Unmanned Aircraft Systems Roadmap 2005-2030

Total Page:16

File Type:pdf, Size:1020Kb

Unmanned Aircraft Systems Roadmap 2005-2030 UAS ROADMAP 2005 UAS ROADMAP 2005 UAS ROADMAP 2005 EXECUTIVE SUMMARY As the Global War on Terrorism (GWOT) enters its fourth year, the contributions of unmanned aircraft (UA)* in sorties, hours, and expanded roles continue to increase. As of September 2004, some twenty types of coalition UA, large and small, have flown over 100,000 total flight hours in support of Operation ENDURING FREEDOM (OEF) and Operation IRAQI FREEDOM (OIF). Their once reconnaissance- only role is now shared with strike, force protection, and signals collection, and, in doing so, have helped reduce the complexity and time lag in the sensor-to-shooter chain for acting on “actionable intelligence.” UA systems (UAS) continue to expand, encompassing a broad range of mission capabilities. These diverse systems range in cost from a few thousand dollars to tens of millions of dollars, and range in capability from Micro Air Vehicles (MAV) weighing less than one pound to aircraft weighing over 40,000 pounds. UA, and unmanned systems in general, are changing the conduct of military operations in the GWOT by providing unrelenting pursuit without offering the terrorist a high value target or a potential captive. As the Department of Defense (DoD) develops and employs an increasingly sophisticated force of unmanned systems, including UA over the next 25 years (2005 to 2030), technologists, acquisition officials, and operational planners require a clear, coordinated plan for the evolution and transition of this capability. The overarching goal of this Roadmap, in following the Strategic Planning Guidance (SPG), is to guide the Military Departments and defense agencies toward a logical, systematic migration of mission capabilities to this new class of military tools. The goal is to address the most urgent mission needs that are supported both technologically and operationally by various UAS. Some DoD missions can be supported by the current state of the art in unmanned technology where the capabilities of current or near-term assets are sufficient and the risk to DoD members is relatively low. Other mission areas, however, are in urgent need of additional capability and present high risk to aircraft crews. These mission areas, highlighted in this Roadmap, will receive significant near-term effort by the Department. Each Service is developing a wide range of UAS capabilities, and the Office of the Secretary of Defense (OSD) is responsible for ensuring these capabilities support the Department’s larger goals of fielding transformational capabilities, establishing joint standards, and controlling costs. OSD is establishing the following broad goals to achieve key UAS capabilities. The organizations in parenthesis are those which must cooperatively engage to attain the stated goal. 1. Develop and operationally assess for potential fielding, a joint unmanned combat aircraft system capable of performing Suppression of Enemy Air Defenses (SEAD)/Strike/Electronic Attack/Intelligence Surveillance, and Reconnaissance (ISR) in high threat environments. (OSD, USAF, USN) 2. Field secure Common Data Link (CDL) communications systems for aircraft control and sensor product data distribution for all tactical and larger UA, with improved capability to prevent interception, interference, jamming, and hijacking. Migrate to Joint Tactical Radio System (JTRS)/Software Communications Architecture (SCA) compliant capability when available. (OSD, USA,USAF, USN, USMC) 3. Ensure compliance with the existing DoD/Intelligence Community Motion Imagery Standards Board metadata standard and profiles for all full motion video capable UA. Operationally demonstrate and * This roadmap adopts the terminology unmanned aircraft (UA), rather than unmanned aerial vehicle (UAV), when referring to the flying component of an unmanned aircraft system. Unmanned Aircraft Systems (UAS) are the focus of this roadmap. This change in terminology more clearly emphasizes that the aircraft is only one component of the system, and is in line with the Federal Aviation Administration’s decision to treat “UAVs” as aircraft for regulatory purposes. EXECUTIVE SUMMARY – Page i UAS ROADMAP 2005 field near real time (<3 minutes) UAS meta data derived targeting capability for coordinate seeking weapons. (OSD, USAF, USA, USN, USMC) 4. Foster the development of policies, standards, and procedures that enable safe, timely, routine access by UA to controlled and uncontrolled airspace, to include: • promoting the development, adoption, and enforcement of industry-wide airworthiness standards for the design, manufacturing, testing, and employment of UAS (OSD) • coordinating with FAA procedures for operating DoD UA in unrestricted airspace comparable to those of manned counterparts (i.e., aircraft, light-sport aircraft, and radio-controlled model aircraft) (OSD) • developing and fielding the capability for UA to “see” and autonomously avoid other aircraft, providing an equivalent level of safety to comparable manned systems (USAF, USA, USN, USMC) 5. Improve Combatant Commander UAS effectiveness through improved joint service collaboration. (OSD, JFCOM, USAF, USA, USN, USMC) 6. Develop and field reliable propulsion alternatives to gasoline-powered internal combustion engines on UA, specifically their replacement with heavy fuel engines. (OSD, USAF, USA, USN, USMC) 7. Improve adverse-weather UA capabilities to provide higher mission availability and mission effectiveness rates. (OSD, USAF, USA, USN, USMC) 8. Ensure standardized and protected positive control of weapons carried on UA. Develop a standard UAS architecture including weapons interface for all appropriate UA. (OSD, USAF, USA, USN, USMC) 9. Support rapid integration of validated combat capability in fielded/deployed systems through a more flexible test and logistical support process. (OSD, JFCOM, USAF, USA, USN, USMC) EXECUTIVE SUMMARY – Page ii UAS ROADMAP 2005 TABLE OF CONTENTS 1.0 Introduction............................................................................................................ 