Oscillatory Data Analysis and Fast Algorithms for Integral Operators

Total Page:16

File Type:pdf, Size:1020Kb

Oscillatory Data Analysis and Fast Algorithms for Integral Operators OSCILLATORY DATA ANALYSIS AND FAST ALGORITHMS FOR INTEGRAL OPERATORS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Haizhao Yang July 2015 c Copyright by Haizhao Yang 2015 All Rights Reserved Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fq061ny3299 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Lexing Ying) Principal Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Emmanuel Cand`es) I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Lenya Ryzhik) Approved for the University Committee on Graduate Studies iii Abstract This dissertation consists of two independent parts: oscillatory data analysis (Part I) and fast algorithms for integral operators in computational harmonic analysis (Part II). The first part concentrates on developing theory and efficient tools in applied and computational harmonic analysis for oscillatory data analysis. In modern data science, oscillatory data analysis aims at identifying and extracting principle wave-like components, which might be nonlinear and non-stationary, underlying a complex physical phenomenon. Estimating instantaneous properties of one-dimensional components or local properties of multi-dimensional components has been an important topic in various science and engineering problems in resent three decades. This thesis introduces several novel synchrosqueezed transforms (SSTs) with rigorous mathematical, statistical analysis, and efficient implementation to tackle challenging problems in oscillatory data analysis. Several real applications show that these transforms provide an elegant tool for oscillatory data analysis. In many applications, the SST-based algorithms are significantly faster than the existing state-of-art algorithms and obtain better results. The second part of this thesis proposes several fast algorithms for the numerical implementation of several integral operators in harmonic analysis including Fourier integral operators (including pseudo differential operators, the generalized Radon transform, the nonuniform Fourier transform, etc.) and special function transforms (including the Fourier-Bessel transform, the spherical harmonic transform, etc.). These are useful mathematical tools in a wide range of science and engineering problems, e.g., imaging science, weather and climate modeling, electromagnetics, quantum chemistry, and phenomena modeled by wave equations. Via hierarchical domain decomposition, randomized low-rank approximations, interpolative low-rank approximations, the fast Fourier transform, and the butterfly algorithm, I propose several novel fast algorithms for applying or recovering these operators. iv Acknowledgments I would like to express my deepest gratitude to my advisor, Prof. Lexing Ying, for his support, guidance and encouragement in my graduate study. His creative and critical thinking has been inspiring me throughout my study at Stanford. He leads me by example and teaches me how to ask questions and solve problems in the way towards a pure scientist. I also extend my gratitude to people in Prof. Ying's group for the happy time together. I am also grateful to Prof. Ingrid Daubechies and Prof. Jianfeng Lu at Duke University for their tremendous support and fruitful discussions in the research of oscillatory data analysis and its applications. They opened my eyes to the joy and beauty of mathematics in materials science and art investigation. I feel privileged to have many fantastic professors who taught me and inspired me a lot at Stanford. I express my special thanks to my thesis committee members, Prof. Biondo Biondi, Prof. Emmanuel Cand`es,Prof. Lenya Ryzhik, and Prof. Andr`asVasy for their help and insights in the mathematical science. I would like to thank Prof. Kui Ren at the University of Texas