ICRC 2007 Proceedings - Pre-Conference Edition

Total Page:16

File Type:pdf, Size:1020Kb

ICRC 2007 Proceedings - Pre-Conference Edition 30TH INTERNATIONAL COSMIC RAY CONFERENCE ICRC 2007 Proceedings - Pre-Conference Edition Calculation of radio emission from high-energy air showers N. N. KALMYKOV1, A. A. KONSTANTINOV1, R. ENGEL2. 1 Scobeltsyn Institute of Nuclear Physics, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia 2 Institut fur¨ Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany [email protected] Abstract: Results of the simulation of radio signals from 1017 eV extensive air showers are reported. The simulations are based on a track-by-track electric field calculation using the EGSnrc Monte Carlo shower code. The lateral distribution of the predicted radio emission is compatible with the recent LOPES-10 experimental data at distances < 300 m. Perspectives of extending EAS radio emission calculations to the ultra-high energy range (up to 1020 eV) are also discussed. Introduction particle trajectories using the Monte Carlo (MC) technique. In such an approach, shower properties Radio emission accompanying extensive air show- can be included in the most accurate and simple ers (EAS) is considered as a promising alterna- way, which, however, requires very large comput- tive to traditional methods of high energy cosmic ing time at primary energies above 1015 eV. ray detection. Recently, first measurements from Using the MC approach, EAS radio emission a new generation of radio antenna arrays, LOPES has been theoretically investigated most inten- [1], which is co-located with the KASCADE air sively within the framework of the “geosyn- shower array [2], and CODALEMA [3], were pub- chrotron emission” model [5] proposed by Falcke lished. The experimentally found, good correla- and Gorham in 2003 [6]. In this model, it is as- tion of the signal with the shower energy has also sumed that the overall radio signal of air showers is renewed the interest in theoretical predictions [1]. dominated by the radio emission due to the deflec- In general, there are two approaches of calculating tion of particle trajectories in the magnetic field of the radio signal of an air shower. the Earth. In the geosynchroton model, simulations The starting point of Askaryan’s predictions in are performed in the time domain, i.e. the elec- 1961 was the model of the motion of effective tric field contributions produced by shower parti- charges in EAS [4]. In [4] both electron excess cles are summed as function of the detection time and charge separation in the Earth’s magnetic field [5, 7]. The refractive index of air is taken as unity. were proposed as responsible for the EAS radio In this paper, we follow a more general approach emission. In this picture a shower is considered as that does not explicitly distinguish between the a continuous system of charges and currents. Evi- geosynchroton or Cherenkov radio signal. We dently, the approach of calculating the radio emis- calculate the radio signal of each shower parti- sion for a system of charges and currents rather cle in Fourier space (frequency domain). Signal than individual particles has the potential of being contributions due to start and end points of parti- numerically very efficient. cle trajectories and localized momentum changes On the other hand, parametrizations of the overall in Coulomb scattering and bremsstrahlung are in- charges and currents in EAS have not yet been de- cluded as well as the continuous deflection in the veloped. Therefore it is very useful to start with Earth’s magnetic field. The refractive index of air an approach that is based on following individual is naturally accounted for in the simulation. CALCULATION OF RADIO EMISSION Electric field calculation In the EAS case, particle trajectories are mainly governed by elementary interactions with air and ICRC 2007 Proceedings - Pre-Conference Edition also the deflection of the particles in the Earth’s magnetic field. The problem then is to calculate the radiation from a charged particle having a tra- jectory which cannot be described by an analytic function. An important constraint is that the sum over all particles should result in an expression similar to that of the continuous charges and cur- rents approach. As MC simulation is a linear procedure employ- Figure 1: Illustration of the individual trajectory ing a “straight-step-by-straight-step” particle trans- contributions considered in the calculation. portation, it is natural to calculate the electric field ~ ~ from a charged particle by considering the tra- βs⊥ βs+1⊥ jectory as a sum of many leaps of the velocity × − . (2) 1 − n~e · β~ 1 − n~e · β~ β~ = ~u/c: Rs s Rs s+1 Here ε is the permittivity of vacuum, c