Detection Techniques of Radio Emission from Ultra High Energy Cosmic Rays

Total Page:16

File Type:pdf, Size:1020Kb

Detection Techniques of Radio Emission from Ultra High Energy Cosmic Rays Detection Techniques of Radio Emission from Ultra High Energy Cosmic Rays DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Chad M. Morris, B.S. Graduate Program in Physics The Ohio State University 2009 Dissertation Committee: Prof. James J. Beatty, Adviser Prof. John F. Beacom Prof. Richard J. Furnstahl Prof. Richard E. Hughes c Copyright by Chad M. Morris 2009 Abstract We discuss recent and future efforts to detect radio signals from extended air showers at the Pierre Auger Observatory in Malarg¨ue, Argentina. With the advent of low-cost, high-performance digitizers and robust digital signal processing software techniques, radio detection of cosmic rays has resurfaced as a promising measure- ment system. The inexpensive nature of the detector media (metallic wires, rods or parabolic dishes) and economies of scale working in our favor (inexpensive high- quality C-band amplifiers and receivers) make an array of radio antennas an appealing alternative to the expense of deploying an array of Cherenkov detector water tanks or ‘fly’s eye’ optical telescopes for fluorescence detection. The calorimetric nature of the detection and the near 100% duty cycle gives the best of both traditional detection techniques. The history of cosmic ray detection detection will be discussed. A short review on the astrophysical properties of cosmic rays and atmospheric interactions will lead into a discussion of two radio emission channels that are currently being investigated. ii This dissertation is dedicated to my wife, Nichole, who has tolerated and even encouraged my ramblings for longer than I can remember. To Eva who has quickly become a central part of my life. Finally, to my parents, Mike and Beci, without whom none of this could have happened. iii ACKNOWLEDGMENTS Many thanks go out to my advisor, Jim Beatty, to the members of the Pierre Auger Observatory collaboration, members of the Auger Radio Collaboration, and the technical staff of PAO in Malarg¨ue who went out of their way to help out any time there was a problem. iv Contents Page Abstract....................................... ii Dedication...................................... iii Acknowledgments.................................. iv ListofTables .................................... viii ListofFigures ................................... ix Chapters: 1. Introduction.................................. 1 1.1 CurrentDetectionMethods . 2 1.1.1 SurfaceDetection........................ 3 1.1.2 FluorescenceDetection. 4 1.1.3 PierreAugerObservatory . 4 1.1.4 RadioDetection ........................ 5 v 2. BasicPhysicsofCosmicRays ........................ 12 2.1 SourcesofCosmicRays ........................ 12 2.2 AccelerationMechanisms . 14 2.2.1 EnergyLimitations. 17 2.2.2 InteractionsintheAtmosphere . 19 3. OSU/LeedsGeosynchrotronDetector . .. 23 3.1 RadioFreeMalargue.......................... 23 3.2 LogPeriodicDipoleAntennas. 25 3.2.1 OSU/Leeds LPDA Deployment . 30 3.3 Amplifier/Receiver ........................... 36 3.4 OnboardElectronics .......................... 42 3.5 SolarPower............................... 45 3.6 Communications ............................ 48 3.7 Radio Central Data Aquisition System . 50 3.8 TriggerLogic .............................. 54 3.8.1 HardwareTriggers . .. .. 56 3.8.2 SoftwareTrigger ........................ 56 3.9 Results ................................. 57 3.9.1 Issues, Problems, Success . 57 3.9.2 AnalysisMethods ....................... 68 3.9.3 Suggestions for Improvement . 70 vi 3.9.4 Contributions.......................... 72 3.9.5 Results ............................. 74 3.9.6 FutureDeployment. 86 4. AMBER:ANewCosmicRayDetector . 89 4.1 Introduction .............................. 89 4.2 MBR: Molecular Bremsstrahlung Radiation . 90 4.3 AcceleratorResults. .. .. 90 4.3.1 AWAINCOBREMS/SLACT471 . 90 4.4 AMBERHardware........................... 99 4.4.1 Contributions. .. .. 