at Austin, Prof. Weinan E at Princeton University, Prof. David Cai in Courant Institute of Mathematical Science at New York University, and Prof. Jingfang Huang at the University of North Carolina, Chapel Hill for their help, care and encouragement. I would also like to thank my collaborators and friends for their help and discussions in my research: William P. Brown, Prof. Xiaoling Cheng, Prof. Charles K. Chui, Prof. Sergey Fomel, Dr. Kenneth L. Ho, Prof. Jingwei Hu, Yingzhou Li, Eileen R. Martin, Prof. Benedikt Wirth, Prof. Hau-Tieng Wu, Prof. Zhenli Xu. Most of all, I would like to thank my parents Zhenqiang Yang, Guiying Yang and my wife Tian Yang for their endless source of love and support. I dedicate this thesis to them. v Contents Abstract iv Acknowledgments v I Oscillatory Data Analysis 1 1 Introduction 2 1.1 Time-Frequency Geometry . .3 1.2 Mode Decomposition . .5 1.3 Contributions . .7 2 Theory of Synchrosqueezed Transforms 10 2.1 1D Synchrosqueezed Wave Packet Transform . 11 2.1.1 Motivation . 11 2.1.2 Definition of 1D SSWPT . 12 2.1.3 Analysis . 14 2.2 Multi-Dimensional Synchrosqueezed Wave Packet Transform . 22 2.2.1 Motivation . 22 2.2.2 Definition . 22 2.2.3 Analysis . 25 2.3 2D Synchrosqueezed Curvelet Transform . 32 2.3.1 Motivation . 32 2.3.2 Definition . 33 2.3.3 Analysis . 36 3 Robustness of Synchrosqueezed Transforms 49 3.1 Introduction . 49 3.1.1 Motivation . 49 vi 3.1.2 Significance . 51 3.2 1D Synchrosqueezed Wave Packet Transform (SSWPT) . 52 3.3 2D Synchrosqueezed Wave Packet Transform (SSWPT) . 72 3.4 2D Synchrosqueezed Curvelet Transform (SSCT) . 74 4 Discrete Synchrosqueezed Transforms 79 4.1 Fast Discrete SSWPT and Mode Decomposition . 79 4.1.1 Implementation . 79 4.1.2 Numerical Examples . 86 4.2 Fast Discrete SSCT and Mode Decomposition . 89 4.2.1 Implementation . 89 4.2.2 Numerical Examples . 94 4.2.3 Intrinsic Mode Decomposition for Synthetic Data . 96 4.3 Numerical Robustness Analysis . 98 4.3.1 Robustness Tests for 1D SST . 99 4.3.2 Robustness Tests for 2D SST . 102 4.3.3 Component Test . 103 4.3.4 Real Examples . 104 5 Diffeomorphism Based Spectral Analysis 107 5.1 Introduction . 107 5.2 Diffeomorphism Based Spectral Analysis (DSA) . 109 5.2.1 Implementation of the DSA . 109 5.2.2 Analysis of the DSA . 112 5.3 Numerical Examples . 116 5.3.1 Synthetic Examples . 117 5.3.2 Real Applications . 121 5.4 Conclusion . 124 6 Applications 126 6.1 Atomic Crystal Analysis . 126 6.1.1 Introduction . 126 6.1.2 Crystal Image Models and Theory . 130 6.1.3 Crystal Defect Analysis Algorithms and Implementations . 137 6.1.4 Variational Model to Retrieve Deformation Gradient . 147 6.1.5 Examples and Discussions . 155 6.1.6 Conclusion . 160 6.2 Canvas Weave Analysis in Art Forensics . 162 vii 6.2.1 Introduction . 162 6.2.2 Model of the Canvas Weave Pattern in X-Radiography . 163 6.2.3 Fourier-Space Based Canvas Analysis . 164 6.2.4 Applications to Art Investigations . 166 6.2.5 Conclusion . 171 7 Conclusions of Part I 176 7.1 Summary . 176 7.2 Future Work . 176 II Fast Algorithms for Integral Operators in Harmonic Analysis 178 8 Introduction 179 9 Multiscale Butterfly Algorithm 182 9.1 Introduction . 182 9.1.1 Previous Work . 183 9.1.2 Motivation . 184 9.1.3 Our Contribution . 185 9.1.4 Organization . 186 9.2 The Butterfly Algorithm . 186 9.3 Low-Rank Approximations . 189 9.4 Multiscale Butterfly Algorithm . 194 9.4.1 Cartesian Butterfly Algorithm . 194 9.4.2 Complexity Analysis . 196 9.5 Numerical Results . 197 9.6 Conclusion . 200 10 One-Dimensional Butterfly Factorization 201 10.1 Introduction . 201 10.1.1 Complementary Low-Rank Matrices and Butterfly Algorithm . 201 10.1.2 Motivations and Significance . 203 10.1.3 Content . 204 10.2 Preliminaries . 205 10.2.1 SVD via Random Matrix-Vector Multiplication . 206 10.2.2 SVD via Random Sampling . 206 10.3 Butterfly Factorization . 208 10.3.1 Middle Level Factorization . 209 viii 10.3.2 Recursive Factorization . ..
