Tensor Categories

Total Page:16

File Type:pdf, Size:1020Kb

Tensor Categories Mathematical Surveys and Monographs Volume 205 Tensor Categories Pavel Etingof Shlomo Gelaki Dmitri Nikshych Victor Ostrik American Mathematical Society Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Tensor Categories Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Mathematical Surveys and Monographs Volume 205 Tensor Categories Pavel Etingof Shlomo Gelaki Dmitri Nikshych Victor Ostrik American Mathematical Society Providence, Rhode Island Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms EDITORIAL COMMITTEE Robert Guralnick Constantin Teleman Michael A. Singer, Chair MichaelI.Weinstein Benjamin Sudakov 2010 Mathematics Subject Classification. Primary 17B37, 18D10, 19D23, 20G42. For additional information and updates on this book, visit www.ams.org/bookpages/surv-205 Library of Congress Cataloging-in-Publication Data Tensor categories / Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, Victor Ostrik. pages cm. — (Mathematical surveys and monographs ; volume 205) Includes bibliographical references and index. ISBN 978-1-4704-2024-6 (alk. paper) 1. Algebraic topology. 2. Tensor fields. 3. Hopf algebras. I. Etingof, P. I. (Pavel I.), 1969– II. Gelaki, Shlomo, 1964– III. Nikshych, Dmitri, 1973– IV. Ostrik, Victor. QA612.T46 2015 512.57—dc23 2015006773 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. c 2015 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 201918171615 Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Dedicated to our children Miriam and Ariela Etingof Hadar and Klil Gelaki Timofei, Daria, and Nadezhda Nikshych and Tatiana, Valentina, and Yuri Ostrik Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms Contents Preface xi Chapter 1. Abelian categories 1 1.1. Categorical prerequisites and notation 1 1.2. Additive categories 1 1.3. Definition of abelian category 2 1.4. Exact sequences 4 1.5. Length of objects and the Jordan-H¨older theorem 5 1.6. Projective and injective objects 6 1.7. Higher Ext groups and group cohomology 7 1.8. Locally finite (artinian) and finite abelian categories 9 1.9. Coalgebras 12 1.10. The Coend construction 14 1.11. Deligne’s tensor product of locally finite abelian categories 15 1.12. The finite dual of an algebra 16 1.13. Pointed coalgebras and the coradical filtration 16 1.14. Bibliographical notes 19 Chapter 2. Monoidal categories 21 2.1. Definition of a monoidal category 21 2.2. Basic properties of unit objects 22 2.3. First examples of monoidal categories 26 2.4. Monoidal functors and their morphisms 30 2.5. Examples of monoidal functors 32 2.6. Monoidal functors between categories of graded vector spaces 33 2.7. Group actions on categories and equivariantization 35 2.8. The Mac Lane strictness theorem 36 2.9. The coherence theorem 39 2.10. Rigid monoidal categories 40 2.11. Invertible objects and Gr-categories 43 2.12. 2-categories 45 2.13. Bibliographical notes 46 Chapter 3. Z+-rings 49 3.1. Definition of a Z+-ring 49 3.2. The Frobenius-Perron theorem 51 3.3. The Frobenius-Perron dimensions 52 3.4. Z+-modules 56 3.5. Graded based rings 58 3.6. The adjoint based subring and universal grading 60 vii Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms viii CONTENTS 3.7. Complexified Z+-rings and ∗-algebras 62 3.8. Weak based rings 63 3.9. Bibliographical notes 63 Chapter 4. Tensor categories 65 4.1. Tensor and multitensor categories 65 4.2. Exactness of the tensor product 66 4.3. Semisimplicity of the unit object 69 4.4. Absence of self-extensions of the unit object 70 4.5. Grothendieck ring and