1 1.1 PURPOSE .......................................................................................................................... 1 1.2 SCOPE .............................................................................................................................. 1 1.3 DEFINITIONS .................................................................................................................... 1 1.4 WHY UNMANNED AIRCRAFT? ......................................................................................... 1 2.0 Current UAS........................................................................................................... 3 2.1 MAJOR UAS .................................................................................................................... 4 2.2 CONCEPT EXPLORATION UAS ....................................................................................... 15 2.3 SPECIAL OPERATIONS UAS ........................................................................................... 20 2.4 SMALL UAS................................................................................................................... 26 2.5 UNMANNED AIRSHIPS .................................................................................................... 32 2.6 UAS PROGRAMMATIC DATA ......................................................................................... 37 2.7 UAS WORLDWIDE GROWTH.......................................................................................... 38 3.0 Requirements........................................................................................................ 41 3.1 HISTORICALLY VALIDATED UAS ROLES ....................................................................... 41 3.2 COMBATANT COMMANDER REQUIREMENTS FOR UAS .................................................. 41 3.3 MISSION REQUIREMENTS RANKED FOR UAS................................................................. 42 3.4 MISSION AREAS OPEN TO UAS ..................................................................................... 43 3.5 INTEROPERABILITY ........................................................................................................ 45 4.0 Technologies ......................................................................................................... 47 4.1 PROCESSOR TECHNOLOGIES........................................................................................... 48 4.2 COMMUNICATION TECHNOLOGIES ................................................................................. 49 4.3 PLATFORM TECHNOLOGIES............................................................................................ 51 4.4 PAYLOAD TECHNOLOGIES.............................................................................................. 56 5.0 Operations ............................................................................................................ 63 5.1 TRAINING....................................................................................................................... 63 5.2 OPERATIONAL CONCEPTS DEVELOPMENT—PARTICIPATING AGENCIES ........................ 64 5.3 OPERATIONS .................................................................................................................. 67 5.4 WEAPON DELIVERY ....................................................................................................... 69 5.5 OPERATING AND SUPPORT COSTS .................................................................................
Recommended publications
  • Lighter-Than-Air Vehicles for Civilian and Military Applications
    Lighter-than-Air Vehicles for Civilian and Military Applications From the world leaders in the manufacture of aerostats, airships, air cell structures, gas balloons & tethered balloons Aerostats Parachute Training Balloons Airships Nose Docking and PARACHUTE TRAINING BALLOONS Mooring Mast System The airborne Parachute Training Balloon system (PTB) is used to give preliminary training in static line parachute jumping. For this purpose, an Instructor and a number of trainees are carried to the operational height in a balloon car, the winch is stopped, and when certain conditions are satisfied, the trainees are dispatched and make their parachute descent from the balloon car. GA-22 Airship Fully Autonomous AIRSHIPS An airship or dirigible is a type of aerostat or “lighter-than-air aircraft” that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft, and unlike hot air balloons, stay aloft by filling a large cavity with a AEROSTATS lifting gas. The main types of airship are non rigid (blimps), semi-rigid and rigid. Non rigid Aerostats are a cost effective and efficient way to raise a payload to a required altitude. airships use a pressure level in excess of the surrounding air pressure to retain Also known as a blimp or kite aerostat, aerostats have been in use since the early 19th century their shape during flight. Unlike the rigid design, the non-rigid airship’s gas for a variety of observation purposes.