Recommended publications
  • The Chirplet Transform: a Generalization of Gabor's Logon Transform
    2O5 The Chirplet Transform: A Generalization of Gabor's Logon Transform Steve Mann and Simon Haykin Communications Research Laboratory, McMaster University, Hamilton Ontario, L8S 4K1 e-mail: manns@McMaster. CA Abstract We propose a novel transform, an expansion of an arbitrary function onto a basis of multi-scale chirps (swept frequency wave packets). We apply this new transform to a practical problem in marine radar: the detection of floating objects by their "acceleration signature" (the "chirpyness" of their radar backscatter), and obtain results far better than those previously obtained by other current Doppler radar methods. Each of the chirplets essentially models the underlying physics of motion of a floating object. Because it so closely captures the essence of the physical phenomena, the transform is near optimal for the problem of detecting floating objects. Besides applying it to our radar image Figure 1: Logon representation of a "complete" processing interests, we also found the transform set of Gabor bases of relatively long duration provided a very good analysis of actual sampled and narrow bandwidth. We use the convention sounds, such as bird chirps and police sirens, of frequency across and time down (in which have a chirplike nonstationarity, as well as contradiction to musical notation) since our Doppler sounds from people entering a room, programs that produce, for example, sliding and from swimmers amid sea clutter. window FFTs, compute one short FFT at a time, For the development, we first generalized displaying each one as a raster line as soon as it Gabor’s notion of expansion onto a basis of is computed.
    [Show full text]
  • Analysis of Seismocardiographic Signals Using Polynomial Chirplet Transform and Smoothed Pseudo Wigner-Ville Distribution
    Analysis of Seismocardiographic Signals Using Polynomial Chirplet Transform and Smoothed Pseudo Wigner-Ville Distribution Amirtaha Taebi, Student Member, IEEE, Hansen A. Mansy Biomedical Acoustics Research Laboratory, University of Central Florida, Orlando, FL 32816, USA {taebi@knights., hansen.mansy@} ucf.edu Abstract—Seismocardiographic (SCG) signals are chest believed to be caused by mechanical activities of the heart (e.g. surface vibrations induced by cardiac activity. These signals may valves closure, cardiac contraction, blood momentum changes, offer a method for diagnosing and monitoring heart function. etc.). The characteristics of these signals were found to correlate Successful classification of SCG signals in health and disease with different cardiovascular pathologies [4]–[7]. These signals depends on accurate signal characterization and feature may also contain useful information that is complementary to extraction. One approach of determining signal features is to other diagnostic methods [8]–[10]. For example, due to the estimate its time-frequency characteristics. In this regard, four mechanical nature of SCG, it may contain information that is not different time-frequency distribution (TFD) approaches were used manifested in electrocardiographic (ECG) signals. A typical including short-time Fourier transform (STFT), polynomial SCG contains two main events during each heart cycle. These chirplet transform (PCT), Wigner-Ville distribution (WVD), and smoothed pseudo Wigner-Ville distribution (SPWVD). Synthetic events can be called the first SCG (SCG1) and the second SCG SCG signals with known time-frequency properties were (SCG2). These SCG events contain relatively low-frequency generated and used to evaluate the accuracy of the different TFDs components. Since the human auditory sensitivity decreases at in extracting SCG spectral characteristics.