Frobenius-Perron dimension 71 4.6. Deligne’s tensor product of tensor categories 73 4.7. Quantum traces, pivotal and spherical categories 73 4.8. Semisimple multitensor categories 76 4.9. Grothendieck rings of semisimple tensor categories 76 4.10. Categorification of based rings 78 4.11. Tensor subcategories 80 4.12. Chevalley property of tensor categories 81 4.13. Groupoids 82 4.14. The adjoint subcategory and universal grading 83 4.15. Equivariantization of tensor categories 86 4.16. Multitensor categories over arbitrary fields 87 4.17. Bibliographical notes 88 Chapter 5. Representation categories of Hopf algebras 91 5.1. Fiber functors 91 5.2. Bialgebras 91 5.3. Hopf algebras 93 5.4. Reconstruction theory in the infinite setting 97 5.5. More examples of Hopf algebras 99 5.6. The quantum group Uq(sl2) 101 5.7. The quantum group Uq(g) 103 5.8. Representations of quantum groups and quantum function algebras 104 5.9. Absence of primitive elements 106 5.10. The Cartier-Gabriel-Kostant theorem 106 5.11. Pointed tensor categories and Hopf algebras 108 5.12. Quasi-bialgebras 110 5.13. Quasi-bialgebras with an antipode and quasi-Hopf algebras 112 5.14. Twists for bialgebras and Hopf algebras 114 5.15. Bibliographical notes 115 5.16. Other results 117 Chapter 6. Finite tensor categories 119 6.1. Properties of projective objects 119 6.2. Categorical freeness 122 6.3. Injective and surjective tensor functors 124 6.4. The distinguished invertible object 126 6.5. Integrals in quasi-Hopf algebras and unimodular categories 127 6.6. Degeneracy of the Cartan matrix 129 6.7. Bibliographical notes 129 Author's final version made available with permission of the publisher, American Mathematical Society. License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms CONTENTS ix Chapter 7. Module categories 131 7.1. The definition of a module category 131 7.2. Module functors 134 7.3. Module categories over multitensor categories 135 7.4. Examples of module categories 136 7.5. Exact module categories over finite tensor categories 138 7.6. First properties of exact module categories 139 7.7. Module categories and Z+-modules 140 7.8. Algebras in multitensor categories 141 7.9. Internal Homs in module categories 147 7.10. Characterization of module categories in terms of algebras 150 7.11. Categories of module functors 154 7.12. Dual tensor categories and categorical Morita equivalence 155 7.13. The center construction 162 7.14. The quantum double construction for Hopf algebras 163 7.15. Yetter-Drinfeld modules 166 7.16. Invariants of categorical Morita equivalence 166 7.17. Duality for tensor functors and Lagrange’s Theorem 170 7.18. Hopf bimodules and the Fundamental Theorem 172 7.19. Radford’s isomorphism for the fourth dual 176 7.20. The canonical Frobenius algebra of a unimodular category 178 7.21. Categorical dimension of a multifusion category 179 7.22. Davydov-Yetter cohomology and deformations of tensor categories 183 7.23. Weak Hopf algebras 186 7.24. Bibliographical notes 189 7.25. Other results 192 Chapter 8. Braided categories 195 8.1. Definition of a braided category 195 8.2. First examples of braided categories and functors 197 8.3. Quasitriangular Hopf algebras 198 8.4. Pre-metric groups and pointed braided fusion categories 203 8.5. The center as a braided category 207 8.6. Factorizable braided tensor categories 208 8.7. Module categories over braided tensor categories 209 8.8. Commutative algebras and central functors 210 8.9. The Drinfeld morphism 214 8.10. Ribbon monoidal categories 216 8.11. Ribbon Hopf algebras 221 8.12. Characterization of Morita equivalence 221 8.13.