    [Show full text]
  • And Space-Based Photometry
    Mon. Not. R. Astron. Soc. 000, 1–17 (2002) Printed 5 December 2018 (MN LATEX style file v2.2) Transit analysis of the CoRoT-5, CoRoT-8, CoRoT-12, CoRoT-18, CoRoT-20, and CoRoT-27 systems with combined ground- and space-based photometry St. Raetz1,2,3⋆, A. M. Heras3, M. Fern´andez4, V. Casanova4, C. Marka5 1Institute for Astronomy and Astrophysics T¨ubingen (IAAT), University of T¨ubingen, Sand 1, D-72076 T¨ubingen, Germany 2Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, D-79104 Freiburg, Germany 3Science Support Office, Directorate of Science, European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 4Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo. 3004, 18080 Granada, Spain 5Instituto Radioastronom´ıa Milim´etrica (IRAM), Avenida Divina Pastora 7, E-18012 Granada, Spain Accepted 2018 November 8. Received: 2018 November 7; in original from 2018 April 6 ABSTRACT We have initiated a dedicated project to follow-up with ground-based photometry the transiting planets discovered by CoRoT in order to refine the orbital elements, constrain their physical parameters and search for additional bodies in the system. From 2012 September to 2016 December we carried out 16 transit observations of six CoRoT planets (CoRoT-5b, CoRoT-8b, CoRoT-12b, CoRoT-18b, CoRoT-20 b, and CoRoT-27b) at three observatories located in Germany and Spain. These observations took place between 5 and 9 yr after the planet’s discovery, which has allowed us to place stringent constraints on the planetary ephemeris. In five cases we obtained light curves with a deviation of the mid-transit time of up to ∼115 min from the predictions.
    [Show full text]
  • Autonomous Vehicles in Support of Naval Operations Committee on Autonomous Vehicles in Support of Naval Operations, National Research Council
    Autonomous Vehicles in Support of Naval Operations Committee on Autonomous Vehicles in Support of Naval Operations, National Research Council ISBN: 0-309-55115-3, 256 pages, 6 x 9, (2005) This free PDF was downloaded from: http://www.nap.edu/catalog/11379.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Autonomous Vehicles in Support of Naval Operations http://www.nap.edu/catalog/11379.html AUTONOMOUS VEHICLES IN SUPPORT OF NAVAL OPERATIONS Committee on Autonomous Vehicles in Support of Naval Operations Naval Studies Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 a Good Way to Start – Find North
    The expression "dog days" refers to the period from July 3 through Aug. 11 when our brightest night star, SIRIUS (aka the dog star), rises in conjunction* with the sun. Conjunction, in astronomy, is defined as the apparent meeting or passing of two celestial bodies. TAAS Fabulous Fifty A program for those new to astronomy Friday Evening, July 20, 2018, 8:00 pm All TAAS and other new and not so new astronomers are welcome. What is the TAAS Fabulous 50 Program? It is a set of 4 meetings spread across a calendar year in which a beginner to astronomy learns to locate 50 of the most prominent night sky objects visible to the naked eye. These include stars, constellations, asterisms, and Messier objects. Methodology 1. Meeting dates for each season in year 2018 Winter Jan 19 Spring Apr 20 Summer Jul 20 Fall Oct 19 2. Locate the brightest and easiest to observe stars and associated constellations 3. Add new prominent constellations for each season Tonight’s Schedule 8:00 pm – We meet inside for a slide presentation overview of the Summer sky. 8:40 pm – View night sky outside The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 A Good Way to Start – Find North Polaris North Star Polaris is about the 50th brightest star. It appears isolated making it easy to identify. Circumpolar Stars Polaris Horizon Line Albuquerque -- 35° N Circumpolar Stars Capella the Goat Star AS THE WORLD TURNS The Circle of Perpetual Apparition for Albuquerque Deneb 1 URSA MINOR 2 3 2 URSA MAJOR & Vega BIG DIPPER 1 3 Draco 4 Camelopardalis 6 4 Deneb 5 CASSIOPEIA 5 6 Cepheus Capella the Goat Star 2 3 1 Draco Ursa Minor Ursa Major 6 Camelopardalis 4 Cassiopeia 5 Cepheus Clock and Calendar A single map of the stars can show the places of the stars at different hours and months of the year in consequence of the earth’s two primary movements: Daily Clock The rotation of the earth on it's own axis amounts to 360 degrees in 24 hours, or 15 degrees per hour (360/24).