    [Show full text]
  • The Modeling and Quantification of Rhythmic to Non-Rhythmic
    Graduate Institute of Biomedical Electronics and Bioinformatics College of Electrical Engineering and Computer Science National Taiwan University Doctoral Dissertation The Modeling and Quantification of Rhythmic to Non-rhythmic Phenomenon in Electrocardiography during Anesthesia Author : Yu-Ting Lin Advisor : Jenho Tsao, Ph.D. arXiv:1502.02764v1 [q-bio.NC] 10 Feb 2015 February 2015 \All composite things are not constant. Work hard to gain your own enlightenment." Siddh¯arthaGautama Abstract Variations of instantaneous heart rate appears regularly oscillatory in deeper levels of anesthesia and less regular in lighter levels of anesthesia. It is impossible to observe this \rhythmic-to-non-rhythmic" phenomenon from raw electrocardiography waveform in cur- rent standard anesthesia monitors. To explore the possible clinical value, I proposed the adaptive harmonic model, which fits the descriptive property in physiology, and provides adequate mathematical conditions for the quantification. Based on the adaptive har- monic model, multitaper Synchrosqueezing transform was used to provide time-varying power spectrum, which facilitates to compute the quantitative index: \Non-rhythmic- to-Rhythmic Ratio" index (NRR index). I then used a clinical database to analyze the behavior of NRR index and compare it with other standard indices of anesthetic depth. The positive statistical results suggest that NRR index provides addition clinical infor- mation regarding motor reaction, which aligns with current standard tools. Furthermore, the ability to indicates the noxious stimulation is an additional finding. Lastly, I have proposed an real-time interpolation scheme to contribute my study further as a clinical application. Keywords: instantaneous heart rate; rhythmic-to-non-rhythmic; Synchrosqueezing trans- form; time-frequency analysis; time-varying power spectrum; depth of anesthesia; electro- cardiography Acknowledgements First of all, I would like to thank Professor Jenho Tsao for all thoughtful lessons, discus- sions, and guidance he has provided me in the last five years.
    [Show full text]
  • Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes
    Time-Frequency Analysis of Time-Varying Signals and Non-Stationary Processes An Introduction Maria Sandsten 2020 CENTRUM SCIENTIARUM MATHEMATICARUM Centre for Mathematical Sciences Contents 1 Introduction 3 1.1 Spectral analysis history . 3 1.2 A time-frequency motivation example . 5 2 The spectrogram 9 2.1 Spectrum analysis . 9 2.2 The uncertainty principle . 10 2.3 STFT and spectrogram . 12 2.4 Gabor expansion . 14 2.5 Wavelet transform and scalogram . 17 2.6 Other transforms . 19 3 The Wigner distribution 21 3.1 Wigner distribution and Wigner spectrum . 21 3.2 Properties of the Wigner distribution . 23 3.3 Some special signals. 24 3.4 Time-frequency concentration . 25 3.5 Cross-terms . 27 3.6 Discrete Wigner distribution . 29 4 The ambiguity function and other representations 35 4.1 The four time-frequency domains . 35 4.2 Ambiguity function . 39 4.3 Doppler-frequency distribution . 44 5 Ambiguity kernels and the quadratic class 45 5.1 Ambiguity kernel . 45 5.2 Properties of the ambiguity kernel . 46 5.3 The Choi-Williams distribution . 48 5.4 Separable kernels . 52 1 Maria Sandsten CONTENTS 5.5 The Rihaczek distribution . 54 5.6 Kernel interpretation of the spectrogram . 57 5.7 Multitaper time-frequency analysis . 58 6 Optimal resolution of time-frequency spectra 61 6.1 Concentration measures . 61 6.2 Instantaneous frequency . 63 6.3 The reassignment technique . 65 6.4 Scaled reassigned spectrogram . 69 6.5 Other modern techniques for optimal resolution . 72 7 Stochastic time-frequency analysis 75 7.1 Definitions of non-stationary processes .
    [Show full text]
  • Fractional Fourier Transform for Ultrasonic Chirplet Signal Decomposition
    Hindawi Publishing Corporation Advances in Acoustics and Vibration Volume 2012, Article ID 480473, 13 pages doi:10.1155/2012/480473 Research Article Fractional Fourier Transform for Ultrasonic Chirplet Signal Decomposition Yufeng Lu, 1 Alireza Kasaeifard,2 Erdal Oruklu,2 and Jafar Saniie2 1 Department of Electrical and Computer Engineering, Bradley University, Peoria, IL 61625, USA 2 Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA Correspondence should be addressed to Erdal Oruklu, [email protected] Received 7 April 2012; Accepted 31 May 2012 Academic Editor: Mario Kupnik Copyright © 2012 Yufeng Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A fractional fourier transform (FrFT) based chirplet signal decomposition (FrFT-CSD) algorithm is proposed to analyze ultrasonic signals for NDE applications. Particularly, this method is utilized to isolate dominant chirplet echoes for successive steps in signal decomposition and parameter estimation. FrFT rotates the signal with an optimal transform order. The search of optimal transform order is conducted by determining the highest kurtosis value of the signal in the transformed domain. A simulation study reveals the relationship among the kurtosis, the transform order of FrFT, and the chirp rate parameter in the simulated ultrasonic echoes. Benchmark and ultrasonic experimental data are used to evaluate the FrFT-CSD algorithm. Signal processing results show that FrFT-CSD not only reconstructs signal successfully, but also characterizes echoes and estimates echo parameters accurately. This study has a broad range of applications of importance in signal detection, estimation, and pattern recognition.