Recommended publications
  • Frobenius and the Derived Centers of Algebraic Theories
    Frobenius and the derived centers of algebraic theories William G. Dwyer and Markus Szymik October 2014 We show that the derived center of the category of simplicial algebras over every algebraic theory is homotopically discrete, with the abelian monoid of components isomorphic to the center of the category of discrete algebras. For example, in the case of commutative algebras in characteristic p, this center is freely generated by Frobenius. Our proof involves the calculation of homotopy coherent centers of categories of simplicial presheaves as well as of Bousfield localizations. Numerous other classes of examples are dis- cussed. 1 Introduction Algebra in prime characteristic p comes with a surprise: For each commutative ring A such that p = 0 in A, the p-th power map a 7! ap is not only multiplica- tive, but also additive. This defines Frobenius FA : A ! A on commutative rings of characteristic p, and apart from the well-known fact that Frobenius freely gen- erates the Galois group of the prime field Fp, it has many other applications in 1 algebra, arithmetic and even geometry. Even beyond fields, Frobenius is natural in all rings A: Every map g: A ! B between commutative rings of characteris- tic p (i.e. commutative Fp-algebras) commutes with Frobenius in the sense that the equation g ◦ FA = FB ◦ g holds. In categorical terms, the Frobenius lies in the center of the category of commutative Fp-algebras. Furthermore, Frobenius freely generates the center: If (PA : A ! AjA) is a family of ring maps such that g ◦ PA = PB ◦ g (?) holds for all g as above, then there exists an integer n > 0 such that the equa- n tion PA = (FA) holds for all A.
    [Show full text]
  • Types Are Internal Infinity-Groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau
    Types are internal infinity-groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau To cite this version: Antoine Allioux, Eric Finster, Matthieu Sozeau. Types are internal infinity-groupoids. 2021. hal- 03133144 HAL Id: hal-03133144 https://hal.inria.fr/hal-03133144 Preprint submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Types are Internal 1-groupoids Antoine Allioux∗, Eric Finstery, Matthieu Sozeauz ∗Inria & University of Paris, France [email protected] yUniversity of Birmingham, United Kingdom ericfi[email protected] zInria, France [email protected] Abstract—By extending type theory with a universe of defini- attempts to import these ideas into plain homotopy type theory tionally associative and unital polynomial monads, we show how have, so far, failed. This appears to be a result of a kind of to arrive at a definition of opetopic type which is able to encode circularity: all of the known classical techniques at some point a number of fully coherent algebraic structures. In particular, our approach leads to a definition of 1-groupoid internal to rely on set-level algebraic structures themselves (presheaves, type theory and we prove that the type of such 1-groupoids is operads, or something similar) as a means of presenting or equivalent to the universe of types.
    [Show full text]
  • Arxiv:2001.09075V1 [Math.AG] 24 Jan 2020
    A topos-theoretic view of difference algebra Ivan Tomašić Ivan Tomašić, School of Mathematical Sciences, Queen Mary Uni- versity of London, London, E1 4NS, United Kingdom E-mail address: [email protected] arXiv:2001.09075v1 [math.AG] 24 Jan 2020 2000 Mathematics Subject Classification. Primary . Secondary . Key words and phrases. difference algebra, topos theory, cohomology, enriched category Contents Introduction iv Part I. E GA 1 1. Category theory essentials 2 2. Topoi 7 3. Enriched category theory 13 4. Internal category theory 25 5. Algebraic structures in enriched categories and topoi 41 6. Topos cohomology 51 7. Enriched homological algebra 56 8. Algebraicgeometryoverabasetopos 64 9. Relative Galois theory 70 10. Cohomologyinrelativealgebraicgeometry 74 11. Group cohomology 76 Part II. σGA 87 12. Difference categories 88 13. The topos of difference sets 96 14. Generalised difference categories 111 15. Enriched difference presheaves 121 16. Difference algebra 126 17. Difference homological algebra 136 18. Difference algebraic geometry 142 19. Difference Galois theory 148 20. Cohomologyofdifferenceschemes 151 21. Cohomologyofdifferencealgebraicgroups 157 22. Comparison to literature 168 Bibliography 171 iii Introduction 0.1. The origins of difference algebra. Difference algebra can be traced back to considerations involving recurrence relations, recursively defined sequences, rudi- mentary dynamical systems, functional equations and the study of associated dif- ference equations. Let k be a commutative ring with identity, and let us write R = kN for the ring (k-algebra) of k-valued sequences, and let σ : R R be the shift endomorphism given by → σ(x0, x1,...) = (x1, x2,...). The first difference operator ∆ : R R is defined as → ∆= σ id, − and, for r N, the r-th difference operator ∆r : R R is the r-th compositional power/iterate∈ of ∆, i.e., → r r ∆r = (σ id)r = ( 1)r−iσi.