    [Show full text]
  • Air & Space Power Journal
    July–August 2013 Volume 27, No. 4 AFRP 10-1 Senior Leader Perspective The Air Advisor ❙ 4 The Face of US Air Force Engagement Maj Gen Timothy M. Zadalis, USAF Features The Swarm, the Cloud, and the Importance of Getting There First ❙ 14 What’s at Stake in the Remote Aviation Culture Debate Maj David J. Blair, USAF Capt Nick Helms, USAF The Next Lightweight Fighter ❙ 39 Not Your Grandfather’s Combat Aircraft Col Michael W. Pietrucha, USAF Building Partnership Capacity by Using MQ-9s in the Asia-Pacific ❙ 59 Col Andrew A. Torelli, USAF Personnel Security during Joint Operations with Foreign Military Forces ❙ 79 David C. Aykens Departments 101 ❙ Views The Glass Ceiling for Remotely Piloted Aircraft ❙ 101 Lt Col Lawrence Spinetta, PhD, USAF Funding Cyberspace: The Case for an Air Force Venture Capital Initiative ❙ 119 Maj Chadwick M. Steipp, USAF Strategic Distraction: The Consequence of Neglecting Organizational Design ❙ 129 Col John F. Price Jr., USAF 140 ❙ Book Reviews Master of the Air: William Tunner and the Success of Military Airlift . 140 Robert A. Slayton Reviewer: Frank Kalesnik, PhD Selling Air Power: Military Aviation and American Popular Culture after World War II . 142 Steve Call Reviewer: Scott D. Murdock From Lexington to Baghdad and Beyond: War and Politics in the American Experience, 3rd ed . 144 Donald M. Snow and Dennis M. Drew Reviewer: Capt Chris Sanders, USAF Beer, Bacon, and Bullets: Culture in Coalition Warfare from Gallipoli to Iraq . 147 Gal Luft Reviewer: Col Chad T. Manske, USAF Global Air Power . 149 John Andreas Olsen, editor Reviewer: Lt Col P.
    [Show full text]
  • Monash Robotics and Mechatronics Engineering
    MONASH ROBOTICS AND MECHATRONICS ENGINEERING monash.edu/engineering/ robotics-mechatronics WHAT DO ROBOTICS WHAT IS AND MECHATRONICS ROBOTICS AND ENGINEERS DO? Key to robotics and mechatronics engineering is the ability to analyse and design complex MECHATRONICS machines and systems, which often involve automation. Robotics and mechatronics engineers work with instrumentation, sensors and computer systems. They use these to control movement, optimise processes, ENGINEERING? monitor systems and detect faults. Robotics and mechatronics engineers can be found working in transport, manufacturing, healthcare and construction, particularly in Robotics and mechatronics are places where automation can improve efficiency and productivity, and where multidisciplinary fields of engineering reliability and safety are essential to that combine mechanical engineering, engineering operations. computing, electronics and control theory. They design and develop robots to operate in collaboration with humans, and control At the forefront of rapidly transforming technologies, robotics and systems for vehicles, aircraft, machinery, mechatronics engineers work to design robots and improve the production lines and can now be found automation, performance, features and functionality of products working in biotechnology and biomedicine. and systems with a mix of mechanical and electronic components. Being multidisciplinary in nature, robotics and As a robotics or mechatronics engineer you could design aircraft mechatronics engineers are highly skilled at avionics for autonomous drones, build robots for industry or medicine, managing projects and teams which bridge develop systems based on smartphones, or help robots understand the traditional areas of mechanical and human behaviour. Robotics and mechatronics engineering is also electrical engineering. used in the development, design and operation of processes and production lines needed to make most consumer products.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883
    Journal of Aviation/Aerospace Education & Research Volume 13 Number 1 JAAER Fall 2003 Article 1 Fall 2003 Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883 Thomas Forenz Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Forenz, T. (2003). Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883. Journal of Aviation/Aerospace Education & Research, 13(1). https://doi.org/10.15394/ jaaer.2003.1559 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Forenz: Assessing the Evolution of the Airborne Generation of Thermal Lif Thermal Lift ASSESSING THE EVOLUTION OF THE AIRBORNE GENERATION OF THERMAL LIFT IN AEROSTATS 1783 TO 1883 Thomas Forenz ABSTRACT Lift has been generated thermally in aerostats for 219 years making this the most enduring form of lift generation in lighter-than-air aviation. In the United States over 3000 thermally lifted aerostats, commonly referred to as hot air balloons, were built and flown by an estimated 12,000 licensed balloon pilots in the last decade. The evolution of controlling fire in hot air balloons during the first century of ballooning is the subject of this article. The purpose of this assessment is to separate the development of thermally lifted aerostats from the general history of aerostatics which includes all gas balloons such as hydrogen and helium lifted balloons as well as thermally lifted balloons.