    [Show full text]
  • On the Use of Time–Frequency Reassignment in Additive Sound Modeling*
    PAPERS On the Use of Time–Frequency Reassignment in Additive Sound Modeling* KELLY FITZ, AES Member AND LIPPOLD HAKEN, AES Member Department of Electrical Engineering and Computer Science, Washington University, Pulman, WA 99164 A method of reassignment in sound modeling to produce a sharper, more robust additive representation is introduced. The reassigned bandwidth-enhanced additive model follows ridges in a time–frequency analysis to construct partials having both sinusoidal and noise characteristics. This model yields greater resolution in time and frequency than is possible using conventional additive techniques, and better preserves the temporal envelope of transient signals, even in modified reconstruction, without introducing new component types or cumbersome phase interpolation algorithms. 0INTRODUCTION manipulations [11], [12]. Peeters and Rodet [3] have developed a hybrid analysis/synthesis system that eschews The method of reassignment has been used to sharpen high-level transient models and retains unabridged OLA spectrograms in order to make them more readable [1], [2], (overlap–add) frame data at transient positions. This to measure sinusoidality, and to ensure optimal window hybrid representation represents unmodified transients per- alignment in the analysis of musical signals [3]. We use fectly, but also sacrifices homogeneity. Quatieri et al. [13] time–frequency reassignment to improve our bandwidth- propose a method for preserving the temporal envelope of enhanced additive sound model. The bandwidth-enhanced short-duration complex acoustic signals using a homoge- additive representation is in some way similar to tradi- neous sinusoidal model, but it is inapplicable to sounds of tional sinusoidal models [4]–[6] in that a waveform is longer duration, or sounds having multiple transient events.
    [Show full text]
  • Analysis of Fractional Fourier Transform for Ultrasonic NDE Applications Yufeng Lu*, Erdal Oruklu**, and Jafar Saniie**
    10.1109/ULTSYM.2011.0123 Analysis of Fractional Fourier Transform for Ultrasonic NDE Applications Yufeng Lu*, Erdal Oruklu**, and Jafar Saniie** ** Department of Electrical and Computer Engineering *Department of Electrical and Computer Engineering Illinois Institute of Technology Bradley University Chicago, Illinois 60616 Peoria, Illinois 61625 Abstract—In this study, a Fractional Fourier transform-based It has been utilized in different applications such as high signal decomposition (FrFT-SD) algorithm is utilized to resolution SAR imaging, sonar signal processing, blind analyze ultrasonic signals for NDE applications. FrFT, as a deconvolution, and beamforming in medical imaging [7-10]. transform tool, enables signal decomposition by rotating the Short term FrFT, component optimized FrFT, and locally signal with an optimal transform order. The search of optimal optimized FrFT have also been proposed for signal transform order is conducted by searching the highest kurtosis decomposition [11-13]. There are many different ways to value of the signal in the transformed domain. Simulation decompose a signal. Essentially it is an optimization problem study reveals the relationship among the kurtosis, the under different criteria. The optimization is conducted either transform order of FrFT, and the chirp rate parameter. globally or locally. For ultrasonic NDE applications, local Furthermore, parameter estimation is applied to the responses from scattering microstructure and discontinuities decomposed components (i.e., chirplets) for echo characterization. Simulations and experimental results show are more interesting for flaw detection and material that FrFT-SD not only reconstructs signal successfully, but also characterization. estimates parameters accurately. Therefore, FrFT-SD could In our previous work [14], FrFT is introduced as a be an effective tool for analysis of ultrasonic signals.
