The Cosmic Perspective

Total Page:16

File Type:pdf, Size:1020Kb

The Cosmic Perspective A Modern View 1 of the Universe ▲ About the photo: This Hubble Space Telescope photo shows thousands of galaxies in a region of the sky Sampleso small you could cover it with a grain pagesof sand held at arm’s length. LEARNING GOALS 1.1 The Scale of the Universe 1.3 Spaceship Earth ■■ What is our place in the universe? ■■ How is Earth moving through space? ■■ How big is the universe? ■■ How do galaxies move within the universe? 1.2 The History of the Universe 1.4 The Human Adventure of Astronomy ■■ How did we come to be? ■■ How has the study of astronomy affected human ■■ How do our lifetimes compare to the age of the history? universe? 1 M01_BENN4364_09_SE_C01.indd 1 01/11/2018 15:45 It suddenly struck me that that tiny pea, pretty and Our Cosmic Address The galaxies that we see in the blue, was the Earth. I put up my thumb and shut Hubble Space Telescope photo are just one of several key levels of structure in our universe, all illustrated as our one eye, and my thumb blotted out the planet Earth. “cosmic address” in FIGURE 1.1. I didn’t feel like a giant. I felt very, very small. Earth is a planet in our solar system, which consists of —Neil Armstrong on looking back at the Earth from the Sun, the planets and their moons, and countless smaller the Moon, July 1969 objects that include rocky asteroids and icy comets. Keep in mind that our Sun is a star, just like the stars we see in our night sky. Chapter 1 Overview Our solar system belongs to the huge, disk-shaped col- lection of stars called the Milky Way Galaxy. A galaxy is ar from city lights on a clear night, you can gaze upward at a great island of stars in space, all held together by gravity Fa sky filled with stars. Lie back and watch for a few hours, and orbiting a common center. The Milky Way is a rela- and you will observe the stars marching steadily across the sky. tively large galaxy, containing more than 100 billion stars, Confronted by the seemingly infinite heavens, you might won- and we think that most of these stars are orbited by planets. der how Earth and the universe came to be. If you do, you will Our solar system is located a little over halfway from the be sharing an experience common to humans around the world galactic center to the edge of the galactic disk. and in thousands of generations past. Billions of other galaxies are scattered throughout space. Modern science offers answers to many of our fundamental Some galaxies are fairly isolated, but most are found in questions about the universe and our place within it. We now groups. Our Milky Way, for example, is one of the two larg- know the basic content and scale of the universe. We know the est among more than 50 galaxies (most relatively small) in ages of Earth and the universe. And, although much remains to be discovered, we are rapidly learning how the simple ingredi- the Local Group. Groups of galaxies with many more large ents of the early universe developed into the incredible diversity members are often called galaxy clusters. of life on Earth—and, perhaps, life on other worlds as well. On a very large scale, galaxies and galaxy clusters appear In this first chapter, we will survey the scale, history, and to be arranged in giant chains and sheets with huge voids motion of the universe. This “big picture” perspective on our between them; the background of Figure 1.1 represents this universe will provide a base on which you’ll be able to build a large-scale structure. The regions in which galaxies and gal- deeper understanding in the rest of the book. axy clusters are most tightly packed are called superclusters, which are essentially clusters of galaxy clusters. Our Local Group is located in the outskirts of the Local Supercluster 1.1 The Scale of the Universe (also called Laniakea, Hawaiian for “immense heaven”). For most of human history, our ancestors imagined Earth to Together, all these structures make up our universe. be stationary at the center of a relatively small universe. This In other words, the universe is the sum total of all matter idea made sense at a time when understanding was built and energy, encompassing the superclusters and voids and upon everyday experience. After all, we cannot feel the con- everything within them. stant motion of Earth as it rotates on its axis and orbits the Think about it Some people think that our tiny physical size Sun, and if you observe the