    [Show full text]
  • Two Constructions in Monoidal Categories Equivariantly Extended Drinfel’D Centers and Partially Dualized Hopf Algebras
    Two constructions in monoidal categories Equivariantly extended Drinfel'd Centers and Partially dualized Hopf Algebras Dissertation zur Erlangung des Doktorgrades an der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften Fachbereich Mathematik der Universit¨atHamburg vorgelegt von Alexander Barvels Hamburg, 2014 Tag der Disputation: 02.07.2014 Folgende Gutachter empfehlen die Annahme der Dissertation: Prof. Dr. Christoph Schweigert und Prof. Dr. Sonia Natale Contents Introduction iii Topological field theories and generalizations . iii Extending braided categories . vii Algebraic structures and monoidal categories . ix Outline . .x 1. Algebra in monoidal categories 1 1.1. Conventions and notations . .1 1.2. Categories of modules . .3 1.3. Bialgebras and Hopf algebras . 12 2. Yetter-Drinfel'd modules 25 2.1. Definitions . 25 2.2. Equivalences of Yetter-Drinfel'd categories . 31 3. Graded categories and group actions 39 3.1. Graded categories and (co)graded bialgebras . 39 3.2. Weak group actions . 41 3.3. Equivariant categories and braidings . 48 4. Equivariant Drinfel'd center 51 4.1. Half-braidings . 51 4.2. The main construction . 55 4.3. The Hopf algebra case . 61 5. Partial dualization of Hopf algebras 71 5.1. Radford biproduct and projection theorem . 71 5.2. The partial dual . 73 5.3. Examples . 75 A. Category theory 89 A.1. Basic notions . 89 A.2. Adjunctions and monads . 91 i ii Contents A.3. Monoidal categories . 92 A.4. Modular categories . 97 References 99 Introduction The fruitful interplay between topology and algebra has a long tradi- tion. On one hand, invariants of topological spaces, such as the homotopy groups, homology groups, etc.
    [Show full text]
  • Categories of Modules with Differentials
    JOURNAL OF ALGEBRA 185, 50]73Ž. 1996 ARTICLE NO. 0312 Categories of Modules with Differentials Paul Popescu Department of Mathematics, Uni¨ersity of Craio¨a, 13, A.I. Cuza st., Craio¨a, 1100, Romania Communicated by Walter Feit CORE Metadata, citation and similar papers at core.ac.uk Received August 1, 1994 Provided by Elsevier - Publisher Connector 1. INTRODUCTION The definitions of the module with arrow Ž.module fleche , the infinitesi- mal module, and the Lie pseudoalgebra, as used here, are considered inwx 7 . Moreover, we define the preinfinitesimal module, called inwx 1 ``un pre- espace d'Elie Cartan regulier.'' Inwx 7 the Lie functor is constructed from the category of differentiable groupoids in the category of Lie algebroids, but it is inwx 2 that the first general and abstract treatment of the algebraic properties of Lie alge- broids is made, giving a clear construction of the morphisms of Lie algebroids. We shall use it fully in this paper to define completely the categories M W A Ž.Ž.modules and arrows , P I M preinfinitesimal modules , IMŽ.Ž.infinitesimal modules , and L P A Lie pseudoalgebras ; we call these categories the categories of modules with differentials. We notice that in wx7 and wx 1 the objects of these categories and the subcategories of modules over a fixed algebra are considered. Inwx 3 the category of L P A of Lie pseudoalgebras is defined and some aspects related to the functional covariance or contravariance correspondence with categories constructed with additional structures on vector bundles are studied. In Section 2 we give a brief description of the category MA , of modules over commutative k-algebrasŽ considered also inwx 3.