    [Show full text]
  • On the Use of Concentrated Time–Frequency Representations As Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring
    entropy Article On the Use of Concentrated Time–Frequency Representations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring Sarra Houidi 1,2 , Dominique Fourer 1,∗ and François Auger 2 1 Laboratoire IBISC (Informatique, BioInformatique, Systèmes Complexes), EA 4526, University Evry/Paris-Saclay, 91020 Evry Cédex, France; [email protected] 2 Institut de Recherche en Energie Electrique de Nantes Atlantique (IREENA), EA 4642, University of Nantes, 44602 Saint-Nazaire, France; [email protected] * Correspondence: [email protected] Received: 29 July 2020; Accepted: 17 August 2020 ; Published: 19 August 2020 Abstract: Since decades past, time–frequency (TF) analysis has demonstrated its capability to efficiently handle non-stationary multi-component signals which are ubiquitous in a large number of applications. TF analysis us allows to estimate physics-related meaningful parameters (e.g., F0, group delay, etc.) and can provide sparse signal representations when a suitable tuning of the method parameters is used. On another hand, deep learning with Convolutional Neural Networks (CNN) is the current state-of-the-art approach for pattern recognition and allows us to automatically extract relevant signal features despite the fact that the trained models can suffer from a lack of interpretability. Hence, this paper proposes to combine together these two approaches to take benefit of their respective advantages and addresses non-intrusive load monitoring (NILM) which consists of identifying a home electrical appliance (HEA) from its measured energy consumption signal as a “toy” problem. This study investigates the role of the TF representation when synchrosqueezed or not, used as the input of a 2D CNN applied to a pattern recognition task.
    [Show full text]
  • Appendix a Transforms and Sampling
    Appendix A Transforms and Sampling A.1 Introduction Along the book, the pertinent theory elements have been invoked when directly linked with the topic being studied. It seems also convenient to have an appendix with a summary of the essential theory, which could be consulted as reference at any moment. It is clear that the main focus should be put on the Fourier transform, and on sampling. Other transforms are also of interest. Indeed, this appendix could become quite long if all formal mathematics was considered, together with extensions, applications, etc. There are books, which will cited in this appendix, that treat in detail these aspects. Our aim here is more to summarize main points, and to provide reference materials. Tables of common transform pairs are provided by [29]. A.2 The Fourier Transform The origins of the Fourier transform can be dated at 1807. It was included in the Fourier’s book on heat propagation. We would recommend to see [28] in order to grasp the history of harmonic analysis, up to recent times. A recent book on the Fourier transform principles and applications is [11]. Besides it, there are many other books that include detailed expositions of the Fourier trans- form. © Springer Science+Business Media Singapore 2017 533 J.M. Giron-Sierra, Digital Signal Processing with Matlab Examples, Volume 1, Signals and Communication Technology, DOI 10.1007/978-981-10-2534-1 534 Appendix A: Transforms and Sampling A.2.1 Definitions A.2.1.1 Fourier Series Fourier series have the form: ∞ ∞ y(t) = a0 + an cos (n · w0 t) + bn sin(n · w0 t) (A.1) n=1 n=1 This series may not converge.
    [Show full text]
  • Application to Non Intrusive Load Monitoring Sarra Houidi, Dominique Fourer, François Auger
    On the Use of Concentrated Time-Frequency Representations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring Sarra Houidi, Dominique Fourer, François Auger To cite this version: Sarra Houidi, Dominique Fourer, François Auger. On the Use of Concentrated Time-Frequency Rep- resentations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring. Entropy, MDPI, 2020, 22 (9), pp.911. 10.3390/e22090911. hal-02917749 HAL Id: hal-02917749 https://hal.archives-ouvertes.fr/hal-02917749 Submitted on 19 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. entropy Article On the Use of Concentrated Time–Frequency Representations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring Sarra Houidi 1,2 , Dominique Fourer 1,∗ and François Auger 2 1 Laboratoire IBISC (Informatique, BioInformatique, Systèmes Complexes), EA 4526, University Evry/Paris-Saclay, 91020 Evry Cédex, France; [email protected] 2 Institut de Recherche en Energie Electrique de Nantes Atlantique (IREENA), EA 4642, University of Nantes, 44602 Saint-Nazaire, France; [email protected] * Correspondence: [email protected] Received: 29 July 2020; Accepted: 17 August 2020 ; Published: 19 August 2020 Abstract: Since decades past, time–frequency (TF) analysis has demonstrated its capability to efficiently handle non-stationary multi-component signals which are ubiquitous in a large number of applications.