sky you’ll see that the Sun, Moon, in the vast universe makes us insignificant. Others think that planets, and stars all appear to revolve around us each day. our ability to learn about the wonders of the universe gives Nevertheless, we now know that Earth is a planet orbiting a us significance despite our small size. What do you think? rather average star in a rather typical galaxy in a vast universe. The historical path to this knowledge was long and com- plex. In later chapters, we’ll see that the ancient belief in an Astronomical Distance Measurements The labels in Earth-centered (or geocentric) universe changed only when Figure 1.1 give an approximate size for each structure in kilo- people were confronted by strong evidenceSample to the contrary, and meters (recallpages that 1 kilometer ≈ 0.6 mile), but many dis- we’ll explore how the method of learning that we call science tances in astronomy are so large that kilometers are not the enabled us to acquire this evidence. First, however, it’s useful most convenient unit. Instead, we often use two other units: to have a general picture of the universe as we know it today. ■■ One astronomical unit (AU) is Earth’s average distance from the Sun, which is about 150 million kilometers (93 What is our place in the universe? million miles). We commonly describe distances within Take a look at the remarkable photo that opens this our solar system in AU. chapter (on page 1). This photo, taken by the Hubble Space ■■ One light-year (ly) is the distance that light can travel Telescope, shows a piece of the sky so small that you could in 1 year, which is about 10 trillion kilometers (6 trillion block your view of it with a grain of sand held at arm’s miles). We generally use light-years to describe the dis- length. Yet it encompasses an almost unimaginable expanse tances of stars and galaxies. of both space and time. Nearly every object within it is a galaxy filled with billions of stars, and some of the smaller Be sure to note that a light-year is a unit of distance, smudges are galaxies so far away that their light has taken not of time. Light travels at the speed of light, which is billions of years to reach us. Let’s begin our study of astron- 300,000 kilometers per second. We therefore say that one omy by exploring what a photo like this one tells us about light-second is about 300,000 kilometers, because that our own place in the universe. is the distance light travels in one second. Similarly, one 2 PART I DEVELOPING PERSPECTIVE M01_BENN4364_09_SE_C01.indb 2 19/03/19 2:12 PM Our Cosmic Address FIGURE 1.1 Our cosmic address. These diagrams show key levels of structure in our universe. For a more detailed view, see the “You Are Here in Universe Space” foldout diagram in the front of the book. approx. size: 1021 km ≈ 100 million ly Local Supercluster approx. size: 3 x 1019 km ≈ 3 million ly Local Group approx. size: 1018 km ≈ 100,000 ly Milky Way Galaxy Solar System (not to scale) Earth Sample pages approx. size: 1010 km ≈ 60 AU approx. size: 104 km CHAPTER 1 A MODERN VIEW OF THE UNIVERSE 3 M01_BENN4364_09_SE_C01.indd 3 01/11/2018 15:45 The Cosmic Perspective, 9e Bennett Pearson Education 9780134874364 Fig 01.01 File Name: 8743601001 Troutt Visual Services lm 08/09/18 93p1 x 19p4 light-minute is the distance that light travels in one minute, we cannot yet know about them because the light from one light-hour is the distance that light travels in one hour, these events has not yet reached us. and so on. Mathematical Insight 1.1 (page 6) shows that The general idea that light takes time to travel through light travels about 10 trillion kilometers in one year, so that space leads to a remarkable fact: distance represents a light-year. The farther away we look in distance, the further back we look in time. Looking Back in Time The speed of light is extremely fast by earthly standards. It is so fast that if you could make The Andromeda Galaxy (FIGURE 1.3) is about 2.5 million light go in circles, it could circle Earth nearly eight times light-years away, which means we see it as it looked about in a single second. Nevertheless, even light takes time to 2.5 million years ago. We see more distant galaxies as they travel the vast distances in space. Light takes a little more were even further in the past. Some of the galaxies in the than 1 second to reach Earth from the Moon, and about 8 Hubble Space Telescope photo that opens the chapter are minutes to reach Earth from the Sun.
