The Monoidal Center Construction and Bimodules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frobenius and the Derived Centers of Algebraic Theories
Frobenius and the derived centers of algebraic theories William G. Dwyer and Markus Szymik October 2014 We show that the derived center of the category of simplicial algebras over every algebraic theory is homotopically discrete, with the abelian monoid of components isomorphic to the center of the category of discrete algebras. For example, in the case of commutative algebras in characteristic p, this center is freely generated by Frobenius. Our proof involves the calculation of homotopy coherent centers of categories of simplicial presheaves as well as of Bousfield localizations. Numerous other classes of examples are dis- cussed. 1 Introduction Algebra in prime characteristic p comes with a surprise: For each commutative ring A such that p = 0 in A, the p-th power map a 7! ap is not only multiplica- tive, but also additive. This defines Frobenius FA : A ! A on commutative rings of characteristic p, and apart from the well-known fact that Frobenius freely gen- erates the Galois group of the prime field Fp, it has many other applications in 1 algebra, arithmetic and even geometry. Even beyond fields, Frobenius is natural in all rings A: Every map g: A ! B between commutative rings of characteris- tic p (i.e. commutative Fp-algebras) commutes with Frobenius in the sense that the equation g ◦ FA = FB ◦ g holds. In categorical terms, the Frobenius lies in the center of the category of commutative Fp-algebras. Furthermore, Frobenius freely generates the center: If (PA : A ! AjA) is a family of ring maps such that g ◦ PA = PB ◦ g (?) holds for all g as above, then there exists an integer n > 0 such that the equa- n tion PA = (FA) holds for all A. -
Types Are Internal Infinity-Groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau
Types are internal infinity-groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau To cite this version: Antoine Allioux, Eric Finster, Matthieu Sozeau. Types are internal infinity-groupoids. 2021. hal- 03133144 HAL Id: hal-03133144 https://hal.inria.fr/hal-03133144 Preprint submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Types are Internal 1-groupoids Antoine Allioux∗, Eric Finstery, Matthieu Sozeauz ∗Inria & University of Paris, France [email protected] yUniversity of Birmingham, United Kingdom ericfi[email protected] zInria, France [email protected] Abstract—By extending type theory with a universe of defini- attempts to import these ideas into plain homotopy type theory tionally associative and unital polynomial monads, we show how have, so far, failed. This appears to be a result of a kind of to arrive at a definition of opetopic type which is able to encode circularity: all of the known classical techniques at some point a number of fully coherent algebraic structures. In particular, our approach leads to a definition of 1-groupoid internal to rely on set-level algebraic structures themselves (presheaves, type theory and we prove that the type of such 1-groupoids is operads, or something similar) as a means of presenting or equivalent to the universe of types. -
Amtliche Bekanntmachung
Amtliche Bekanntmachung Der Gemeindewahlausschuss hat in seiner Sitzung am 15.01.2021 folgende Wahlvorschläge für die Gemeindevertretung der Gemeinde Schauenburg am 14.03.2021 zugelassen, die hiermit bekannt gegeben werden: Wahlvorschlag 1 Christlich Demokratische Union Deutschlands (CDU) 1. Herr Starke, Harald, Feuerwehrmann (BF)/Pensionär, geb. 1954 in Kassel, Kastanienweg 2 A, 34270 Schauenburg 2. Herr Bröse, Joachim, Dipl. Verwaltungswirt (FH), geb. 1986 in Fritzlar, Werrastraße 15, 34270 Schauenburg 3. Herr Reinhardt, Volker, Fachreferent, geb. 1957 in Kassel, Wilhelmstraße 6, 34270 Schauenburg 4. Herr Wille, Sven, Investmentmakler, geb. 1976 in Bremen, Lerchenweg 18, 34270 Schauenburg 5. Herr Leß, Gian, Polizeikommissaranwärter, geb. 1997 in Wolfhagen, Buchenweg 8, 34270 Schauenburg 6. Frau Bindbeutel, Sonja, Salesmanagerin, geb. 1963 in Sand J Bad Emstal, Schmiedegasse 5, 34270 Schauenburg 7. Herr Philippi, Holger, Dipl. Pflegewirt (FH), geb. 1974 in Mannheim, Südstraße 