103 vii List of Tables Table Page 3.1 A quick measurement of arm lengths using a Leuthold as a reference length.................................... 32 viii List of Figures Figure Page 1.1 A Cartoon Schematic of the Pierre Auger Observatory . .... 6 1.2 PictureofFly’sEyeTelescope . 7 1.3 LayoutofthePierreAugerObservatory . 8 1.4 Photo of First Solar Powered Radio Detector at the PAO . .... 9 1.5 Photo of typical Surface Detector Water Tank . ... 10 1.6 TheANITAPayloadPriortoLaunch . 11 2.1 CosmicRayEnergySpectrum.. 13 2.2 The Hillas Plot of physical size vs magnetic field. ..... 16 2.3 Proton propagation distance with GZK interactions. ....... 18 2.4 Schematic detailing an extended air shower development........ 20 3.1 Satellite view of Radio test site at the Balloon Launch Facility . 24 3.2 LogPeriodicDipoleArraySchematic . 26 3.3 LPDA Schematic showing phase reversal of smaller elements ..... 26 3.4 Example of Log Periodic Behavior . 29 3.5 GainContourPlotforLPDAantennas . 29 ix 3.6 SmithchartoftheLPDAantenna. 31 3.7 E-Plane gain plot for the LPDA over multiple frequencies. ...... 33 3.8 E-Plane gain plot of LPDA over multiple surfaces. ..... 34 3.9 Photo of installation of first LPDA deployed in Malag¨ue . ...... 35 3.10 PhotooftheLeedsAmplifier. 37 3.11 Schematic of the radio frequency sliders of the Leeds Amplifier . 38 3.12 Schematic of entire chain for self-contained radio detection system. 40 3.13 Full schematic of an OSU/Leeds Station . .. 41 3.14 Samplegainplotoftheamplifier. 43 3.15AUnifiedBoard. ............................. 44 3.16 Field test of solar power, communications and electronics....... 47 3.17 Message packet format for internal radio communications....... 49 3.18 Detailed breakdown of format of message payload. ...... 49 3.19 Balloonlaunchfacility. 51 3.20 FastLooksoftwaredisplay . 53 3.21 High gain antenna and SD ‘spy’ antenna . 55 3.22AmissingLPDAarm. .......................... 59 3.23 Plotofbatteryfailure. 62 3.24 Triggermultiplicitybug . 64 3.25 Radiotriggerratesbeforethebugfix. ... 64 3.26 Radiotriggerratesafterbugfix . 65 x 3.27 Rapidly varying trigger rates station 1. ..... 67 3.28 Nearby station 2 with identical settings. ..... 67 3.29 RadioBackgroundscanwithLPDAatBLF. 69 3.30 Firstpossibleradioevent. 75 3.31 T. Huege REAS simulation of radio events. ... 76 3.32 FFTofsimulatedpulse. .. .. 77 3.33Damagedstation. ............................. 78 3.34 New LPDA design using wires and wood frame. 79 3.35 Aerial view of layout of MAXIMA stations . .. 80 3.36AMAXIMAstation. ........................... 81 3.37 Long term RMS noise level with galactic passage overhead....... 84 3.38 Skymap of radio events found with CLF/CODALEMA radio detectors. 85 3.39 Test site for many Auger Observatory enhancements. ...... 87 3.40 AerialviewofAERAsite. 88 4.1 CartoonschematicofAugerDetectors. .. 91 4.2 The Faraday box used in beamline tests at AWA and SLAC. .. 91 4.3 SchematicsofAWAandSLACtests. 92 4.4 AWAbeamtestresults. ......................... 94 4.5 AWA beam test results with background. 94 4.6 Results from antenna polarized parallel to SLAC beamline....... 96 xi 4.7 Results from antenna polarized perpendicular to SLAC beamline. 97 4.8 ScalingofenergiesatSLACtest. 98 4.9 Initial test setup on roof of physics building at Univesity of Hawaii. 99 4.10 2.4m dish on Ohio State University West Campus dish farm...... 101 4.11 C and Ku-band feed horns arranged in diamond configuration for OSU test. .................................... 102 xii Chapter 1 Introduction In the 1960s, it was found that Extensive Air Showers (EAS) from cosmic rays produce pulses of radio frequency emission in the range of less than 100 MHz . Fol- lowing numerous experimental advances through the mid-1960s, the field came to a standstill by the early 1970s due to the development of more promising experimental techniques. Recently, the development of low-cost digitization and powerful digital signal processing techniques has brought about a revival of radio detection of cosmic rays [1, 2] The Pierre Auger Observatory, a cosmic ray telescope located in Argentina, con- sists of 1600 Cherenkov water tank detectors with a 1.5 km spacing. Co-located