is the light ~ ~ ~ ~ 0 Eω ΣN = Eω 0 → β1 + ... speed in vacuum, k = nω/c, n is the refractive | {z } birth of the particle index of air, R is the distance between electron lo- ~ ~ ~ ~ ~ ~ cation and the observation point, ~eR is the unit vec- + Eω βs → βs+1 + ... + Eω βN → 0 . (1) ~ tor in the direction of observation, ξ0 is the radius- | {z } | {z } ~ deflection of the particle death of the particle vector of electron at the time t0 and β⊥ is the trans- ~ verse component of β with respect to ~eR. Here N is the total number of adjoining individ- In comparison, in the geosynchrotron model only ual trajectory segments at which the velocities β~ s the terms in the series (1) which are due to the par- are being constant vectors, Fig.1. Internal terms ticle deflections in the Earth’s magnetic field are in the series (1) may describe both discrete in- taken into account. teractions of charged particles in air (including multiple Coulomb scattering and secondary parti- cle creation below the simulation threshold) and Modelling their “smooth” deflection in the Earth’s magnetic or electric fields. Calculations of the EAS radio emission are carried In the case of discrete interactions, the electric field out in the “particle-by-particle” manner in a spe- can be estimated within classical radiation theory cial program written for this purpose. A photon rather than quantum theory due to ω∆t 1, is used as primary particle and MC shower mod- where ω is the observation frequency and ∆t is the elling is performed just for the electromagnetic time of interaction. part of the shower using the EGSnrc code [9]. The In the framework of the Fraunhofer approximation, density and optical properties of the Earth’s atmo- the Fourier-component E~ω of the electric field at a sphere are taken to be uniform within slices of 9.5 given frequency ω = 2πν produced by a sudden g/cm2. The strength and declination of the Earth’s ~ ~ leap βs → βs+1 of an electron velocity at the time magnetic field correspond to those for the LOPES (s+1) experiment. The radiation field is calculated via moment t0 is given by (2) for all particle energies above the threshold ~ ~ E~ω βs → βs+1 = 100 keV. The upper limit on step size of particle straight transport is equal to 1 m. ikRs e e iω(t(s+1)−n~e ·ξ~ (s+1)/c) = e 0 Rs 0 × A straight-forward MC simulation of the full 8π2ε c R 0 s shower development is limited to energies up to 30TH INTERNATIONAL COSMIC RAY CONFERENCE ' 1015 eV. The situation may be improved by ap- plying the “thinning” method [10], which is char- acterized by the parameter εth = Eth/E0, where Eth is the energy at which the thinning process is ICRC 2007 Proceedings - Pre-Conference Edition started, E0 is the energy of primary particle. The influence of thinning on the radio emission calcu- lation quality has been studied in the 1012 − 1014 eV range. Unfortunately, the general conclusion is that thinning does not allow to increase the pri- mary energy as much as would be needed to sim- ulate showers at ultra-high energy. Namely, at the LOPES frequency range (40-80 MHz), the accept- able level εth reduces computing time by a factor of only 10-20 for a range of observation distances up to 200-300 m from a shower axis. The reason is that for radio emission the low energy particles (having energies much less than the critical energy of 81 MeV) are extremely important. Figure 2: Number of charged particles of a 1017 eV photon-initiated vertical shower as a function of −7 atmospheric depth. Thinning level εth = 2 · 10 Results or Eth = 20 GeV. The model results are compared to Greisen’s parameterization for a radiation length In Fig.2 the longitudinal profile of one 1017 eV of 36.8 g/cm2 and an critical energy of 81 MeV. photon-initiated vertical shower is presented. The initial photon was injected at 30 km above the sea level. The simulated profile is similar to the aver- age cascade curve at 1017 eV. Therefore it is rea- sonable to assume that the given shower is rep- resentative for a comparison of the predicted ra- dio emission with experimental data at energies of about 1017 eV that is averaged over many showers. The comparison with LOPES-10 experimental data is plotted on Fig.3, where the simulated ra- dio emission has been averaged over north, south, west and east directions. A correlation of radio sig- nals with distance is found for the group of events selected out of 5 months of LOPES-10 measure- ments [8]. All selected showers have energies in 16 17 the range E0 ' 5 · 10 − 6 · 10 eV and zenith angles < 50◦. In the comparison, it has been taken into ac- count that experimentally measured and theoreti- cally calculated field strengths are not absolutely Figure 3: Lateral distribution of EAS radio emis- identical.