Recommended publications
  • Stage 1: the Number Sequence
    1 stage 1: the number sequence Big Idea: Quantity Quantity is the big idea that describes amounts, or sizes. It is a fundamental idea that refers to quantitative properties; the size of things (magnitude), and the number of things (multitude). Why is Quantity Important? Quantity means that numbers represent amounts. If students do not possess an understanding of Quantity, their knowledge of foundational mathematics will be undermined. Understanding Quantity helps students develop number conceptualization. In or- der for children to understand quantity, they need foundational experiences with counting, identifying numbers, sequencing, and comparing. Counting, and using numerals to quantify collections, form the developmental progression of experiences in Stage 1. Children who understand number concepts know that numbers are used to describe quantities and relationships’ between quantities. For example, the sequence of numbers is determined by each number’s magnitude, a concept that not all children understand. Without this underpinning of understanding, a child may perform rote responses, which will not stand the test of further, rigorous application. The developmental progression of experiences in Stage 1 help students actively grow a strong number knowledge base. Stage 1 Learning Progression Concept Standard Example Description Children complete short sequences of visual displays of quantities beginning with 1. Subsequently, the sequence shows gaps which the students need to fill in. The sequencing 1.1: Sequencing K.CC.2 1, 2, 3, 4, ? tasks ask students to show that they have quantity and number names in order of magnitude and to associate quantities with numerals. 1.2: Identifying Find the Students see the visual tool with a numeral beneath it.
    [Show full text]
  • Using Concrete Scales: a Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, Guia Gali
    Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, Guia Gali To cite this version: Fanny Chevalier, Romain Vuillemot, Guia Gali. Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2013, 19 (12), pp.2426-2435. 10.1109/TVCG.2013.210. hal-00851733v1 HAL Id: hal-00851733 https://hal.inria.fr/hal-00851733v1 Submitted on 8 Jan 2014 (v1), last revised 8 Jan 2014 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Using Concrete Scales: A Practical Framework for Effective Visual Depiction of Complex Measures Fanny Chevalier, Romain Vuillemot, and Guia Gali a b c Fig. 1. Illustrates popular representations of complex measures: (a) US Debt (Oto Godfrey, Demonocracy.info, 2011) explains the gravity of a 115 trillion dollar debt by progressively stacking 100 dollar bills next to familiar objects like an average-sized human, sports fields, or iconic New York city buildings [15] (b) Sugar stacks (adapted from SugarStacks.com) compares caloric counts contained in various foods and drinks using sugar cubes [32] and (c) How much water is on Earth? (Jack Cook, Woods Hole Oceanographic Institution and Howard Perlman, USGS, 2010) shows the volume of oceans and rivers as spheres whose sizes can be compared to that of Earth [38].
    [Show full text]
  • The Cosmic Calendar
    The Cosmic Calendar Astronomers believe that the Cosmos in which the Solar System and Earth resides is about 16 billion years old. We believe the Earth is about 4.6 billion years old and base this on carbon dating of rocks both from Earth and the Moon. However, billions of years is a very hard thing to grasp! Fortunately there is a creative way to get a grasp on this kind of time and that is with the "cosmic calendar" which Carl Sagan created and popularized. We set the Big Bang on January 1st and divided the events into one year, with now being the first day of the next new year. Before you read further, take a guess at which month humans enter into the calendar! The first stars and galaxies did not begin to form until the universe had cooled and expanded. Our Milky Way galaxy comes into existence on May 1st of our calendar. Our Solar System forms September 9th and the Earth on September 14th. The "infant" Earth was a hot, molten and toxic place, nothing like the paradise we know today. As Earth cooled, the first rocks solidified on October 2nd. The oldest known fossils, nothing more complex than bacteria and blue­green algae, appear October 9th on our cosmic calendar. These early life forms reproduced by splitting cells. Sexes did not begin as a means of reproduction until about November first. The most basic plants which used photosynthesis to get energy, appear on November 12th. The first cells with nuclei, eukaryotes, appear on November 15th, and begin to flourish immediately.