with these water tanks are 24 fluorescence detector ‘fly’s eye’ telescopes at 4 locations surrounding the tank array. By placing an array of new radio detectors onsite, we can utilize the Auger data to assist in our prototype testing. We hope to eliminate transient ‘false-positive’ triggers of the radio detectors caused by man-made and nat- urally occurring noise by tapping into the real-time trigger communications of the Observatory. This will improve our own triggering logic in giving a radio event that can be verified against the Auger data. Analyzing event data that has triggered both 1 detectors provides a valuable energy calibration for the prototype radio detection system [3]. There are two likely methods for radio detection of cosmic rays: geosynchrotron and molecular brehmsstrahlung radiation or MBR. The first method, geosynchrotron, is the traditional radio method [4]. Charged particles, electrons or positrons, are bent via the geomagnetic field and synchrotron radiation is produced. This is coherent and highly beamed in the direction of travel. A detector, here an antenna, must be in the path of the shower in order for a signal to occur. This places these antennas as analagous to the surface array tanks described above. The latter detection method, MBR, occurs isotropically as the electrons in the tenuous plasma left in the wake of the shower front cool back to thermal
Recommended publications
  • A Branching Model for Hadronic Air Showers Vladimir Novotny
    A branching model for hadronic air showers Vladimir Novotny∗ Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic E-mail: [email protected] Dalibor Nosek Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic E-mail: [email protected] Jan Ebr Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic E-mail: [email protected] We introduce a simple branching model for the development of hadronic showers in the Earth’s atmosphere. Based on this model, we show how the size of the pionic component followed by muons can be estimated. Several aspects of the subsequent muonic component are also discussed. We focus on the energy evolution of the muon production depth. We also estimate the impact of the primary particle mass on the size of the hadronic component. Even though a precise calcu- lation of the development of air showers must be left to complex Monte Carlo simulations, the proposed model can reveal qualitative insight into the air shower physics. arXiv:1509.00364v1 [astro-ph.HE] 1 Sep 2015 The 34th International Cosmic Ray Conference, 30 July- 6 August, 2015 The Hague, The Netherlands ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ A branching model for hadronic air showers Vladimir Novotny 1. Introduction We study a hadronic component of extensive air showers. Key parameters that we want to determine are a shape of a muonic subshower profile and an atmospheric depth of its maximum µ µ (Xmax).
    [Show full text]
  • Final Results of the LOPES Radio Interferometer for Cosmic-Ray Air Showers
    Eur. Phys. J. C (2021) 81:176 https://doi.org/10.1140/epjc/s10052-021-08912-4 Regular Article - Experimental Physics Final results of the LOPES radio interferometer for cosmic-ray air showers LOPES Collaboration W. D. Apel1, J. C. Arteaga-Velázquez2, L. Bähren3, K. Bekk1, M. Bertaina4 , P. L. Biermann5 ,J.Blümer1,6, H. Bozdog1, E. Cantoni4,8 , A. Chiavassa4 , K. Daumiller1, V. de Souza9 , F. Di Pierro4 ,P.Doll1, R. Engel1,6, H. Falcke3,5,10 , B. Fuchs6, H. Gemmeke12, C. Grupen13 , A. Haungs1 , D. Heck1, J. R. Hörandel10 , A. Horneffer5, D. Huber6, T. Huege1 , P. G. Isar14 , K.-H. Kampert11 , D. Kang1 ,O.Krömer12, J. Kuijpers10,K.Link1,a , P. Łuczak15,M.Ludwig6, H. J. Mathes1, M. Melissas6, C. Morello8 , S. Nehls16, J. Oehlschläger1, N. Palmieri6,T.Pierog1 , J. Rautenberg11, H. Rebel1,M.Roth1 , C. Rühle12, A. Saftoiu7 , H. Schieler1, A. Schmidt12, S. Schoo1, F.G. Schröder1,17,b ,O.Sima7,18,G.Toma7,19, G. C. Trinchero8 , A. Weindl1, J. Wochele1 , J. Zabierowski15 , J. A. Zensus5 1 Institute for Astroparticle Physics (IAP) [formerly, Institute for Nuclear Physics (IKP)], Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 2 Instituto de Física y Matemáticas, Universidad Michoacana, Morelia, Michoacán, Mexico 3 ASTRON, Dwingeloo, The Netherlands 4 Dipartimento di Fisica, Università degli Studi di Torino, Turin, Italy 5 Max-Planck-Institut für Radioastronomie, Bonn, Germany 6 Institute for Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 7 National Institute of Physics and Nuclear Engineering,
