DCS M-2000C Flight Manual EN.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

DCS M-2000C Flight Manual EN.Pdf The information provided in this manual is preliminary and subject to revision. Table of Contents Introduction .................................................................................................................................................. 6 Cockpit ...................................................................................................................................................... 6 Engines ...................................................................................................................................................... 7 Payload and armaments ........................................................................................................................... 7 Sensors and avionics ................................................................................................................................. 7 General Characteristics ............................................................................................................................. 9 Acknowledgments ....................................................................................................................................... 11 Keyboard Map ............................................................................................................................................. 12 Chapter 1: Instruments Layout ................................................................................................................... 14 Instruments Panel Map. .......................................................................................................................... 14 Main instruments panel and center console .......................................................................................... 15 Left instruments panel ............................................................................................................................ 17 Right instruments panel .......................................................................................................................... 18 Hands‐On‐Throttle‐And‐Stick (HOTAS) System ...................................................................................... 20 Ejection Seat ........................................................................................................................................... 22 Chapter 2: Engine ........................................................................................................................................ 23 SNECMA M53‐P2 Engine Information ..................................................................................................... 23 Engine Control ......................................................................................................................................... 24 Engine Startup Panel ............................................................................................................................... 24 Engine Instruments ................................................................................................................................. 25 Engine Warning Lights ............................................................................................................................ 25 Chapter 3: Fuel System ............................................................................................................................... 27 Fuel Gauge .............................................................................................................................................. 28 Fuel warning lights .................................................................................................................................. 29 Fuel Flow Gauge and Bingo fuel selector ................................................................................................ 30 External tanks fuel dump switch. ............................................................................................................ 30 Fuel boost pumps. ................................................................................................................................... 31 Chapter 4: Electrical Power Supply System ................................................................................................ 32 Electrical Power Controls ........................................................................................................................ 32 Electrical Power Warning Lights ............................................................................................................. 33 1 Chapter 5: Lighting ...................................................................................................................................... 34 Interior lights. .......................................................................................................................................... 34 Exterior lights. ......................................................................................................................................... 34 Chapter 6: Hydraulic System ....................................................................................................................... 36 Hydraulic System Controls and Gauges .................................................................................................. 36 Hydraulic System feeds description ........................................................................................................ 36 Hydraulic System Warning Lights ........................................................................................................... 37 Chapter 7: Flight Controls ........................................................................................................................... 38 Description .............................................................................................................................................. 38 Mobile surfaces. .................................................................................................................................. 38 Normal Operation ................................................................................................................................... 38 Elevators.............................................................................................................................................. 38 Ailerons ............................................................................................................................................... 39 Rudder ................................................................................................................................................. 39 Fly‐By‐Wire .............................................................................................................................................. 40 Slats (becs) .......................................................................................................................................... 40 FBW Modes Switch ............................................................................................................................. 41 Degraded mode operation .................................................................................................................. 41 Emergency mode operation ............................................................................................................... 41 Controls ............................................................................................................................................... 42 FBW Warning Lights ............................................................................................................................ 42 Trim System ............................................................................................................................................ 43 Automatic Pilot ....................................................................................................................................... 44 Description .......................................................................................................................................... 44 Normal Operation ............................................................................................................................... 44 Controls ............................................................................................................................................... 46 Warning Lights .................................................................................................................................... 46 Chapter 8: Landing Gear ............................................................................................................................. 47 Controls ................................................................................................................................................... 47 Warning Lights ........................................................................................................................................ 48 Precautions ............................................................................................................................................. 48 Chapter 9: Flight Instruments ..................................................................................................................... 49 2 Altitude Indicator ...................................................................................................................................