    [Show full text]
  • Imagining Outer Space Also by Alexander C
    Imagining Outer Space Also by Alexander C. T. Geppert FLEETING CITIES Imperial Expositions in Fin-de-Siècle Europe Co-Edited EUROPEAN EGO-HISTORIES Historiography and the Self, 1970–2000 ORTE DES OKKULTEN ESPOSIZIONI IN EUROPA TRA OTTO E NOVECENTO Spazi, organizzazione, rappresentazioni ORTSGESPRÄCHE Raum und Kommunikation im 19. und 20. Jahrhundert NEW DANGEROUS LIAISONS Discourses on Europe and Love in the Twentieth Century WUNDER Poetik und Politik des Staunens im 20. Jahrhundert Imagining Outer Space European Astroculture in the Twentieth Century Edited by Alexander C. T. Geppert Emmy Noether Research Group Director Freie Universität Berlin Editorial matter, selection and introduction © Alexander C. T. Geppert 2012 Chapter 6 (by Michael J. Neufeld) © the Smithsonian Institution 2012 All remaining chapters © their respective authors 2012 All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6–10 Kirby Street, London EC1N 8TS. Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages. The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988. First published 2012 by PALGRAVE MACMILLAN Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.
    [Show full text]
  • Lecture 2: Cosmic Calendar Lecture 3
    LLeeccttuurree 11:: OOuurr CCoossmmiicc AAddddrreessss Local supercluster SCI 199Y second term: Local group 60 million Milky Way galaxycontains Astronomy @ the Frontiers light-years ~100 billion stars 14 billion 2.5 million 28,000 light-years light-years light-years Universe contains Prof. Yanqin Wu ~100 billion galaxies Earth Solar system (not to scale) 1) Review last term and connection to this term 0.04 light-seconds 2) technical details 8 light-minutes 3) Measuring distances – the universe is expanding! LLeeccttuurree 22:: CCoossmmiicc CCaalleennddaarr LLeeccttuurree 33:: TThhee January February March April SScciieennccee ooff 1 Big Bang AAssttrroonnoommyy May June July August Loop: you can never 1 Milky Way Loop: you can never born prove a hypothesis, you can only disprove (“falsify”) it September October November December 9 Solar system 2 Oldest rocks 1 Sex invented 1 Oxygen in air A scientific statement born known 12 Oldest fossil 17 Cambrian is falsifiable. 14 Earth forms 9 Oldest fossils plant 27 Jurassic 25 First life on (bacteria/blue- 15 Eukaryotes 30 Dinos extinct Earth? green algae) flourish 31 ... Next slide n o o M e h t f o s Seasons e s a h P LLaawwss ooff GGrraavviittyy LIGHT: wave/particle M M F =G 1 2 g d 2 M 1 M 2 d 2M2 2d wavelength energy Spectrum TTeelleessccooppeess Atmosphere not transparent at all wavelengths; for all but visible and radio, need to go up! e IInstantnstant QQuuiziz:: e r WhWhaatt keekeeppss tthehe SuSunn shshiningining?? r u u t t a a r r On fire? 1 hand up r On fire? 1 hand up r e e Too little
    [Show full text]
  • The Reionization of Cosmic Hydrogen by the First Galaxies Abstract 1
    David Goodstein’s Cosmology Book The Reionization of Cosmic Hydrogen by the First Galaxies Abraham Loeb Department of Astronomy, Harvard University, 60 Garden St., Cambridge MA, 02138 Abstract Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA’s successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe.