    [Show full text]
  • The Elliptic Drinfeld Center of a Premodular Category Arxiv
    The Elliptic Drinfeld Center of a Premodular Category Ying Hong Tham Abstract Given a tensor category C, one constructs its Drinfeld center Z(C) which is a braided tensor category, having as objects pairs (X; λ), where X ∈ Obj(C) and λ is a el half-braiding. For a premodular category C, we construct a new category Z (C) which 1 2 i we call the Elliptic Drinfeld Center, which has objects (X; λ ; λ ), where the λ 's are half-braidings that satisfy some compatibility conditions. We discuss an SL2(Z)-action el on Z (C) that is related to the anomaly appearing in Reshetikhin-Turaev theory. This construction is motivated from the study of the extended Crane-Yetter TQFT, in particular the category associated to the once punctured torus. 1 Introduction and Preliminaries In [CY1993], Crane and Yetter define a 4d TQFT using a state-sum involving 15j symbols, based on a sketch by Ooguri [Oog1992]. The state-sum begins with a color- ing of the 2- and 3-simplices of a triangulation of the four manifold by integers from 0; 1; : : : ; r. These 15j symbols then arise as the evaluation of a ribbon graph living on the boundary of a 4-simplex. The labels 0; 1; : : : ; r correspond to simple objects of the Verlinde modular category, the semi-simple subquotient of the category of finite dimen- πi r 2 sional representations of the quantum group Uqsl2 at q = e as defined in [AP1995]. Later Crane, Kauffman, and Yetter [CKY1997] extend this~ definition+ to colorings with objects from a premodular category (i.e.
    [Show full text]
  • Arxiv:1204.3607V6 [Math.KT] 6 Nov 2015 At1 Ar N Waldhausen and Pairs 1
    ON THE ALGEBRAIC K-THEORY OF HIGHER CATEGORIES CLARK BARWICK In memoriam Daniel Quillen, 1940–2011, with profound admiration. Abstract. We prove that Waldhausen K-theory, when extended to a very general class of quasicategories, can be described as a Goodwillie differential. In particular, K-theory spaces admit canonical (connective) deloopings, and the K-theory functor enjoys a simple universal property. Using this, we give new, higher categorical proofs of the Approximation, Additivity, and Fibration Theorems of Waldhausen in this context. As applications of this technology, we study the algebraic K-theory of associative rings in a wide range of homotopical contexts and of spectral Deligne–Mumford stacks. Contents 0. Introduction 3 Relation to other work 6 A word on higher categories 7 Acknowledgments 7 Part 1. Pairs and Waldhausen ∞-categories 8 1. Pairs of ∞-categories 8 Set theoretic considerations 9 Simplicial nerves and relative nerves 10 The ∞-category of ∞-categories 11 Subcategories of ∞-categories 12 Pairs of ∞-categories 12 The ∞-category of pairs 13 Pair structures 14 arXiv:1204.3607v6 [math.KT] 6 Nov 2015 The ∞-categories of pairs as a relative nerve 15 The dual picture 16 2. Waldhausen ∞-categories 17 Limits and colimits in ∞-categories 17 Waldhausen ∞-categories 18 Some examples 20 The ∞-category of Waldhausen ∞-categories 21 Equivalences between maximal Waldhausen ∞-categories 21 The dual picture 22 3. Waldhausen fibrations 22 Cocartesian fibrations 23 Pair cartesian and cocartesian fibrations 27 The ∞-categoriesofpair(co)cartesianfibrations 28 A pair version of 3.7 31 1 2 CLARK BARWICK Waldhausencartesianandcocartesianfibrations 32 4. The derived ∞-category of Waldhausen ∞-categories 34 Limits and colimits of pairs of ∞-categories 35 Limits and filtered colimits of Waldhausen ∞-categories 36 Direct sums of Waldhausen ∞-categories 37 Accessibility of Wald∞ 38 Virtual Waldhausen ∞-categories 40 Realizations of Waldhausen cocartesian fibrations 42 Part 2.