Recommended publications
  • Project No.: R. 089145.001
    Project No.: R. 089145.001 Section 01 01 50 Mission Minimum Institution GENERAL INSTRUCTIONS 33737 Dewdney Trunk Road, Mission, BC Page 1 of 18 EXPANSION OF HEALTH CARE 1 SUMMARY OF WORK .1 Work covered by Contract Documents: .1 Work under this Contract comprises construction of a health care building expansion and renovation work as indicated, located at Mission Minimum Institution, Mission, B.C. .2 Contractor’s Use of Premises: .1 Contractor has controlled use of site within the construction area for Work, storage, and access as directed by the Departmental Representative. .2 Use of areas inside Mission Institution, for access to the construction site is controlled, by the Departmental Representative. .3 Obtain and pay for use of additional storage or work areas needed for operations under this Contract. .4 The new building will be constructed inside the security fence. The institution will be fully operational during work of this Contract. Provide temporary construction fence around site until new security fencing is installed. .3 Conform to National Building Code 2015 or British Columbia Building Code 2012 as applicable. .4 Contractor to apply for Building Permit before construction and Occupancy Permit upon Substantial completion. .1 Departmental Representative will supply the required drawings and Letters of Assurance for such applications. .2 Contractor to pay for all required fees for Building Permit and Occupancy Permit. .3 Before issuing the Substantial Completion certificate, Contractor must provide fire alarm verification report and Occupancy Permit from local authority having jurisdiction. 2 WORK RESTRICTIONS .1 Notify, Departmental Representative of intended interruption of disconnected services and provide schedule for review.
    [Show full text]
  • Robust Integrated Ins/Radar Altimeter Accounting Faults at the Measurement Channels
    ICAS 2002 CONGRESS ROBUST INTEGRATED INS/RADAR ALTIMETER ACCOUNTING FAULTS AT THE MEASUREMENT CHANNELS Ch. Hajiyev, R.Saltoglu (Istanbul Technical University) Keywords: Integrated Navigation, INS/Radar Altimeter, Robust Kalman Fillter, Error Model, Abstract was a milestone, and we were witnesses to these improvements in the near past. A great amount of In this study, the integrated navigation system, study has already been made about this issue. consisting of radio and INS altimeters, is Many more seem to be observed in the future. As presented. INS and the radio altimeter have many of these studies were examined, and some different benefits and drawbacks. The reason for useful information was reached. integrating these two navigators is mainly to Integrated navigation systems combine the combine the best features, and eliminate the best features of both autonomous and stand-alone shortcomings, briefly described above. systems and are not only capable of good short- The integration is achieved by using an term performance in the autonomous or stand- indirect Kalman filter. Hereby, the error models alone mode of operation, but also provide of the navigators are used by the Kalman filter to exceptional performance over extended periods estimate vertical channel parameters of the of time when in the aided mode. Integration thus navigation system. In the open loop system, INS brings increased performance, improved is the main source of information, and radio reliability and system integrity, and of course altimeter provides discrete aiding data to support increased complexity and cost [1,2]. Moreover, the estimations. outputs of an integrated navigation system are At the next step of the study, in case of digital, thus they are capable of being used by abnormal measurements, the performance of the other resources of being transmitted without loss integrated system is examined.
    [Show full text]
  • Performance Improvement Methods for Terrain Database Integrity
    PERFORMANCE IMPROVEMENT METHODS FOR TERRAIN DATABASE INTEGRITY MONITORS AND TERRAIN REFERENCED NAVIGATION A thesis presented to the Faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Master of Science Ananth Kalyan Vadlamani March 2004 This thesis entitled PERFORMANCE IMPROVEMENT METHODS FOR TERRAIN DATABASE INTEGRITY MONITORS AND TERRAIN REFERENCED NAVIGATION BY ANANTH KALYAN VADLAMANI has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by Maarten Uijt de Haag Assistant Professor of Electrical Engineering and Computer Science R. Dennis Irwin Dean, Russ College of Engineering and Technology VADLAMANI, ANANTH K. M.S. March 2004. Electrical Engineering and Computer Science Performance Improvement Methods for Terrain Database Integrity Monitors and Terrain Referenced Navigation (115pp.) Director of Thesis: Maarten Uijt de Haag Terrain database integrity monitors and terrain-referenced navigation systems are based on performing a comparison between stored terrain elevations with data from airborne sensors like radar altimeters, inertial measurement units, GPS receivers etc. This thesis introduces the concept of a spatial terrain database integrity monitor and discusses methods to improve its performance. Furthermore, this thesis discusses an improvement of the terrain-referenced aircraft position estimation for aircraft navigation using only the information from downward-looking sensors and terrain databases, and not the information from the inertial measurement unit. Vertical and horizontal failures of the terrain database are characterized. Time and frequency domain techniques such as the Kalman filter, the autocorrelation function and spectral estimation are designed to evaluate the performance of the proposed integrity monitor and position estimator performance using flight test data from Eagle/Vail, CO, Juneau, AK, Asheville, NC and Albany, OH.