    [Show full text]
  • Assessment of the Air Force Materiel Command Reorganization Report for Congress
    CHILDREN AND FAMILIES The RAND Corporation is a nonprofit institution that helps improve policy and EDUCATION AND THE ARTS decisionmaking through research and analysis. ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE This electronic document was made available from www.rand.org as a public service INFRASTRUCTURE AND of the RAND Corporation. TRANSPORTATION INTERNATIONAL AFFAIRS LAW AND BUSINESS Skip all front matter: Jump to Page 16 NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY Support RAND SCIENCE AND TECHNOLOGY Purchase this document TERRORISM AND Browse Reports & Bookstore HOMELAND SECURITY Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Project AIR FORCE View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under copyright law. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please see RAND Permissions. This report is part of the RAND Corporation research report series. RAND reports present research findings and objective analysis that address the challenges facing the public and private sectors. All RAND reports undergo rigorous peer review to ensure high standards for research quality and objectivity. Research Report Assessment of the Air Force Materiel Command Reorganization Report for Congress Don Snyder, Bernard Fox, Kristin F.
    [Show full text]
  • Photochart of USAF Leadership
    Photochart of USAF Leadership An Air Force Magazine Directory (As of Aug. 20, 2009) By June Lee, Editorial Associate Office of the Secretary of the Air Force Asst. Secretary of the Air Asst. Secretary of the Air Asst. Secretary of the Air Asst. Secretary of the Air Force Force (Acquisition) Force (Financial Mgmt. & Force (Installations, Envi- (Manpower & Reserve Affairs) David M. Van Buren Comptroller) ronment, & Logistics) Daniel B. Ginsberg (acting) Jamie M. Morin Debra K. Walker Secretary of the Air Force Michael B. Donley Deputy Undersecretary of Auditor General General Counsel Inspector General the Air Force Theodore J. Williams Charles A. Blanchard Lt. Gen. Marc E. Rogers (International Affairs) Bruce S. Lemkin Undersecretary of the Air Force Vacant Chief, Warfighting Integration & Director, Legislative Liaison Director, Public Affairs Director, Small Business Chief Information Officer Maj. Gen. Robin Rand Col. Les A. Kodlick Programs Lt. Gen. William T. Lord Ronald A. Poussard Senior Military Asst. to the Administrative Asst. Secretary of the Air Force to the Secretary Col. Charles H. Porter of the Air Force William A. Davidson 72 AIR FORCE Magazine / September 2009 The United States Air Force Air Staff Asst. Vice Chief of Staff Chief Master Sergeant Air Force Historian Judge Advocate General Lt. Gen. William L. Shelton of the Air Force Clarence R. Anderegg Lt. Gen. Jack L. Rives CMSAF James A. Roy Chief of Staff Gen. Norton A. Schwartz Surgeon General Chair, Scientific Advisory Board Chief of Chaplains Chief of Safety Lt. Gen. Charles B. Green John W. Betz Maj. Gen. Cecil R. Richardson Maj. Gen. Frederick F.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]