20, 34270 Schauenburg 8. Frau Wettengel, Brigitte, Freiberufliche Beraterin/Coach, geb. 1949 in Goslar, Brunnenstraße 3, 34270 Schauenburg 9. Herr Salscheider, Armin, Meister Elektrotechnik, geb. 1961 in Rüsselsheim, Höhweg 22, 34270 Schauenburg 10. Herr Hansen, Torsten, Kaufmännischer Angestellter, geb. 1976 in Hannover, Bergstraße 12, 34270 Schauenburg 11. Herr Luschnat, Martin, Konstrukteur, geb. 1954 in Buenos Aires, Höhweg 6, 34270 Schauenburg 12. Herr Schaub, Thomas, Verwaltungsangestellter, geb. 1966 in Kassel, Bahnhofstraße 27, 34270 Schauenburg 13. Herr Kabbeck, Hartmut, Handelsvertreter, geb. 1961 in Hambergen Krs. Osterholz, Brüder-Grimm-Straße 7 b, 34270 Schauenburg 14. Herr Reinhardt, Martin, Dipl. Ingenieur, geb. 1983 in Kassel, Philipp-Hoffmeister-Str. 18, 34270 Schauenburg 15. Herr Hesse, Paul, Betriebswirt (FH), geb. 1979 in Danzig, Philipp-Hoffmeister-Str. 32, 34270 Schauenburg 16. Frau Koch, Brigitte, Verwaltungsangestellte, geb. -
Maßnahmenplan "Seilerberg Und Hirzstein"
Regierungspräsidium Kassel Obere Naturschutzbehörde Maßnahmenplan als Teil des Bewirtschaftungsplanes zum FFH-Gebiet „Habichtswald und Seilerberg bei Ehlen“ FFH-Gebiet-Nummer: 4622-302 und Vogelschutzgebiet „Hirzstein bei Kassel“ VSG-Nummer 4722-402 Stand: Oktober 2013 Maßnahmenplan FFH-Gebiet „Habichtswald u. Seilerberg“ 4622-302 Bearbeitung und Vogelschutzgebiet „Hirzstein“ 4722-402 Bearbeitung Auftraggeber: Regierungspräsidium Kassel Anschrift: Abteilung 27.2 Schutzgebiete, Artenschutz, Landschaftspflege Steinweg 6 34117 Kassel Sachbearbeiter: Axel Krügener Tel.: 0561 106 4581 0561 106 0 Fax: 0561 106 1691 Email: [email protected] [email protected] Auftragnehmer: HESSEN-FORST Regionalbetreuung NATURA 2000 Anschrift: Forstamt Wolfhagen Zum Forsthaus 20 Schützeberger Str. 74 34388 Trendelburg 34466 Wolfhagen Sachbearbeiter: Dipl. Ing. Reinhard Vollmer Tel.: 05675 5847 05692 9898 0 Fax: 05675 720620 05692 9898 40 Email: [email protected] [email protected] Die vorliegende Planung wurde mit dem Forstamt Wolfhagen und dem Fachbereich Landwirt- schaft des Landkreises Kassel abgestimmt, sowie am 29.04.2013 in einer Informations- veranstaltung vorgestellt. Die Bekanntmachung des vorliegenden Planes erfolgte durch die Gemeinde Habichtswald (Mitteilung vom __.__.201__) , der Gemeine Schauenburg (Mitteilung vom __.__.201__) und der Stadt Kassel (Mitteilung vom __.__.201__). Abkürzungen im Maßnahmenplan DOP5 ATKIS® Digitales Orthophoto 5 FENA Hessen-Forst Servicezentrum für Forsteinrichtung und Naturschutz -
The Elliptic Drinfeld Center of a Premodular Category Arxiv
The Elliptic Drinfeld Center of a Premodular Category Ying Hong Tham Abstract Given a tensor category C, one constructs its Drinfeld center Z(C) which is a braided tensor category, having as objects pairs (X; λ), where X ∈ Obj(C) and λ is a el half-braiding. For a premodular category C, we construct a new category Z (C) which 1 2 i we call the Elliptic Drinfeld Center, which has objects (X; λ ; λ ), where the λ 's are half-braidings that satisfy some compatibility conditions. We discuss an SL2(Z)-action el on Z (C) that is related to the anomaly appearing in Reshetikhin-Turaev theory. This construction is motivated from the study of the extended Crane-Yetter TQFT, in particular the category associated to the once punctured torus. 1 Introduction and Preliminaries In [CY1993], Crane and Yetter define a 4d TQFT using a state-sum involving 15j symbols, based on a sketch by Ooguri [Oog1992]. The state-sum begins with a color- ing of the 2- and 3-simplices of a triangulation of the four manifold by integers from 0; 1; : : : ; r. These 15j symbols then arise as the evaluation of a ribbon graph living on the boundary of a 4-simplex. The labels 0; 1; : : : ; r correspond to simple objects of the Verlinde modular category, the semi-simple subquotient of the category of finite dimen- πi r 2 sional representations of the quantum group Uqsl2 at q = e as defined in [AP1995]. Later Crane, Kauffman, and Yetter [CKY1997] extend this~ definition+ to colorings with objects from a premodular category (i.e. -
Arxiv:1204.3607V6 [Math.KT] 6 Nov 2015 At1 Ar N Waldhausen and Pairs 1