Recommended publications
  • Final Results of the LOPES Radio Interferometer for Cosmic-Ray Air Showers
    Eur. Phys. J. C (2021) 81:176 https://doi.org/10.1140/epjc/s10052-021-08912-4 Regular Article - Experimental Physics Final results of the LOPES radio interferometer for cosmic-ray air showers LOPES Collaboration W. D. Apel1, J. C. Arteaga-Velázquez2, L. Bähren3, K. Bekk1, M. Bertaina4 , P. L. Biermann5 ,J.Blümer1,6, H. Bozdog1, E. Cantoni4,8 , A. Chiavassa4 , K. Daumiller1, V. de Souza9 , F. Di Pierro4 ,P.Doll1, R. Engel1,6, H. Falcke3,5,10 , B. Fuchs6, H. Gemmeke12, C. Grupen13 , A. Haungs1 , D. Heck1, J. R. Hörandel10 , A. Horneffer5, D. Huber6, T. Huege1 , P. G. Isar14 , K.-H. Kampert11 , D. Kang1 ,O.Krömer12, J. Kuijpers10,K.Link1,a , P. Łuczak15,M.Ludwig6, H. J. Mathes1, M. Melissas6, C. Morello8 , S. Nehls16, J. Oehlschläger1, N. Palmieri6,T.Pierog1 , J. Rautenberg11, H. Rebel1,M.Roth1 , C. Rühle12, A. Saftoiu7 , H. Schieler1, A. Schmidt12, S. Schoo1, F.G. Schröder1,17,b ,O.Sima7,18,G.Toma7,19, G. C. Trinchero8 , A. Weindl1, J. Wochele1 , J. Zabierowski15 , J. A. Zensus5 1 Institute for Astroparticle Physics (IAP) [formerly, Institute for Nuclear Physics (IKP)], Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 2 Instituto de Física y Matemáticas, Universidad Michoacana, Morelia, Michoacán, Mexico 3 ASTRON, Dwingeloo, The Netherlands 4 Dipartimento di Fisica, Università degli Studi di Torino, Turin, Italy 5 Max-Planck-Institut für Radioastronomie, Bonn, Germany 6 Institute for Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 7 National Institute of Physics and Nuclear Engineering,
    [Show full text]
  • Radio Detection of Air Showers with LOPES and LOFAR Next-Generation Techniques for UHE Astroparticle Physics March 1, 2016 - KICP Chicago
    van Haarlem et al. : LOFAR: The Low-Frequency Array Radio detection of air showers with LOPES and LOFAR Next-Generation Techniques for UHE Astroparticle Physics March 1, 2016 - KICP Chicago Stijn Buitink - Vrije Universiteit Brussel Radio Wavefront of Air Showers for the LOFAR Cosmic RayFrank G.KSP Schröder for the LOPES Collaboration & LOPES collaboration Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany Fig. 1. Aerial photograph of the Superterp, the heart of the LOFAR core, from August 2011. The large circular island encompasses the six core stations that make up the Superterp. Three additional LOFAR core stations are visible in the upper right and lower left of the image. Each of these core stations includes a field of 96 low-band antennas and two sub-stations of 24 high-band antenna tiles each. low-frequency radio domain below a few hundred MHz, repre- Although the first two decades of radio astronomy were senting the lowest frequency extreme of the accessible spectrum. dominated by observations below a few hundred MHz, the pre- KIT – University of the State of Baden-Wuerttemberg and diction and subsequent detectionNational ofResearch the Center 21cm of the Helmholtz line Association of hydrogen at www.kit.edu Since the discovery of radio emission from the Milky Way 1420 MHz (van de Hulst 1945; Ewen & Purcell 1951), as well (Jansky 1933), now 80 years ago, radio astronomy has made a as the quest for higher angular resolution, shifted attention to continuous stream of fundamental contributions to astronomy. higher frequencies. This shift toward higher frequencies was also Following the first large-sky surveys in Cambridge, yielding the driven in part by developments in receiver technology, interfer- 3C and 4C catalogs (Edge et al.