    [Show full text]
  • Pilot Stories
    PILOT STORIES DEDICATED to the Memory Of those from the GREATEST GENERATION December 16, 2014 R.I.P. Norm Deans 1921–2008 Frank Hearne 1924-2013 Ken Morrissey 1923-2014 Dick Herman 1923-2014 "Oh, I have slipped the surly bonds of earth, And danced the skies on Wings of Gold; I've climbed and joined the tumbling mirth of sun-split clouds - and done a hundred things You have not dreamed of - wheeled and soared and swung high in the sunlit silence. Hovering there I've chased the shouting wind along and flung my eager craft through footless halls of air. "Up, up the long delirious burning blue I've topped the wind-swept heights with easy grace, where never lark, or even eagle, flew; and, while with silent, lifting mind I've trod the high untrespassed sanctity of space, put out my hand and touched the face of God." NOTE: Portions Of This Poem Appear On The Headstones Of Many Interred In Arlington National Cemetery. TABLE OF CONTENTS 1 – Dick Herman Bermuda Triangle 4 Worst Nightmare 5 2 – Frank Hearne Coming Home 6 3 – Lee Almquist Going the Wrong Way 7 4 – Mike Arrowsmith Humanitarian Aid Near the Grand Canyon 8 5 – Dale Berven Reason for Becoming a Pilot 11 Dilbert Dunker 12 Pride of a Pilot 12 Moral Question? 13 Letter Sent Home 13 Sense of Humor 1 – 2 – 3 14 Sense of Humor 4 – 5 15 “Poopy Suit” 16 A War That Could Have Started… 17 Missions Over North Korea 18 Landing On the Wrong Carrier 19 How Casual Can One Person Be? 20 6 – Gardner Bride Total Revulsion, Fear, and Helplessness 21 7 – Allan Cartwright A Very Wet Landing 23 Alpha Strike
    [Show full text]
  • Helicopter Solutions the Proof Is in the Performance Content
    HELICOPTER SOLUTIONS THE PROOF IS IN THE PERFORMANCE CONTENT G500H TXi Flight Display 06 HSVT™ Synthetic Vision Technology 07 GTN™ Xi Series Navigators 08 Terrain Awareness and Warning System 10 GFC™ 600H Flight Control System 11 GNC® 255/GTR 225 Nav/Comm Radios 12 GMA™ Series Digital Audio Control 12 Flight Stream 110/210 Wireless Gateways 13 SiriusXM® Satellite Weather 14 GSR 56H Global Weather/Voice/Text 14 GTS™ Series Active Traffic 14 ADS-B Solutions 15 GTX™ Series All-in-one ADS-B Transponders 16 GDL® Series ADS-B Datalinks 16 GWX™ 75H Digital Weather Radar 17 GRA™ 55 Radar Altimeter 18 FltPlan.com Services 19 Product Specifications 20 PUT BETTER DECISION-MAKING TOOLS AT YOUR FINGERTIPS WITH GARMIN HELICOPTER AVIONICS The versatility that helicopters bring to the world of aviation is reflected in the wide range of missions they fly: emergency medical services, law enforcement, offshore logistics, search and rescue, aerial touring, heavy-lift, executive transport, pilot training and many more. Each has its own operational challenges. And for some, these challenges have grown — as busier airspace and ever-more- demanding flight environments have increased the focus on safety, industry wide. An FAA task force identified three primary areas where operational risks for helicopters need special attention: 1) inadvertent flight into instrument meteorological (IMC) conditions, 2) night operations, and 3) controlled flight into terrain (CFIT). Many ongoing studies have reinforced these findings. And in response, many operators are now asking for technologies that can proactively (and affordably) help address these safety issues. To that end, Garmin is focusing our decades of experience in aviation safety technology on the specialized needs of today’s helicopter community.