    [Show full text]
  • Radio Detection of Air Showers with LOPES and LOFAR Next-Generation Techniques for UHE Astroparticle Physics March 1, 2016 - KICP Chicago
    van Haarlem et al. : LOFAR: The Low-Frequency Array Radio detection of air showers with LOPES and LOFAR Next-Generation Techniques for UHE Astroparticle Physics March 1, 2016 - KICP Chicago Stijn Buitink - Vrije Universiteit Brussel Radio Wavefront of Air Showers for the LOFAR Cosmic RayFrank G.KSP Schröder for the LOPES Collaboration & LOPES collaboration Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany Fig. 1. Aerial photograph of the Superterp, the heart of the LOFAR core, from August 2011. The large circular island encompasses the six core stations that make up the Superterp. Three additional LOFAR core stations are visible in the upper right and lower left of the image. Each of these core stations includes a field of 96 low-band antennas and two sub-stations of 24 high-band antenna tiles each. low-frequency radio domain below a few hundred MHz, repre- Although the first two decades of radio astronomy were senting the lowest frequency extreme of the accessible spectrum. dominated by observations below a few hundred MHz, the pre- KIT – University of the State of Baden-Wuerttemberg and diction and subsequent detectionNational ofResearch the Center 21cm of the Helmholtz line Association of hydrogen at www.kit.edu Since the discovery of radio emission from the Milky Way 1420 MHz (van de Hulst 1945; Ewen & Purcell 1951), as well (Jansky 1933), now 80 years ago, radio astronomy has made a as the quest for higher angular resolution, shifted attention to continuous stream of fundamental contributions to astronomy. higher frequencies. This shift toward higher frequencies was also Following the first large-sky surveys in Cambridge, yielding the driven in part by developments in receiver technology, interfer- 3C and 4C catalogs (Edge et al.
    [Show full text]
  • Investigation on Gamma-Electron Air Shower Separation for CTA
    Taras Shevchenko National University of Kyiv The Faculty of Physics Astronomy and Space Physics Department Investigation on gamma-electron air shower separation for CTA Field of study: 0701 { physics Speciality: 8.04020601 { astronomy Specialisation: astrophysics Master's thesis the second year master student Iryna Lypova Supervisor: Dr. Gernot Maier leader of Helmholtz-University Young Investigator Group at DESY and Humboldt University (Berlin) Kyiv, 2013 Contents Introduction 2 1 Extensive air showers 3 1.1 Electromagnetic showers . 3 1.2 Hadronic showers . 7 1.3 Cherenkov radiation . 11 2 Cherenkov technique 13 2.1 Cherenkov telescopes . 13 2.2 Cherenkov Telescope Array . 18 2.3 Air shower reconstruction . 24 3 γ-electron separation with telescope arrays 31 3.1 Hybrid array . 31 3.2 The Cherenkov Telescope Array . 39 Summary 42 Reference 44 Appendix A 47 Appendix B 50 Introduction Very high energy (VHE) ground-based γ-ray astrophysics is a quite young science. The earth atmosphere absorbs gamma-rays and direct detection is possible only with satellite or balloon experiments. The flux of gamma rays falls rapidly with increasing energy and satellite detectors become not effective anymore due to the limited collection area. Another possibility for gamma- ray detection is usage of Imaging Atmospheric Cherenkov telescopes. The primary γ-ray creates a cascade of the secondary particles which move through the atmosphere. The charged component of the cascade which moves with velocities faster the light in the air, emits Cherenkov light which can be detected by the ground based optical detectors. The ground based gamma astronomy was pioneered by the 10 m single Cherenkov telescope WHIPPLE (1968) [1] in Arizona.