    [Show full text]
  • Detection Techniques of Radio Emission from Ultra High Energy Cosmic Rays
    Detection Techniques of Radio Emission from Ultra High Energy Cosmic Rays DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Chad M. Morris, B.S. Graduate Program in Physics The Ohio State University 2009 Dissertation Committee: Prof. James J. Beatty, Adviser Prof. John F. Beacom Prof. Richard J. Furnstahl Prof. Richard E. Hughes c Copyright by Chad M. Morris 2009 Abstract We discuss recent and future efforts to detect radio signals from extended air showers at the Pierre Auger Observatory in Malarg¨ue, Argentina. With the advent of low-cost, high-performance digitizers and robust digital signal processing software techniques, radio detection of cosmic rays has resurfaced as a promising measure- ment system. The inexpensive nature of the detector media (metallic wires, rods or parabolic dishes) and economies of scale working in our favor (inexpensive high- quality C-band amplifiers and receivers) make an array of radio antennas an appealing alternative to the expense of deploying an array of Cherenkov detector water tanks or ‘fly’s eye’ optical telescopes for fluorescence detection. The calorimetric nature of the detection and the near 100% duty cycle gives the best of both traditional detection techniques. The history of cosmic ray detection detection will be discussed. A short review on the astrophysical properties of cosmic rays and atmospheric interactions will lead into a discussion of two radio emission channels that are currently being investigated. ii This dissertation is dedicated to my wife, Nichole, who has tolerated and even encouraged my ramblings for longer than I can remember.
    [Show full text]
  • Polarization Measurements of Radio Emission of Cosmic Ray Air Showers with LOPES
    Polarization Measurements of Radio Emission of Cosmic Ray Air Showers with LOPES Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN bei der FakultÄat furÄ Physik des Karlsruher Institut furÄ Technologie (KIT) genehmigte DISSERTATION von M. Sc. Paula-Gina Isar aus Ro»siori de Vede, Romania Karlsruhe Spring 2010 Tag der mundlichenÄ Prufung:Ä 30.04.2010 Referent: Prof. Dr. J. Blumer,Ä Institut furÄ Experimentelle Kernphysik Korreferent: Prof. Dr. M. Feindt, Institut furÄ Experimentelle Kernphysik 3 Abstract It has been recently de¯nitively established that the development of Extensive Air Showers (EAS) which are induced in the Earth's atmosphere by impinging cosmic particles from the outermost space is accompanied by the emission of radio waves. This phenomenon is experimentally investigated by the LOPES experiment, co- located at Karlsruhe Institute of Technology (KIT) with the EAS detector array KASCADE-Grande using traditional detection techniques. The LOPES experiment is an absolutely amplitude calibrated array of radio an- tennae for observing radio waves from EAS in the frequency range of 40-80 MHz. The KASCADE-Grande array provides the trigger information and experimentally determined parameters of the associated EAS observed in the energy range of 1016 ¡ 1018 eV. The studies are focussed to understand and clarify the phenomena of EAS radio emission, in particular in view of an eventual large scale application of a cor- responding detection technique, like in LOFAR (Low Frequency Array for which LOPES is a prototype station) and for the Pierre Auger Observatory. Until summer 2006, all 30 antennas were equipped in the east-west polarization direction only, measuring a single polarization of the radio emission.