    [Show full text]
  • Stable Model Categories Are Categories of Modules 1
    STABLE MODEL CATEGORIES ARE CATEGORIES OF MODULES STEFAN SCHWEDE AND BROOKE SHIPLEY Abstract: A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for deciding when two stable model categories represent ‘the same homotopy theory’. We show that stable model categories with a single compact generator are equivalent to modules over a ring spectrum. More generally stable model categories with a set of generators are characterized as modules over a ‘ring spectrum with several objects’, i.e., as spectrum valued diagram categories. We also prove a Morita theorem which shows how equivalences between module categories over ring spectra can be realized by smashing with a pair of bimodules. Finally, we characterize stable model categories which represent the derived category of a ring. This is a slight generalization of Rickard’s work on derived equivalent rings. We also include a proof of the model category equivalence of modules over the Eilenberg-Mac Lane spectrum HR and (unbounded) chain complexes of R-modules for a ring R. 1. Introduction The recent discovery of highly structured categories of spectra has opened the way for a new wholesale use of algebra in stable homotopy theory. In this paper we use this new algebra of spectra to characterize stable model categories, the settings for doing stable homotopy theory, as categories of highly structured modules. This characterization also leads to a Morita theory for equivalences between categories of highly structured modules.
    [Show full text]
  • Arxiv:1909.05807V1 [Math.RA] 12 Sep 2019 Cs T
    MODULES OVER TRUSSES VS MODULES OVER RINGS: DIRECT SUMS AND FREE MODULES TOMASZ BRZEZINSKI´ AND BERNARD RYBOLOWICZ Abstract. Categorical constructions on heaps and modules over trusses are con- sidered and contrasted with the corresponding constructions on groups and rings. These include explicit description of free heaps and free Abelian heaps, coprod- ucts or direct sums of Abelian heaps and modules over trusses, and description and analysis of free modules over trusses. It is shown that the direct sum of two non-empty Abelian heaps is always infinite and isomorphic to the heap associated to the direct sums of the group retracts of both heaps and Z. Direct sum is used to extend a given truss to a ring-type truss or a unital truss (or both). Free mod- ules are constructed as direct sums of a truss. It is shown that only free rank-one modules are free as modules over the associated truss. On the other hand, if a (finitely generated) module over a truss associated to a ring is free, then so is the corresponding quotient-by-absorbers module over this ring. 1. Introduction Trusses and skew trusses were defined in [3] in order to capture the nature of the distinctive distributive law that characterises braces and skew braces [12], [6], [9]. A (one-sided) truss is a set with a ternary operation which makes it into a heap or herd (see [10], [11], [1] or [13]) together with an associative binary operation that distributes (on one side or both) over the heap ternary operation. If the specific bi- nary operation admits it, a choice of a particular element could fix a group structure on a heap in a way that turns the truss into a ring or a brace-like system (which becomes a brace provided the binary operation admits inverses).
    [Show full text]
  • RESEARCH STATEMENT 1. Introduction My Interests Lie
    RESEARCH STATEMENT BEN ELIAS 1. Introduction My interests lie primarily in geometric representation theory, and more specifically in diagrammatic categorification. Geometric representation theory attempts to answer questions about representation theory by studying certain algebraic varieties and their categories of sheaves. Diagrammatics provide an efficient way of encoding the morphisms between sheaves and doing calculations with them, and have also been fruitful in their own right. I have been applying diagrammatic methods to the study of the Iwahori-Hecke algebra and its categorification in terms of Soergel bimodules, as well as the categorifications of quantum groups; I plan on continuing to research in these two areas. In addition, I would like to learn more about other areas in geometric representation theory, and see how understanding the morphisms between sheaves or the natural transformations between functors can help shed light on the theory. After giving a general overview of the field, I will discuss several specific projects. In the most naive sense, a categorification of an algebra (or category) A is an additive monoidal category (or 2-category) A whose Grothendieck ring is A. Relations in A such as xy = z + w will be replaced by isomorphisms X⊗Y =∼ Z⊕W . What makes A a richer structure than A is that these isomorphisms themselves will have relations; that between objects we now have morphism spaces equipped with composition maps. 2-category). In their groundbreaking paper [CR], Chuang and Rouquier made the key observation that some categorifications are better than others, and those with the \correct" morphisms will have more interesting properties. Independently, Rouquier [Ro2] and Khovanov and Lauda (see [KL1, La, KL2]) proceeded to categorify quantum groups themselves, and effectively demonstrated that categorifying an algebra will give a precise notion of just what morphisms should exist within interesting categorifications of its modules.
