectonic margins have a much higher area; the lower the elevation, the greater the potential for damage. Elevation data risk of being hit by a tsunami, due to proximity. People who live in these areas are was reclassified into no risk, medium risk, and high risk zones. These zones were: more aware of the danger than their counterparts on passive tectonic margins. It is 25+ m above sea level, 10 to 25 m above sea level, and below 10 m above sea lev- generally a good assumption that the risk of a tsunami is low in places like the el. Essentially, most land adjacent to the coast that falls in the final category eastern seaboard of the United States. would be badly damaged by a 10m tsunami from the Canary Islands, unless buff- Despite the low risk, the east coast has been hit by tsunamis in the past. Ex- ered by another portion of land blocking the coast. If a larger tsunami were to oc- amples include the Newfoundland tsunami caused by the Grand Banks earth- cur, up to the max wave height predicted by Ward and Day of 25 m, any land ad- quake.
    [Show full text]
  • Coupled Onshore Erosion and Offshore Sediment Loading As Causes of Lower Crust Flow on the Margins of South China Sea Peter D
    Clift Geosci. Lett. (2015) 2:13 DOI 10.1186/s40562-015-0029-9 REVIEW Open Access Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea Peter D. Clift1,2* Abstract Hot, thick continental crust is susceptible to ductile flow within the middle and lower crust where quartz controls mechanical behavior. Reconstruction of subsidence in several sedimentary basins around the South China Sea, most notably the Baiyun Sag, suggests that accelerated phases of basement subsidence are associated with phases of fast erosion onshore and deposition of thick sediments offshore. Working together these two processes induce pressure gradients that drive flow of the ductile crust from offshore towards the continental interior after the end of active extension, partly reversing the flow that occurs during continental breakup. This has the effect of thinning the continental crust under super-deep basins along these continental margins after active extension has finished. This is a newly recognized form of climate-tectonic coupling, similar to that recognized in orogenic belts, especially the Himalaya. Climatically modulated surface processes, especially involving the monsoon in Southeast Asia, affects the crustal structure offshore passive margins, resulting in these “load-flow basins”. This further suggests that reorganiza- tion of continental drainage systems may also have a role in governing margin structure. If some crustal thinning occurs after the end of active extension this has implications for the thermal history of hydrocarbon-bearing basins throughout the area where application of classical models results in over predictions of heatflow based on observed accommodation space.
    [Show full text]
  • Tasmantid Guyots, the Age of the Tasman Basin, and Motion Between the Australia Plate and the Mantle
    PETER R. VOGT U.S. Naval Oceanographic Office, Chesapeake Beach, Maryland 20732 JOHN R. CONOLLY Geology Department, University of South Carolina, Columbia, South Carolina 29208 Tasmantid Guyots, the Age of the Tasman Basin, and Motion between the Australia Plate and the Mantle ABSTRACT sea-floor spreading some time after the Paleo- zoic. The data are too sketchy to be certain The age of the Tasman Sea basement can be about the Dampier Ridge, however, and it may roughly estimated from the 50 m.y. time con- be a line of seamounts similar to the others in stant associated with subsidence of sea floor the Tasman Basin. generated by the mid-oceanic ridge. Present All available magnetic profiles across the Tas- basement depths suggest Cretaceous age, as man Basin (Taylor and Brennan, 1969; Van does sediment thickness. It is further argued der Linden, 1969) have failed to reveal linea- that the Tasmantid Guyots, whose tops deepen tion patterns that might conclusively reflect systematically northward, were formed during spreading and geomagnetic reversals. Nor has Tertiary times by northward movement of the deep-drilling been attempted. Therefore, more Australia plate over a fixed magma source in the indirect evidence must be assembled, and this mantle. As Antarctica was also approximately is one object of our paper. Our other aim is to fixed with respect to the mantle, sea-floor 156 160 spreading between the two continents implies 24° S that the guyots increase in age at a rate of 5.6 yr/cm from south to north. Their northward deepening then yields an average subsidence rate of 18 m per m.y.