    [Show full text]
  • Radio Detection of Cosmic Rays with LOPES (LOPES Collaboration)
    Brazilian Journal of Physics, vol. 36, no. 4A, December, 2006 1157 Radio Detection of Cosmic Rays with LOPES (LOPES Collaboration) C. Grupen,1 W.D. Apel,2 T. Asch,3 A.F.Badea,2, 4 L. B¨ahren,5 K. Bekk,2 A. Bercuci,6 M. Bertaina,7 P.L. Biermann,8 J. Bl¨umer,2, 9 H. Bozdog,2 I.M. Brancus,6 S. Buitink,10 M. Br¨uggemann,1 P. Buchholz,1 H. Butcher,5 A. Chiavassa,7 F. Cossavella,9 K. Daumiller,2 F. Di Pierro,7 P. Doll,2 R. Engel,2 H. Falcke,5, 8, 10 H. Gemmeke,3 P.L. Ghia,11 R. Glasstetter,12 A. Haungs,2 D. Heck,2 J.R. H¨orandel,9 A. Horneffer,10 T. Huege,2 K.H. Kampert,12 Y. Kolotaev,1 O. Kr¨omer,3 J. Kuijpers,10 S. Lafebre,10 H.J. Mathes,2 H.J. Mayer,2 C. Meurer,2 J. Milke,2 B. Mitrica,6 C. Morello,11 G. Navarra,7 S. Nehls,2 A. Nigl,10 R. Obenland,2 J. Oehlschl¨ager,2 S. Ostapchenko,2, 13 S. Over,1 M. Petcu,6 J. Petrovic,10 T. Pierog,2 S. Plewnia,2 H. Rebel,2 A. Risse,14 M. Roth,2 H. Schieler,2 O. Sima,6 K. Singh,10 M. St¨umpert,9 G. Toma,6 G.C. Trinchero,11 H. Ulrich,2 J. van Buren,2 W. Walkowiak,1 A. Weindl,2 J. Wochele,2 J. Zabierowski,14 J.A. Zensus,8 and D. Zimmermann1 1Siegen University, Department of Physics, Emmy-Noether-Campus, Walter-Flex-Strasse 3, D-57068 Siegen, Germany 2Institut f¨ur Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany 3Institut f¨ur Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany 4on leave of absence from National Institute of Physics and Nuclear Engineering, Bucharest, Romania 5ASTRON, 7990 AA Dwingeloo, The Netherlands 6National Institute of Physics
    [Show full text]
  • Radio Emission in Atmospheric Air Showers: Results of LOPES-10
    Journal of Physics: Conference Series Related content - Radio Emission in Atmospheric Air Radio Emission in Atmospheric Air Showers: Showers: First Measurements with LOPES-30 Results of LOPES-10 P G Isar, S Nehls, W D Apel et al. - The KASCADE-Grande observatory and the composition of very high-energy To cite this article: A Haungs et al 2007 J. Phys.: Conf. Ser. 81 012005 cosmic rays J C Arteaga-Velázquez, W D Apel, K Bekk et al. - Air shower radio detection with LOPES J Blümer, W D Apel, J C Arteaga et al. View the article online for updates and enhancements. This content was downloaded from IP address 129.13.72.197 on 13/04/2018 at 10:58 ARENA 2006 – Acoustic and Radio EeV Neutrino detection Activities IOP Publishing Journal of Physics: Conference Series 81 (2007) 012005 doi:10.1088/1742-6596/81/1/012005 Radio Emission in Atmospheric Air Showers: Results of LOPES-10 A Haungsa, W D Apela, T Aschb, F Badeaa, L B¨ahrenc, K Bekka, A Bercucid, M Bertainae, P L Biermannf , J Bl¨umera;g, H Bozdoga, I M Brancusd, M Br¨uggemannh, P Buchholzh, S Buitinki, H Butcherc, A Chiavassae, F Cossavellag, K Daumillera, F Di Pierroe, P Dolla, R Engela, H Falckec;f;i, H Gemmekeb, P L Ghiaj, R Glasstetterk, C Grupenh, A Hakenjosg, D Hecka, J R H¨orandelg, A Hornefferi, T Huegea, P G Isara, K H Kampertk, Y Kolotaevh, O Kr¨omerb, J Kuijpersi, S Lafebrei, H J Mathesa, H J Mayera, C Meurera, J Milkea, B Mitricad, C Morelloj, G Navarrae, S Nehlsa, A Nigli, R Obenlanda, J Oehlschl¨agera, S Ostapchenkoa, S Overh, M Petcud, J Petrovici, T Pieroga, S Plewniaa, H Rebela,
    [Show full text]