    [Show full text]
  • Astro-Particle Physics: Imaging Air Cherenkov Telescopes (Iacts)
    IceAct: Cosmic Ray Air Cherenkov telescopes as an upgrade to the IceCube Neutrino Observatory at the South Pole Larissa Paul, Anna AbadSantos, Antonio Banda, Aine Grady, Sean McLaughlin, Matthias Plum and Karen Andeen Department of Physics, Marquette University, Milwaukee WI, USA Student researchers Astro-particle physics: Imaging Air Cherenkov Telescopes (IACTs): Testing epoxy for the use at the South Pole: at work • Cosmic rays - Particles Source? IACTs detect Cherenkov light produced in the atmosphere by air showers: this The IceAct cameras consist of 61 PMMA Winston cones (WCs) glued onto the with the highest known allows us to study the purely electromagnetic component of the air shower with glass of 61 SiPMs with epoxy. The epoxy used in previous versions of the energy in the universe excellent energy and mass resolution prototype was not cold-rated, causing rapid degradation of the camera at Polar • Discovered in 1912, still a • technique is complementary to the particle detectors already in place at the temperatures. A reliable cold-rated epoxy is vital to ensure many years South Pole of successful data taking. the IceAct lot of unknowns: camera • What are cosmic rays? • will allow us to significantly improve several measurements that we are • What are the astrophysical sources of cosmic interested in through: We are testing two different cold-rated epoxies for rays? • cross-calibrations of the different detector components against each other long-term reliability and reproducibility: • How are they accelerated? • reconstruction of events with different detector configurations • Goal #1: release equal amounts of epoxy drops • Air showers onto each SiPM. Cascades of secondary particles generated by cosmic IceAct: • Problem: viscosity of epoxy changes with time exposed to air, causing the ray particles interacting with the earth's atmosphere.
    [Show full text]
  • Extensive Air Showers and Ultra High-Energy Cosmic Rays: a Historical Review
    EPJ manuscript No. (will be inserted by the editor) Extensive Air Showers and Ultra High-Energy Cosmic Rays: A Historical Review Karl-Heinz Kampert1;a and Alan A Watson2;b 1 Department of Physics, University Wuppertal, Germany 2 School of Physics and Astronomy, University of Leeds, UK Abstract. The discovery of extensive air showers by Rossi, Schmeiser, Bothe, Kolh¨orsterand Auger at the end of the 1930s, facilitated by the coincidence technique of Bothe and Rossi, led to fundamental con- tributions in the field of cosmic ray physics and laid the foundation for high-energy particle physics. Soon after World War II a cosmic ray group at MIT in the USA pioneered detailed investigations of air shower phenomena and their experimental skill laid the foundation for many of the methods and much of the instrumentation used today. Soon in- terests focussed on the highest energies requiring much larger detectors to be operated. The first detection of air fluorescence light by Japanese and US groups in the early 1970s marked an important experimental breakthrough towards this end as it allowed huge volumes of atmo- sphere to be monitored by optical telescopes. Radio observations of air showers, pioneered in the 1960s, are presently experiencing a renais- sance and may revolutionise the field again. In the last 7 decades the research has seen many ups but also a few downs. However, the exam- ple of the Cygnus X-3 story demonstrated that even non-confirmable observations can have a huge impact by boosting new instrumentation to make discoveries and shape an entire scientific community.
    [Show full text]
  • Pos(ICRC2019)270 B † 15%
    Air-Shower Reconstruction at the Pierre Auger Observatory based on Deep Learning PoS(ICRC2019)270 Jonas Glombitza∗a for the Pierre Auger Collaboration yb aRWTH Aachen University, Aachen, Germany bObservatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina E-mail: [email protected] Full author list: http://www.auger.org/archive/authors_icrc_2019.html The surface detector array of the Pierre Auger Observatory measures the footprint of air show- ers induced by ultra-high energy cosmic rays. The reconstruction of event-by-event information sensitive to the cosmic-ray mass, is a challenging task and so far mainly based on fluorescence detector observations with their duty cycle of ≈ 15%. Recently, great