    [Show full text]
  • 19730021074.Pdf
    NASA TECHNICAL NOTE NASA TN D-7328 CO LE CORY STEADY-STATE AND DYNAMIC PRESSURE PHENOMENA IN THE PROPULSION SYSTEM OF AN F-111A AIRPLANE by Frank W. Burcbam, Jr., Donald L. Hughes, and Jon K. Holzman Flight Research Center Edwards, Calif. 93523 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1973 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TN D-7328 4. Title and Subtitle 5. Report Date STEADY-STATE AND DYNAMIC PRESSURE PHENOMENA IN THE July 1973 PROPULSION SYSTEM OF AN F-111A AIRPLANE 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Frank W. Burcham, Jr., Donald L. Hughes, and Jon K. Holzman H-741 10. Work Unit No. 9. Performing Organization Name and Address 136-13-08-00-24 NASA Flight Research Center P. O. Box 273 11. Contract or Grant No. Edwards, California 93523 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Note National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 15. Supplementary Notes 16. Abstract Flight tests were conducted with two F-111A airplanes to study the effects of steady-state and dynamic pressure phenomena on the propulsion system. Analysis of over 100 engine compressor stalls revealed that the stalls were caused by high levels of instantaneous distortion. In 73 per- cent of these stalls, the instantaneous circumferential distortion parameter, Kg, exhibited a peak just prior to stall higher than any previous peak. The Kg parameter was a better indicator of stall than the distortion factor, K_, and the maximum-minus-minimum distortion parameter, D, was a poor indicator of stall.
    [Show full text]
  • Your Continued Donations Keep Wikipedia Running
    Jet engine performance Design Point TS Diagram Typical Temperature vs. Entropy (TS) Diagram for a single spool turbojet. Note that 1 CHU/(lbm K) = 1 Btu/(lb °R) = 1 Btu/(lb °F) = 1 kcal/(kg °C) = 4.184 kJ/(kg·K). Temperature vs. entropy (TS) diagrams (see example RHS) are usually used to illustrate the cycle of gas turbine engines. All the reader really needs to know about entropy is that it represents the degree of disorder of the molecules in the fluid and that it tends to increase! Apart from stations 0 and 8s, stagnation pressure and stagnation temperature are used. Station 0 is ambient. The processes depicted are: Freestream (stations 0 to 1) In the example, the aircraft is stationary, so stations 0 and 1 are coincident. Station 1 is not depicted on the diagram. Intake (stations 1 to 2) In the example, a 100% intake pressure recovery is assumed, so stations 1 and 2 are coincident. 1 Compression (stations 2 to 3) The ideal process would appear vertical on a TS diagram. In the real process there is friction, turbulence and, possibly, shock losses, making the exit temperature, for a given pressure ratio, higher than ideal. The shallower the positive slope on the TS diagram, the less efficient the compression process. Combustion (stations 3 to 4) Heat (usually by burning fuel) is added, raising the temperature of the fluid. There is an associated pressure loss, some of which is unavoidable Turbine (stations 4 to 5) The temperature rise in the compressor dictates that there will be an associated temperature drop across the turbine.