    [Show full text]
  • DEEP FUTURE of BIG HISTORY: Cultural Evolution, Technoculture, and Omega Civilization
    DEEP FUTURE of BIG HISTORY: Cultural Evolution, Technoculture, and Omega Civilization Cadell Last Global Brain Institute Vrije Universiteit Brussel (Free University of Brussels) http://cadelllast.com [email protected] (v1.3., September 22, 2014) ABSTRACT: The study of big history attempts to identify major trends and processes throughout the development and evolution of the local universe. Big history has allowed for the integration of many disparate academic subjects, revealing a science and art of studying the emergence of complexity, the relation between evolutionary processes, and the cosmic context of the human experience. Current big historical data and theory identifies “Three Eras” of ordered and organizing complexity regimes: Physical, Biological, and Cultural Eras. These Eras change as a consequence of “Three Evolutionary Processes”: Physical, Biological, and Cultural Evolution. Contemporary science has developed the necessary tools to extrapolate and make predictions about the future of both the Physical and Biological Eras of evolution, but the potential future of the Cultural Era of evolution remains mysterious, yet intriguing. Cosmological theory predicts that all Eras will eventually end in thermodynamic equilibrium, or “heat death”. However, throughout the history of the cosmos, complexity and order have steadily increased in our local region of the universe, drifting further and further from simplicity and thermodynamic equilibrium in the process. Physical systems achieve higher order through gravitationally influenced energy flows; and living systems achieve higher organization through an information-based regulation of energy flows. Both processes contribute to the cosmic evolutionary trends of increased material integration, variation, and space-time compression. Cosmic evolution is fundamentally unified throughout this complexification process, manifesting as physicochemical, biochemical, and biocultural evolution, respectively.
    [Show full text]
  • Wonders of the Universe
    You loved your last book...but what are you going to read next? Using our unique guidance tools, Lovereading will help you find new books to keep you inspired and entertained. Opening Extract from… Wonders of the Universe Written by Professor Brian Cox & Andrew Cohen Published by Collins All text is copyright © of the author This Opening Extract is exclusive to Lovereading. Please print off and read at your leisure. For Mum, Dad and Sandra – none of this would have been possible without you Brian Cox For my dad, Geof Cohen (1943–2007) Andrew Cohen HarperCollins Publishers 77–85 Fulham Palace Road London W6 8JB www.harpercollins.co.uk Collins is a registered trademark of HarperCollins Publishers Ltd. Text © Brian Cox and Andrew Cohen 2011 Photographs, with the exception of those detailed on p255 © BBC Infographics, Design & Layout © HarperCollins Publishers 2011 By arrangement with the BBC The BBC logo is a trademark of the British Broadcasting Corporation and is under licence. BBC logo © BBC 1996 13 12 11 10 09 9 8 7 6 5 4 3 2 1 The authors assert their moral right to be identified as the authors of this work. All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers. A catalogue record for this book is available from the British Library. ISBN 978-0-00-739582-8 Collins uses papers that are natural, renewable and recyclable products made from wood grown in sustainable forests.
    [Show full text]
  • The Age of the Universe, the Hubble Constant, the Accelerated Expansion and the Hubble Effect
    The age of the universe, the Hubble constant, the accelerated expansion and the Hubble effect Domingos Soares∗ Departamento de F´ısica,ICEx, UFMG | C.P. 702 30123-970, Belo Horizonte | Brazil October 25, 2018 Abstract The idea of an accelerating universe comes almost simultaneously with the determination of Hubble's constant by one of the Hubble Space Tele- scope Key Projects. The age of the universe dilemma is probably the link between these two issues. In an appendix, I claim that \Hubble's law" might yet to be investigated for its ultimate cause, and suggest the \Hubble effect” as the searched candidate. 1 The age dilemma The age of the universe is calculated by two different ways. Firstly, a lower limit is given by the age of the presumably oldest objects in the Milky Way, e.g., globular clusters. Their ages are calculated with the aid of stellar evolu- tion models which yield 14 Gyr and 10% uncertainty. These are fairly confident figures since the basics of stellar evolution are quite solid. Secondly, a cosmo- logical age based on the Standard Cosmology Model derived from the Theory of General Relativity. The three basic models of relativistic cosmology are given by the Friedmann's solutions of Einstein's field equations. The models are char- acterized by a decelerated expansion from a spatial singularity at cosmic time t = 0, and whose magnitude is quantified by the density parameter Ω◦, the present ratio of the mass density in the universe to the so-called critical mass arXiv:0908.1864v8 [physics.gen-ph] 28 Jul 2015 density.