    [Show full text]
  • Fractional Wavelet Transform (FRWT) and Its Applications
    Fractional Wavelet Transform and Its Ap- plications Fractional Wavelet Transform (FRWT) Motivation Introduction and Its Applications MRA Orthogonal Wavelets Jun Shi Applications Communication Research Center Harbin Institute of Technology (HIT) Heilongjiang, Harbin 150001, China June 30, 2018 Outline Fractional Wavelet Transform and Its Ap- plications 1 Motivation for using FRWT Motivation Introduction 2 A short introduction to FRWT MRA Orthogonal Wavelets 3 Multiresolution analysis (MRA) of FRWT Applications 4 Construction of orthogonal wavelets for FRWT 5 Applications of FRWT Motivation for using FRWT Fractional Wavelet The fractional wavelet transform (FRWT) can be viewed as a unified Transform time-frequency transform; and Its Ap- plications It combines the advantages of the well-known fractional Fourier trans- form (FRFT) and the classical wavelet transform (WT). Motivation Definition of the FRFT Introduction The FRFT is a generalization of the ordinary Fourier transform (FT) MRA with an angle parameter α. Orthogonal Wavelets F (u) = F α ff (t)g (u) = f (t) K (u; t) dt Applications α α ZR 2 2 1−j cot α u +t j 2 cot α−jtu csc α 2π e ; α 6= kπ; k 2 Z Kα(u; t) = 8δq(t − u); α = 2kπ > <>δ(t + u); α = (2k − 1)π > :> When α = π=2, the FRFT reduces to the Fourier transform. Motivation for using FRWT Fractional Wavelet Transform and Its Ap- plications Motivation Introduction MRA Orthogonal Wavelets Applications Fig. 1. FRFT domain in the time-frequency plane The FRFT can be interpreted as a projection in the time- frequency plane onto a line that makes an angle of α with respect to the time axis.
    [Show full text]
  • Arxiv:2004.00501V1 [Eess.SP] 31 Mar 2020 Timating Blood Pressure [127]
    Current state of nonlinear-type time-frequency analysis and applications to high-frequency biomedical signals Hau-Tieng Wua,b aDepartment of Mathematics and Department of Statistical Science, Duke University, Durham, NC, USA bMathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan Abstract Motivated by analyzing complicated time series, nonlinear-type time-frequency analysis became an active research topic in the past decades. Those developed tools have been applied to various problems. In this article, we review those developed tools and summarize their applications to high-frequency biomedical signals. Keywords: Instantaneous frequency, amplitude modulation, wave-shape function, time-frequency representation. 1. Introduction Recently, complicated high-frequency (multivariate) oscillatory time series has attracted a lot of research interest. This kind of time series is characterized by being composed of multiple oscillatory components with time-varying fea- tures, like frequency, amplitude and oscillatory pattern, and contaminated by various kinds of randomness like noise and artifact. To have a sense of the challenge we encounter, here we present some repre- sentative biomedical signals. In the photoplethysmography (PPG) signal [125], the signal is composed of a respiratory component and a hemodynamic com- ponent. Common goals include calculating oxygen saturation [125], extracting heart and respiratory rate [31] and hence analyzing the heart rate variability (HRV) [91] and even breathing pattern variability (BPV) [13] that represents complicated interaction among various physiological systems [133], and even es- arXiv:2004.00501v1 [eess.SP] 31 Mar 2020 timating blood pressure [127]. In 1(a), the red boxes indicate the respiratory cycles. Another hemodynamic signal is the peripheral venous pressure (PVP) [144].
    [Show full text]