    [Show full text]
  • Vpa Report 2002-12-05
    UNCLASSIFIED NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND TECHNICAL REPORT REPORT NO: NAWCADPAX/TR-2002/71 REVIEW OF THE CARRIER APPROACH CRITERIA FOR CARRIER-BASED AIRCRAFT PHASE I; FINAL REPORT by Thomas Rudowsky Stephen Cook Marshall Hynes Robert Heffley Melvin Luter Thomas Lawrence CAPT Robert Niewoehner Douglas Bollman Page Senn Dr. Wayne Durham Henry Beaufrere Michael Yokell Albert Sonntag Approved for public release; distribution is unlimited. UNCLASSIFIED DEPARTMENT OF THE NAVY NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND NAWCADPAX/TR-2002/71 REVIEW OF THE CARRIER APPROACH CRITERIA FOR CARRIER-BASED AIRCRAFT - PHASE I; FINAL REPORT by Thomas Rudowsky Stephen Cook Marshall Hynes Robert Heffley Melvin Luter Thomas Lawrence CAPT Robert Niewoehner Douglas Bollman Page Senn Dr. Wayne Durham Henry Beaufrere Michael Yokell Albert Sonntag NAWCADPAX/TR-2002/71 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
    [Show full text]
  • January 1972
    1- -/- r-FI - M . , 2 1. I ./ r..1 1 ..1 .91"r«Fr 11 'L ' 4 *L :,1 1 1 15'i'&11& ..-t *4-**4,- '+ , 1 ,#146*1\ :1,#F'i- ihlf,1,r. 'flijh/f»--,1~.Ati ·, 4 <A/ 1,11 -. , . NNU -A . * IA- 1 IIi,_ %4'1 r'll,I, , . ...... ........ ..~..1.... - 9, , .t 1, 14., '.,r'. - 4-- . 3 8 . il- . 191 01, t . Ad v - » r'* _ , , I I r V '- 4 \ '111 11 4 1, 14, , 4 7S* . GOLD CARD PRESENTATIONS signifying Honorary Membership in Ope- 4/36, Reg, 231681; C. J. Mahan, Init. 7/27, Reg. 179387: Don E. Malhiot, rating Engineers Local Union No. 3 were made by Business Manager Al Init. 12/32, Reg. 202738; Meryl D. Mayes, Init. 12/36, Reg. 238116; John Clen- a- the Semi-Annual Meeting to Brothers E. J. Blood, Int. 7/17, Reg. F. Regallo, Init. 5/36, Reg. 232718; C. A. Schroff, Init. 4/30, Reg. 195110: 87915· C. C. Clark, Init. 3/30, Reg. 194797; Earl Dooley, Init. 9/35, Reg. Hobart Simpson, Init. 9/32, Reg. 202429; C. W. Stevens, Init. 9/28, Reg. 227545 George Ernst, Init. 4/36, Reg. 230898; Barney Felix, Init. 4/36, 187508: George W. Stevens, Init, 2/31, Reg, 198375 and Earl Stiles, Init. Reg. 23 1675; Ralph L, Foy, Init. 5/36, Reg. 23652; Robert Hall, Init. 9/35, 12/36, Reg. 239392. A standing ovation followed the presentations. Reg. 226889; F, M. Lauritzen, 9/35, Reg. 227,552; Philip Perrin, Init. "Serving the men who move tbe earth.'" ~~ ENGINEERS Cr »~ iNH :W 48 <tlESN>- PUBLISHED TO PROMOTE THE GENERAL WELFARE OF ALL ENGINEERS AND THEIR FAMILIES 1.
    [Show full text]
  • Combat Aircraft Team; the US Air Force Air Power Yearbook Is the Ultimate Guide to the World’S Most Powerful Air Arm
    Advanced jet TRAINING ALENIA AERMACCHI M-346 • ISRAELI SKYHAWK RETIREMENT • PACER CLASSIC T-38 TALONS • GREEK BUCKEYES AND TEXAN IIS Volume 17 • Number 3 AMERICA’S BESTSELLING MILITARY AVIATION MAGAZINE combataircraft.net EAGLE FROM THE COCKPIT Pilot stories from the mighty F-15C ‘Desert Storm’ 25 years ON F-15C victories IN THE NEWS: USAF Saves the a-10 SIKORSKY CH-53K C-5 SUPER GALAXY KING STALLION AT DOVER AFB S-3 Vikings BOW OUT OF UK £4.50 SERVICE WITH VX-30 CHINESE FIGHTER BOMBER REVIEW MARCH 2016 SPECIAL united states air force air power YEARBOOK 2016 Produced by the Combat Aircraft team; the US Air Force Air Power Yearbook is the ultimate guide to the world’s most powerful air arm. Packed with features on latest aircraft capabilities, famous squadrons and the personnel that fly and maintain the various types, plus a detailed unit and aircraft air power review. This 100-page publication is a must-have for USAF aviation fans. FEATURING: F-22 on the front line A review of the Raptor’s combat debut over Syria and recent deployment to Europe. 40 Years of exercise’ Red Flag’ A review and tribute to the world’s most famous exercise. Bayou Militia A unit review of the F-15Cs of the 122nd Fighter Squadron Louisiana ANG F-35 training Behind the scenes at Eglin and Luke AFB as the F-35 training squadrons get up to full speed. B-1 today Exclusive interviews with B-1 senior officers as we detail recent combat operations and latest JUST upgrades for the B-1 Lancer.