  • Results from the KASCADE, KASCADE-Grande, and LOPES Experiments
    Institute of Physics Publishing Journal of Physics: Conference Series 39 (2006) 463–470 doi:10.1088/1742-6596/39/1/122 TAUP 2005: Proc. Ninth Int. Conf. on Topics in Astroparticle and Underground Physics Results from the KASCADE, KASCADE-Grande, and LOPES experiments JRH¨orandel1,WDApel2,FBadea2,LB¨ahren3,KBekk2,A Bercuci4,MBertaina5, P L Biermann6,JBl¨umer1,2 , H Bozdog2,I M Brancus4,MBr¨uggemann7, P Buchholz7, S Buitink8,HButcher3, A Chiavassa5, K Daumiller2,AGdeBruyn3,CMdeVos3,FDi Pierro5, P Doll2, R Engel2,JEngler2,HFalcke3,8, H Gemmeke9, PLGhia10, H -J Gils2, R Glasstetter11, C Grupen7, D Heck2,A Haungs2, A Horneffer8, T Huege2, K -H Kampert11,GWKant3, HOKlages2,UKlein12,YKolotaev7, Y Koopman3,OKr¨omer9, J Kuijpers8, S Lafebre8, G Maier2,HJMathes2,HJMayer2,J Milke2, B Mitrica4, C Morello10,MM¨uller2, G Navarra5, S Nehls2, ANigl8,RObenland2, J Oehlschl¨ager2, S Ostapchenko2,SOver7,H J Pepping3,MPetcu4,JPetrovic8, T Pierog2, S Plewnia2,HRebel2, A Risse13,MRoth2, H Schieler2, G Schoonderbeek3,OSima4,M St¨umpert1,GToma4, G C Trinchero10,HUlrich2,JvanBuren2,W van Capellen3, W Walkowiak7, A Weindl2, S Wijnholds3,JWochele2, J Zabierowski13,JAZensus12, and D Zimmermann7 1 University of Karlsruhe, Institute for Experimental Nuclear Physics, P.O. 3640, 76021 Karlsruhe, Germany 2 Institut f¨ur Kernphysik, Forschungszentrum Karlsruhe, Karlsruhe, Germany 3 ASTRON Dwingeloo, The Netherlands 4 NIPNE Bucharest, Romania 5 Departimento di Fisica Generale dell Universit‘a Torino, Torino, Italy 6 Max-Planck-Institut f¨ur Radioastronomie, Bonn, Germany 7 Fachbereich Physik, University of Siegen, Germany 8 Department of Astrophysics, Radboud University Nijmegen, The Netherlands 9 IPE, Forschungszentrum Karlsruhe, Karlsruhe, Germany 10Instituto di Fisica dello Spazio Interplanetario INAF, Torino, Italy 11Fachbereich Physik, University of Wuppertal, Germany 12Radioastronomisches Institut, University of Bonn, Germany 13Soltan Institute for Nuclear Studies, Lodz, Poland E-mail: [email protected] Abstract.
    [Show full text]
  • Air Shower Measurements with the LOPES Radio Antenna Array
    ARTICLE IN PRESS Nuclear Instruments and Methods in Physics Research A 604 (2009) S1–S8 Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima Air shower measurements with the LOPES radio antenna array A. Haungs a,Ã, W.D. Apel a, J.C. Arteaga b,1, T. Asch c, J. Auffenberg d, F. Badea a, L. Ba¨hren e, K. Bekk a, M. Bertaina f, P.L. Biermann g, J. Blu¨ mer a,b, H. Bozdog a, I.M. Brancus h, M. Bru¨ ggemann i, P. Buchholz i, S. Buitink e, E. Cantoni f,j, A. Chiavassa f, F. Cossavella b, K. Daumiller a, V. de Souza b,2, F. Di Pierro f, P. Doll a, R. Engel a, H. Falcke e,k, M. Finger a, D. Fuhrmann d, H. Gemmeke c, P.L. Ghia j, R. Glasstetter d, C. Grupen i, D. Heck a, J.R. Ho¨randel e, A. Horneffer e, T. Huege a, P.G. Isar a, K.-H. Kampert d, D. Kang b, D. Kickelbick i, Y. Kolotaev i, O. Kro¨mer c, J. Kuijpers e, S. Lafebre e, P. Łuczak l, H.J. Mathes a, H.J. Mayer a, J. Milke a, B. Mitrica h, C. Morello j, G. Navarra f, S. Nehls a, A. Nigl e, J. Oehlschla¨ger a, S. Over i, M. Petcu h, T. Pierog a, J. Rautenberg d, H. Rebel a, M. Roth a, A. Saftoiu h, H. Schieler a, A. Schmidt c, F. Schro¨der a, O. Sima m, K.