ON THE ALGEBRAIC K-THEORY OF HIGHER CATEGORIES CLARK BARWICK In memoriam Daniel Quillen, 1940–2011, with profound admiration. Abstract. We prove that Waldhausen K-theory, when extended to a very general class of quasicategories, can be described as a Goodwillie differential. In particular, K-theory spaces admit canonical (connective) deloopings, and the K-theory functor enjoys a simple universal property. Using this, we give new, higher categorical proofs of the Approximation, Additivity, and Fibration Theorems of Waldhausen in this context. As applications of this technology, we study the algebraic K-theory of associative rings in a wide range of homotopical contexts and of spectral Deligne–Mumford stacks. Contents 0. Introduction 3 Relation to other work 6 A word on higher categories 7 Acknowledgments 7 Part 1. Pairs and Waldhausen ∞-categories 8 1. Pairs of ∞-categories 8 Set theoretic considerations 9 Simplicial nerves and relative nerves 10 The ∞-category of ∞-categories 11 Subcategories of ∞-categories 12 Pairs of ∞-categories 12 The ∞-category of pairs 13 Pair structures 14 arXiv:1204.3607v6 [math.KT] 6 Nov 2015 The ∞-categories of pairs as a relative nerve 15 The dual picture 16 2. Waldhausen ∞-categories 17 Limits and colimits in ∞-categories 17 Waldhausen ∞-categories 18 Some examples 20 The ∞-category of Waldhausen ∞-categories 21 Equivalences between maximal Waldhausen ∞-categories 21 The dual picture 22 3. Waldhausen fibrations 22 Cocartesian fibrations 23 Pair cartesian and cocartesian fibrations 27 The ∞-categoriesofpair(co)cartesianfibrations 28 A pair version of 3.7 31 1 2 CLARK BARWICK Waldhausencartesianandcocartesianfibrations 32 4. The derived ∞-category of Waldhausen ∞-categories 34 Limits and colimits of pairs of ∞-categories 35 Limits and filtered colimits of Waldhausen ∞-categories 36 Direct sums of Waldhausen ∞-categories 37 Accessibility of Wald∞ 38 Virtual Waldhausen ∞-categories 40 Realizations of Waldhausen cocartesian fibrations 42 Part 2. -
Schuljahr 2015/2016 Landkreis Kassel
Ausgewählte Ergebnisse der Schuleingangsuntersuchung 2015 Übergewicht und Fettleibigkeit bis 5% > 5% - 10% > 10% - 15 % > 15% - 20% > 20% - 30% 16% Wahlsburg Bad Karlshafen 11% Oberweser 4% 15% Trendelburg 12% Hofgeismar 18% 14% Reinhardshagen Liebenau 5% Breuna Grebenstein 9% 27% Immenhausen Calden 7% 17% 10% Espenau Fuldatal Zierenberg 13% Vellmar 12% Ahnatal 8% Habichtswald 9% Wolfhagen 10% Niestetal Nieste 10% 9% 15% Zierenberg Kassel Schauenburg Kaufungen 3% Lohfelden 5% 5% Bad Emstal Helsa 8% 2% Baunatal 9% 10% Naumburg Fuldabrück 5% Söhrewald 6% © Stadt Kassel • Vermessung und Geoinformation Meter Quelle: Eigenuntersuchung des Gesundheitsamtes der Region Kassel 0 2.500 5.000 10.000 15.000 Ausgewählte Ergebnisse der Schuleingangsuntersuchung 2015 Vorgelegte Impfbücher bis 84% > 84% - 88% > 88% - 92% > 92% - 96% > 96% - 100% 99% Wahlsburg Bad Karlshafen 84% Oberweser 88% 94% Trendelburg 89% Hofgeismar 96% 95% Reinhardshagen Liebenau Breuna 95% 100% Grebenstein 93% Immenhausen Calden 97% 91% 100% Espenau Fuldatal Zierenberg 96% Vellmar 95% Ahnatal 97% Habichtswald 97% Wolfhagen 90% Niestetal 91% Nieste 95% 100% Kassel Zierenberg Schauenburg Kaufungen 96% Lohfelden 97% 95% Bad Emstal Baunatal Helsa 92% 94% 98% 97% Naumburg Fuldabrück 100% Söhrewald 94% © Stadt Kassel • Vermessung und Geoinformation Meter Quelle: Eigenuntersuchung des Gesundheitsamtes der Region Kassel 0 2.500 5.000 10.000 15.000 Ausgewählte Ergebnisse der Schuleingangsuntersuchung 2015 Impfstatus Hepatitis B bis 80% > 80% - 85% > 85% - 90% > 90% - 95% > 95% - 100% die -
RESEARCH STATEMENT 1. Introduction My Interests Lie