    [Show full text]
  • Central Florida Future, Vol. 12 No. 14, November 30, 1979
    University of Central Florida STARS Central Florida Future University Archives 11-30-1979 Central Florida Future, Vol. 12 No. 14, November 30, 1979 Part of the Mass Communication Commons, Organizational Communication Commons, Publishing Commons, and the Social Influence and oliticalP Communication Commons Find similar works at: https://stars.library.ucf.edu/centralfloridafuture University of Central Florida Libraries http://library.ucf.edu This Newsletter is brought to you for free and open access by the University Archives at STARS. It has been accepted for inclusion in Central Florida Future by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation "Central Florida Future, Vol. 12 No. 14, November 30, 1979" (1979). Central Florida Future. 380. https://stars.library.ucf.edu/centralfloridafuture/380 .U C F LIBRARY ARCHIVES University of .·central Florida) Fr~day, November 30, 1979 N~. l_ ~ . -; ~ _ ill __ Energy. costs exceed university's budget by Barbara °Cowell aaaoclate editor UCF's energy consumption has rise.n and is no longer within the budget .project­ for : this yea_r, according to Richard V. Neuhaus, assistant director of thP Physical Plant. The proposed budget for the year underestimated the rising cost of energy. Ac·· cording to Neuhaus, the cost per energy unit has riseq over 35 percent and show5 no sign of abating. "At this time," he said, "the cost of the kilowatt hour has risen from three to five cents." "They tell me that at other universities they're having problems. '.with . budgets," said N~uhaus. "Especially campuses like USF and UF, where medical centers are situated and consume a great amount of energy." According to Neuhaus, UCF has implemented a Delta 1000 and 2000 Horeywell system for energy management.
    [Show full text]
  • Outer-Loop Control Factors for Carrier Aircraft
    Robert Heffley Engineering 349 First Street, Los Altos, CA 94022, USA Telephone: (650) 949-1747 FAX: (650) 949-1243 RHE-NAV-90-TR-1 OUTER-LOOP CONTROL FACTORS FOR CARRIER AIRCRAFT Robert K. Heffley 1 December 1990 CONTRACT SUMMARY REPORT Distribution authorized to U. S. Government agencies and their contractors; (Critical technology). Other requests for this document will be referred to the Naval Air Systems Command (AIR-5301). Prepared for: Naval Air Systems Command Department of the Navy Washington DC 20361 This report was prepared under Contract N00019-89-C-0259 which was competitively awarded for a total cost of $52,998. THIS PAGE IS INTENTIONALLY BLANK UNCLASSIFIED Page i SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE 1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS UNCLASSIFIED 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT Distribution authorized to U. S. Government agencies and their 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE contractors; (Critical technology). Other requests for this document will be referred to the Naval Air Systems Command (AIR-5301). 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) RHE-NAV-90-TR-1 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Robert Heffley Engineering (I f applicable) Department of the Navy Naval Air Systems Command, AIR-5301 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 349 First Street Los Altos, CA 94022 Washington, DC 20361 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) Contract N00019-89-C-0259 Naval Air Systems Command AIR-5301 8c.
    [Show full text]