    [Show full text]
  • Radio Detection of Cosmic Rays with LOFAR
    RRaaddiioo DeDettececttiioonn ooff CCoossmmiicc RRaayyss wwiitthh LLOOFFAARR HHeeiinnoo FFaallcckkee RRaadbdboouudd UUnniivveerrssiittyy,, NNiijjmmeeggeenn AASSTTRRONON,, DwDwiinnggeelloooo ++ LLOOFFAARR--CCRR KKeeyy SScciieencncee PPrroojjeecctt TTeeaamm LOPES@KASCADE-Grande The red dots show the location of new particle detectors: expansion of KASCADE to KASCADE Grande … KASCADE KASCADE Grande Hardware of LOPES10 LOPES-Antenna Horneffer 2004, PhD Radio at AUGER …. van den Berg, KVI Science Questions: Spectrum νMoon S. Lafebre Science Questions: Composition Auger Collaboration, Astropart. Phys. (2007) Science Questions: Clustering Cosmic Ray Overdensity Significance Map at ~1018 eV Auger Collaboration, Astropart. Phys. (2007) Radio Emission from Extensive Air Showers (EAS) Cosmic Ray Air Showers produce radio pulses as electrons rush through the geomagnetic field via “geosynchrotron”. This is well detectable for showers above 1017 eV. (see Falcke & Gorham 2003; Huege & Falcke 2004; Allen 1973) Astroparticle Physics: Radio Detection of Particles Cosmic Rays in atmosphere: Geosynchrotron emission (10-100 MHz) Radio fluorescence and Bremsstrahlung (~GHz) Radar reflection signals (any?) VLF emission, process unclear (<1 MHz) Neutrinos and cosmic rays in solids: Cherenkov emission (100 MHz - 2 GHz) polar ice cap (balloon or satellite) inclined neutrinos through earth crust (radio array) CRs and Neutrinos hitting the moon (telescope) Advantages of Radio Emission from Air Showers High duty cycle (24 hours/day minus thunderstorms) Low attenuation (can see also distant and inclined showers) Bolometric measurement (integral over shower evolution) Also interesting for neutrinos Potential problems: Radio freq. interference (RFI) size of footprint correlation with other parameters unclear only practical above ~1017 eV. Monte Carlo Simulations time-domain MC Huege & Falcke (2005) no far-field approximations Maxwell Equations full polarisation inf.
    [Show full text]
  • Radio Emission of Highly Inclined Cosmic Ray Air Showers Measured with LOPES
    A&A 462, 389–395 (2007) Astronomy DOI: 10.1051/0004-6361:20065732 & c ESO 2007 Astrophysics Radio emission of highly inclined cosmic ray air showers measured with LOPES J. Petrovic1,W.D.Apel2,T.Asch3, F. Badea2,L.Bähren4,K.Bekk2, A. Bercuci5, M. Bertaina6, P. L. Biermann7, J. Blümer2,8, H. Bozdog2,I.M.Brancus5, M. Brüggemann9, P. Buchholz9, S. Buitink1, H. Butcher4, A. Chiavassa6, F. Cossavella8, K. Daumiller2, F. Di Pierro6,P.Doll2, R. Engel2, H. Falcke1,4,7, H. Gemmeke3,P.L.Ghia10, R. Glasstetter11, C. Grupen9, A. Haungs2, D. Heck2, J. R. Hörandel8,A.Horneffer1, T. Huege2, K.-H. Kampert11, Y. Kolotaev9,O.Krömer3, J. Kuijpers1, S. Lafebre1,H.J.Mathes2,H.J.Mayer2,C.Meurer2,J.Milke2, B. Mitrica5, C. Morello10, G. Navarra6,S.Nehls2,A.Nigl1, R. Obenland2, J. Oehlschläger2, S. Ostapchenko2,S.Over9,M.Petcu5, T. Pierog2, S. Plewnia2,H.Rebel2,A.Risse13,M.Roth2,H.Schieler2,O.Sima5, K. Singh1,M.Stümpert8,G.Toma5, G. C. Trinchero10, H. Ulrich2,J.vanBuren2, W. Walkowiak9, A. Weindl2, J. Wochele2, J. Zabierowski13, J. A. Zensus7, and D. Zimmermann9 1 Radboud University Nijmegen, Department of Astrophysics, IMAPP, PO Box 9010, 6500 GL Nijmegen, The Netherlands e-mail: [email protected] 2 Institut für Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany 3 Institut für Prozessverarb. und Elektr., Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany 4 ASTRON, 7990 AA Dwingeloo, The Netherlands 5 National Institute of Physics and Nuclear Engineering, 7690 Bucharest, Romania 6 Dipartimento di Fisica Generale dell’Università, 10125 Torino,