    [Show full text]
  • The Parallels and Reversals in Chaco, Hubble, and Facebook
    YEARNING TO BE THE CENTER OF EVERYTHING WHEN WE ARE THE CENTER OF NOTHING: THE PARALLELS AND REVERSALS IN CHACO, HUBBLE, AND FACEBOOK Barry Vacker and Genevieve Gillespie Forthcoming in: Telematics and Informatics, Special Edition on “The Facebook Phenomenon” AUTHORS Barry Vacker, Ph.D. Associate Professor Department of Broadcast, Telecommunications and Mass Media Temple University 2020 N. 13th St. Philadelphia, PA 19122 Genevieve Gillespie Student Temple University Philadelphia, PA 19122 ABSTRACT Humans have long sought to map their place in the cosmos and then situate their selves at the center of the universe. These patterns are displayed at three radically different sites — the Sun Dagger in Chaco Canyon, the Hubble Space Telescope, and social media and Facebook. Drawing from Marshall McLuhan, this article will theorize the parallels and reversals in these sites, where cosmological discoveries of the expanding universe have been countered by technological innovations involving electronic screens, such that social media counters space telescopes, cyberspace counters outer space, and Facebook counters Hubble. Perhaps the “revolution” of social media merely parallels other cultural reversals, all of which seek to return humans to the center of the universe, when we are the center of nothing. And this desire and delusion to be at the center of everything lies at the heart of contemporary issues facing the global civilization. 1. INTRODUCTION Humans are the only species on Earth to store information outside their bodies — from cave paintings to cinema to cyberspace, petroglyphs to photographs to 3D simulations, books to libraries to the internet. From our minds, we have extended a complex technological system around the planet and into the universe.
    [Show full text]
  • Cosmos: a Spacetime Odyssey (2014) Episode Scripts Based On
    Cosmos: A SpaceTime Odyssey (2014) Episode Scripts Based on Cosmos: A Personal Voyage by Carl Sagan, Ann Druyan & Steven Soter Directed by Brannon Braga, Bill Pope & Ann Druyan Presented by Neil deGrasse Tyson Composer(s) Alan Silvestri Country of origin United States Original language(s) English No. of episodes 13 (List of episodes) 1 - Standing Up in the Milky Way 2 - Some of the Things That Molecules Do 3 - When Knowledge Conquered Fear 4 - A Sky Full of Ghosts 5 - Hiding In The Light 6 - Deeper, Deeper, Deeper Still 7 - The Clean Room 8 - Sisters of the Sun 9 - The Lost Worlds of Planet Earth 10 - The Electric Boy 11 - The Immortals 12 - The World Set Free 13 - Unafraid Of The Dark 1 - Standing Up in the Milky Way The cosmos is all there is, or ever was, or ever will be. Come with me. A generation ago, the astronomer Carl Sagan stood here and launched hundreds of millions of us on a great adventure: the exploration of the universe revealed by science. It's time to get going again. We're about to begin a journey that will take us from the infinitesimal to the infinite, from the dawn of time to the distant future. We'll explore galaxies and suns and worlds, surf the gravity waves of space-time, encounter beings that live in fire and ice, explore the planets of stars that never die, discover atoms as massive as suns and universes smaller than atoms. Cosmos is also a story about us. It's the saga of how wandering bands of hunters and gatherers found their way to the stars, one adventure with many heroes.
    [Show full text]
  • Pre-Big Bang, Space-Time Structure, Asymptotic Universe
    EPJ Web of Conferences 71, 0 0 063 (2 014 ) DOI: 10.1051/epjconf/20147100063 C Owned by the authors, published by EDP Sciences, 2014 Pre-Big Bang, space-time structure, asymptotic Universe Spinorial space-time and a new approach to Friedmann-like equations Luis Gonzalez-Mestres1,a 1Megatrend Cosmology Laboratory, Megatrend University, Belgrade and Paris Goce Delceva 8, 11070 Novi Beograd, Serbia Abstract. Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space- time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collab- oration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95), while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space- time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2) spinor and the Lundmark-Lemaître-Hubble (LLH) expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamen- tal geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time.
    [Show full text]