    [Show full text]
  • New Perspectives on Tasmanian Geology
    TASMANIA - ANISLANDOFPOmNIIAL New perspectives on Tasmanian geology C. MeA. POWELL Geology Departrrumt, The University ofWe stem Australia. ABSTRACT New infonnation about the structure and sedimentary basin cotljiguration in the southern TastnIJII Fold Bell cotljirms thiltthe eastern TasmLlllia terrane is the on-strike COlllinuation o/the Melbourne Zone o/VictoriIL It represents a passive-margin to back-arc basin which was deformed and amalgamated with the western TasmLlllia terrane in the late Middle Devonian. The western TastnlJlliaterrane hils chilracteristics 0/ both the western lAchlan Fold Bell and the Kanmantao Fold Bell, and could be a largely exotic block lying across the jutlCtion between the tw%ld bells. The Precambrian "basemelll" o/TQStnIJ1Iia, regarded/or so long asfirmly rooted to its mafIlle lithosphere, could be composed o/thrust-bounded slices accreted to the TQStnIJ1I Fold Bell initially in the Middle Cambrian during westward thrusting o/the KanmafIloo Fold Belt over the platform margin in the Adelaide region. Renewed contraction in the Middle Devonian/ormed tnIJIIy o/the preselllthrust contacts. These new ideas make it imperative that existing esploration philosophies and nwdels are re-exmnined 10 take ill/o accoulllthe thrust-/aull geometry and the possible allochthonous nature o/much o/TasmLlllia. INTRODUCTION local areas of contractional deformation (powell, 1983, 1984a). The whole eastern Lachlan Fold Belt appears to have been a zone of transcurrence with local areas of transtension Tasmania occupies an imponant place in the geological and transpression. Theeasternand western] acblanFoldBelt framework of AuslIalia, lying at the southern extension of were reunited in the Middle Devonian when contractional the 1000-km wide Tasman Fold Belt, which occupies the deformation affected both parts, and the region rose above eastern third of the continent (fig.
    [Show full text]
  • Passive Margin Salt Tectonics: Effects of Margin Tilt, Sediment Progradation, and Regional Extension
    Passive Margin Salt Tectonics: Effects of Margin Tilt, Sediment Progradation, and Regional Extension Steven J. Ings* Department of Earth Sciences, Dalhousie University, Halifax, NS, B3H 3J5 [email protected] and Lykke Gemmer and Chris Beaumont Department of Oceanography, Dalhousie University, Halifax, NS, B3H 4J1 ABSTRACT Deformation of many passive continental margin sedimentary packages is dominated by salt tectonics (e.g., offshore west Africa, east Brazil, eastern Canada). In many cases, salt became mobilized at an early stage of basin formation. In cases where salt deposition was syn-rift or immediately post-rift (e.g., Scotian margin, offshore eastern Canada), early salt mobilization may have been initiated by a combination of tilting and regional extension of the margin. On the Scotian margin, salt tectonics has been long-lived; once salt was initially mobilized, it continued to deform well into the Tertiary. Sediment progradation and aggradation into the Scotian Basin was likely the primary control on long- lived salt tectonics on the Nova Scotian margin. We analyze the driving mechanisms of passive margin salt tectonics using finite element numerical models of a viscous substratum (salt) overlain by a frictional- plastic overburden (sedimentary rocks), and present results of models incorporating margin tilting, regional extension, and sedimentation. The numerical models show that sediment progradation combined with basinward tilt destabilizes the salt-overburden system more than progradation alone. A basinward margin tilt of 1 degree accelerates the evolution of the system, and thereby produces landward extensional structures and basinward contractional salt structures earlier in the model evolution than with progradation alone, resulting in the formation of long allochthonous salt sheets extending greater lateral distances than in equivalent models without tilt.
    [Show full text]