    [Show full text]
  • Radio Detection of Ultra-High Energy Cosmic Rays
    30TH INTERNATIONAL COSMIC RAY CONFERENCE Radio Detection of Ultra-High Energy Cosmic Rays1 HEINO FALCKE1,2 FOR THE LOPES COLLABORATION 1Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle Physics, Radboud Uni- versity, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands 2ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands [email protected] Abstract: The radio technique for the detection of cosmic particles has seen a major revival in recent years. New and planned experiments in the lab and the field, such as GLUE, Anita, LUNASKA, Co- dalema, LOPES as well as sophisticated Monte Carlo experiments have produced a wealth of new in- formation and I review here briefly some of the main results with the main focus on air showers. Radio emission of ultra-high energy cosmic particles offers a number of interesting advantages. Since radio waves suffer no attenuation, radio measurements allow the detection of very distant or highly inclined showers, can be used day and night, and provide a bolometric measure of the leptonic shower component. The LOPES experiment has detected the radio emission from cosmic rays, confirmed the geosynchrotron effect for extensive air showers, and provided a good calibration fomula to convert the radio signal into primary particle energy. Moreover, Monte Carlo simulations suggest that also the shower maximum and the particle composition can be measured. Future steps will be the installation of radio antennas at the Auger experiment to measure the composition of ultra-high energy cosmic rays and the usage of the LOFAR radio telescope (and later the SKA) as a cosmic ray detector.
    [Show full text]
  • Recent Results from KASCADE-Grande and LOPES
    1 Recent Results from KASCADE-Grande and LOPES K.-H. Kamperta∗, W.D. Apelb, J.C. Arteagac†, T. Aschd, F. Badeab, L. B¨ahrene, K. Bekkb, M. Bertainaf, P.L. Biermanng, J. Bl¨umerbc, H. Bozdogb, I.M. Brancush, M. Br¨uggemanni, P. Buchholzi, S. Buitinke, E. Cantonifj, A. Chiavassaf, F. Cossavellac, K. Daumillerb, V. de Souzac‡, F. Di Pierrof, P. Dollb, M. Enderc, R. Engelb, J. Englerb, H. Falckeek, M. Fingerb, D. Fuhrmanna, H. Gemmeked, P.L. Ghiaj, H.J. Gilsb, R. Glasstettera, C. Grupeni, A. Haungsb, D. Heckb, J.R. H¨orandele, A. Horneffere, T. Huegeb, P.G. Isarb, D. Kangc, D. Kickelbicki, H.O. Klagesb, Y. Kolotaevi, O. Kr¨omerd, J. Kuijperse, S. Lafebree, K. Linkc, P.Luczak l, M. Ludwigc, H.J. Mathesb, H.J. Mayerb, J. Milkeb, M. Melissasc, B. Mitricah, C. Morelloj, G. Navarraf, S. Nehlsb, A. Nigle, J. Oehlschl¨agerb, S. Ostapchenkob§, S. Overi, N. Palmieric, M. Petcuh, T. Pierogb, J. Rautenberga, H. Rebelb, M. Rothb, A. Saftoiuh, H. Schielerb, A. Schmidtd, F. Schr¨oderb, O. Simam, K. Singhe¶, M. St¨umpertc, G. Tomah, G. Trincheroj, H. Ulrichb, W. Walkowiaki, A. Weindlb, J. Wocheleb, M. Wommerb, J. Zabierowskil, J.A. Zensusg KASCADE-Grande and LOPES Collaboration aFachbereich Physik, Universit¨at Wuppertal, 42097 Wuppertal, Germany bInstitut f¨ur Kernphysik, Forschungszentrum, Karlsruhe, D-76021 Karlsruhe, Germany cInstitut f¨ur Experimentelle Kernphysik, Universit¨at Karlsruhe, D-76021 Karlsruhe, Germany dInst. Prozessdatenverarb. und Elektronik, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany eDept. of Astrophysics, Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands f Dipartimento di Fisica Generale dell’Universit`a,10125 Torino, Italy gMax-Planck-Institut f¨ur Radioastronomie, 53010 Bonn, Germany hNational Institute of Physics and Nuclear Engineering, P.O.
    [Show full text]