    [Show full text]
  • Arxiv:Math/0310146V1 [Math.AT] 10 Oct 2003 Usinis: Question Fr Most Aut the the of Algebra”
    MORITA THEORY IN ABELIAN, DERIVED AND STABLE MODEL CATEGORIES STEFAN SCHWEDE These notes are based on lectures given at the Workshop on Structured ring spectra and their applications. This workshop took place January 21-25, 2002, at the University of Glasgow and was organized by Andy Baker and Birgit Richter. Contents 1. Introduction 1 2. Morita theory in abelian categories 2 3. Morita theory in derived categories 6 3.1. The derived category 6 3.2. Derived equivalences after Rickard and Keller 14 3.3. Examples 19 4. Morita theory in stable model categories 21 4.1. Stable model categories 22 4.2. Symmetric ring and module spectra 25 4.3. Characterizing module categories over ring spectra 32 4.4. Morita context for ring spectra 35 4.5. Examples 38 References 42 1. Introduction The paper [Mo58] by Kiiti Morita seems to be the first systematic study of equivalences between module categories. Morita treats both contravariant equivalences (which he calls arXiv:math/0310146v1 [math.AT] 10 Oct 2003 dualities of module categories) and covariant equivalences (which he calls isomorphisms of module categories) and shows that they always arise from suitable bimodules, either via contravariant hom functors (for ‘dualities’) or via covariant hom functors and tensor products (for ‘isomorphisms’). The term ‘Morita theory’ is now used for results concerning equivalences of various kinds of module categories. The authors of the obituary article [AGH] consider Morita’s theorem “probably one of the most frequently used single results in modern algebra”. In this survey article, we focus on the covariant form of Morita theory, so our basic question is: When do two ‘rings’ have ‘equivalent’ module categories ? We discuss this question in different contexts: • (Classical) When are the module categories of two rings equivalent as categories ? Date: February 1, 2008.
    [Show full text]
  • The Monoidal Center Construction and Bimodules
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 158 (2001) 325–346 www.elsevier.com/locate/jpaa The monoidal center construction and bimodules Peter Schauenburg Mathematisches Institut der Universitat Munchen, Theresienstr. 39, 80333 Munchen, Germany Received 29 January 1999; received in revised form 4 October 1999 Communicated by C. Kassel Abstract Let C be a cocomplete monoidal category such that the tensor product in C preserves colimits in each argument. Let A be an algebra in C. We show (under some assumptions including “faithful 2atness” of A) that the center of the monoidal category (ACA; ⊗A)ofA–A-bimodules ∼ is equivalent to the center of C (hence in a sense trivial): Z(ACA) = Z(C). Assuming A to be a commutative algebra in the center Z(C), we compute the center Z(CA) of the category of right A-modules (considered as a subcategory of ACA using the structure of A ∈ Z(C). We ÿnd ∼ Z(CA) = dys Z(C)A, the category of dyslectic right A-modules in the braided category Z(C). c 2001 Elsevier Science B.V. All rights reserved. MSC: 18D10; 16W30 1. Introduction Braided monoidal categories are situated at the intersection of quantum group theory and low-dimensional topology (more precisely invariants of knots and three-manifolds, see [12,4] for general references). They also provide a framework for generalizations of commutative algebra based on a 2ip of tensor factors more general than the ordinary 2ip (as proposed by Manin [6] for symmetric monoidal categories and well-established for the special case of Z=2Z-graded vector spaces) or generalizations of Hopf algebra theory [5].
    [Show full text]