RESEARCH STATEMENT BEN ELIAS 1. Introduction My interests lie primarily in geometric representation theory, and more specifically in diagrammatic categorification. Geometric representation theory attempts to answer questions about representation theory by studying certain algebraic varieties and their categories of sheaves. Diagrammatics provide an efficient way of encoding the morphisms between sheaves and doing calculations with them, and have also been fruitful in their own right. I have been applying diagrammatic methods to the study of the Iwahori-Hecke algebra and its categorification in terms of Soergel bimodules, as well as the categorifications of quantum groups; I plan on continuing to research in these two areas. In addition, I would like to learn more about other areas in geometric representation theory, and see how understanding the morphisms between sheaves or the natural transformations between functors can help shed light on the theory. After giving a general overview of the field, I will discuss several specific projects. In the most naive sense, a categorification of an algebra (or category) A is an additive monoidal category (or 2-category) A whose Grothendieck ring is A. Relations in A such as xy = z + w will be replaced by isomorphisms X⊗Y =∼ Z⊕W . What makes A a richer structure than A is that these isomorphisms themselves will have relations; that between objects we now have morphism spaces equipped with composition maps. 2-category). In their groundbreaking paper [CR], Chuang and Rouquier made the key observation that some categorifications are better than others, and those with the \correct" morphisms will have more interesting properties. Independently, Rouquier [Ro2] and Khovanov and Lauda (see [KL1, La, KL2]) proceeded to categorify quantum groups themselves, and effectively demonstrated that categorifying an algebra will give a precise notion of just what morphisms should exist within interesting categorifications of its modules. -
Kork-Annahmestellen. Stand: September 2021
Kork-Annahmestellen. Stand: September 2021 Stadt/Gemeinde Ortsteil Straße/Standort Ahnatal Heckershausen An der Ahna 9 (Grundschule) Ahnatal Heckershausen Dorfplatz 2 (Kiga) Ahnatal Heckershausen Dorfplatz 2 (Dienstleistungszentrum) Ahnatal Weimar Königsfahrt 7 (Kiga) Ahnatal Weimar Wilhelmsthaler Str. 3 (Rathaus) Ahnatal Weimar Schulstr. 12 (Helfensteinschule) Bad Emstal Balhorn Bruchstr. 20 a (DGH) Bad Emstal Merxhausen Mittelstr. 13 (Privat) Bad Emstal Riede In der Torwiese (DGH) Bad Emstal Sand Kasseler Str. 57 (Rathaus) Bad Karlshafen Bad Karlshafen C-D.-Stunz-Weg 5 (Grundschule) Bad Karlshafen Bad Karlshafen Carlsstr. 27 (Gesamtschule) Baunatal Altenbauna Marktplatz 14 (Rathaus) Baunatal Großenritte Schulstr. 10 (Kiga) Baunatal Großenritte Hünsteinplatz 2 (Kiga) Baunatal Hertingshausen Werraweg (Bushaltestelle) Breuna Breuna Volkmarser Str. 3 (Rathaus) Espenau Mönchehof Goethestr. 7 (Kiga) Fuldabrück Dennhausen Parkstr. 30 (Pfarrhaus) Fuldabrück Dörnhagen Am Rathaus 2 (Rathaus) Fuldatal Ihringshausen Am Rathaus 9 (Rathaus) Grebenstein Grebenstein Markt 1 (Rathaus) Habichtswald Dönberg Saure Breite 7 (Kiga) Habichtswald Dörnberg Schulstr. 12 (Grundschule) Habichtswald Ehlen Kasseler Str. 8 (Kiga) Habichtswald Ehlen Warmetalstr. 13 (DGH) Helsa Helsa Schulstr. 10 (Grundschule) Helsa Eschenstruth An der langen Wiese 11-13 (Grundschule) Hofgeismar Hofgeismar Kirschenplantage 1 (Entsorgungszentrum Kirschenplantage) Hofgeismar Hofgeismar Brunnenstr. 26 (Gesundbrunnen) Hofgeismar Hofgeismar Garnisionsstr. 6 (Landkreis Kassel) Hofgeismar -
Centers and Homotopy Centers in Enriched Monoidal Categories
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Advances in Mathematics 230 (2012) 1811–1858 www.elsevier.com/locate/aim Centers and homotopy centers in enriched monoidal categories Michael Batanina,∗, Martin Marklb a Macquarie University, NSW 2109, Australia b Mathematical Institute of the Academy, Zitnˇ a´ 25, 115 67 Prague 1, Czech Republic Received 20 September 2011; accepted 12 April 2012 Available online 16 May 2012 Communicated by Ross Street Abstract We consider a theory of centers and homotopy centers of monoids in monoidal categories which themselves are enriched in duoidal categories. The duoidal categories (introduced by Aguiar and Mahajan under the name 2-monoidal categories) are categories with two monoidal structures which are related by some, not necessary invertible, coherence morphisms. Centers of monoids in this sense include many examples which are not ‘classical.’ In particular, the 2-category of categories is an example of a center in our sense. Examples of homotopy center (analogue of the classical Hochschild complex) include the Gray- category Gray of 2-categories, 2-functors and pseudonatural transformations and Tamarkin’s homotopy 2-category of dg-categories, dg-functors and coherent dg-transformations. ⃝c 2012 Elsevier Inc. All rights reserved. MSC: primary 18D10; 18D20; 18D50; secondary 55U40; 55P48 Keywords: Monoidal categories; Center; Hochschild complex; Operads; Deligne’s conjecture Contents 1. Introduction.................................................................................................................. 1812 2. Monoidal V -categories and duoidal V -categories.............................................................. 1814 ∗ Corresponding author. E-mail addresses: [email protected], [email protected] (M. Batanin), [email protected] (M. -
Mathematics and the Brain: a Category Theoretical Approach to Go Beyond the Neural Correlates of Consciousness
entropy Review Mathematics and the Brain: A Category Theoretical Approach to Go Beyond the Neural Correlates of Consciousness 1,2,3, , 4,5,6,7, 8, Georg Northoff * y, Naotsugu Tsuchiya y and Hayato Saigo y 1 Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310058, China 2 Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4 Canada 3 Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310036, China 4 School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3800, Australia; [email protected] 5 Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia 6 Advanced Telecommunication Research, Soraku-gun, Kyoto 619-0288, Japan 7 Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan 8 Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan; [email protected] * Correspondence: georg.northoff@theroyal.ca All authors contributed equally to the paper as it was a conjoint and equally distributed work between all y three authors. Received: 18 July 2019; Accepted: 9 October 2019; Published: 17 December 2019 Abstract: Consciousness is a central issue in neuroscience, however, we still lack a formal framework that can address the nature of the relationship between consciousness and its physical substrates. In this review, we provide a novel mathematical framework of category theory (CT), in which we can define and study the sameness between different domains of phenomena such as consciousness and its neural substrates. CT was designed and developed to deal with the relationships between various domains of phenomena. -
Categorification of the Müller-Wichards System Performance Estimation Model: Model Symmetries, Invariants, and Closed Forms
Article Categorification of the Müller-Wichards System Performance Estimation Model: Model Symmetries, Invariants, and Closed Forms Allen D. Parks 1,* and David J. Marchette 2 1 Electromagnetic and Sensor Systems Department, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448, USA 2 Strategic and Computing Systems Department, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448, USA; [email protected] * Correspondence: [email protected] Received: 25 October 2018; Accepted: 11 December 2018; Published: 24 January 2019 Abstract: The Müller-Wichards model (MW) is an algebraic method that quantitatively estimates the performance of sequential and/or parallel computer applications. Because of category theory’s expressive power and mathematical precision, a category theoretic reformulation of MW, i.e., CMW, is presented in this paper. The CMW is effectively numerically equivalent to MW and can be used to estimate the performance of any system that can be represented as numerical sequences of arithmetic, data movement, and delay processes. The CMW fundamental symmetry group is introduced and CMW’s category theoretic formalism is used to facilitate the identification of associated model invariants. The formalism also yields a natural approach to dividing systems into subsystems in a manner that preserves performance. Closed form models are developed and studied statistically, and special case closed form models are used to abstractly quantify the effect of parallelization upon processing time vs. loading, as well as to establish a system performance stationary action principle. Keywords: system performance modelling; categorification; performance functor; symmetries; invariants; effect of parallelization; system performance stationary action principle 1. Introduction In the late 1980s, D.