progress has been made in multiple fields of machine learning using deep neural networks and associated techniques. Apply- ing these new techniques to air-shower physics opens up possibilities for improved reconstruction, including an estimation of the cosmic-ray composition. In this contribution, we show that deep convolutional neural networks can be used for air-shower reconstruction, using surface-detector data. The focus of the machine-learning algorithm is to reconstruct depths of shower maximum. In contrast to traditional reconstruction methods, the algorithm learns to extract the essential in- formation from the signal and arrival-time distributions of the secondary particles. We present the neural-network architecture, describe the training, and assess the performance using simulated air showers. 36th International Cosmic Ray Conference — ICRC2019 24 July – 1 August, 2019 Madison, Wisconsin, USA ∗Speaker. yfor collaboration list see PoS(ICRC2019)1177 c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • Polarization Measurements of Radio Emission of Cosmic Ray Air Showers with LOPES
    Polarization Measurements of Radio Emission of Cosmic Ray Air Showers with LOPES Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN bei der FakultÄat furÄ Physik des Karlsruher Institut furÄ Technologie (KIT) genehmigte DISSERTATION von M. Sc. Paula-Gina Isar aus Ro»siori de Vede, Romania Karlsruhe Spring 2010 Tag der mundlichenÄ Prufung:Ä 30.04.2010 Referent: Prof. Dr. J. Blumer,Ä Institut furÄ Experimentelle Kernphysik Korreferent: Prof. Dr. M. Feindt, Institut furÄ Experimentelle Kernphysik 3 Abstract It has been recently de¯nitively established that the development of Extensive Air Showers (EAS) which are induced in the Earth's atmosphere by impinging cosmic particles from the outermost space is accompanied by the emission of radio waves. This phenomenon is experimentally investigated by the LOPES experiment, co- located at Karlsruhe Institute of Technology (KIT) with the EAS detector array KASCADE-Grande using traditional detection techniques. The LOPES experiment is an absolutely amplitude calibrated array of radio an- tennae for observing radio waves from EAS in the frequency range of 40-80 MHz. The KASCADE-Grande array provides the trigger information and experimentally determined parameters of the associated EAS observed in the energy range of 1016 ¡ 1018 eV. The studies are focussed to understand and clarify the phenomena of EAS radio emission, in particular in view of an eventual large scale application of a cor- responding detection technique, like in LOFAR (Low Frequency Array for which LOPES is a prototype station) and for the Pierre Auger Observatory. Until summer 2006, all 30 antennas were equipped in the east-west polarization direction only, measuring a single polarization of the radio emission.
    [Show full text]
  • Radio Detection of Cosmic Rays with LOPES (LOPES Collaboration)
    Brazilian Journal of Physics, vol. 36, no. 4A, December, 2006 1157 Radio Detection of Cosmic Rays with LOPES (LOPES Collaboration) C. Grupen,1 W.D. Apel,2 T. Asch,3 A.F.Badea,2, 4 L. B¨ahren,5 K. Bekk,2 A. Bercuci,6 M. Bertaina,7 P.L. Biermann,8 J. Bl¨umer,2, 9 H. Bozdog,2 I.M. Brancus,6 S. Buitink,10 M. Br¨uggemann,1 P. Buchholz,1 H. Butcher,5 A. Chiavassa,7 F. Cossavella,9 K. Daumiller,2 F. Di Pierro,7 P. Doll,2 R. Engel,2 H. Falcke,5, 8, 10 H. Gemmeke,3 P.L. Ghia,11 R. Glasstetter,12 A. Haungs,2 D. Heck,2 J.R. H¨orandel,9 A. Horneffer,10 T. Huege,2 K.H. Kampert,12 Y. Kolotaev,1 O. Kr¨omer,3 J. Kuijpers,10 S. Lafebre,10 H.J. Mathes,2 H.J. Mayer,2 C. Meurer,2 J. Milke,2 B. Mitrica,6 C. Morello,11 G. Navarra,7 S. Nehls,2 A. Nigl,10 R. Obenland,2 J. Oehlschl¨ager,2 S. Ostapchenko,2, 13 S. Over,1 M. Petcu,6 J. Petrovic,10 T. Pierog,2 S. Plewnia,2 H. Rebel,2 A. Risse,14 M. Roth,2 H. Schieler,2 O. Sima,6 K. Singh,10 M. St¨umpert,9 G. Toma,6 G.C. Trinchero,11 H. Ulrich,2 J. van Buren,2 W. Walkowiak,1 A. Weindl,2 J. Wochele,2 J. Zabierowski,14 J.A. Zensus,8 and D. Zimmermann1 1Siegen University, Department of Physics, Emmy-Noether-Campus, Walter-Flex-Strasse 3, D-57068 Siegen, Germany 2Institut f¨ur Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany 3Institut f¨ur Prozessdatenverarbeitung und Elektronik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany 4on leave of absence from National Institute of Physics and Nuclear Engineering, Bucharest, Romania 5ASTRON, 7990 AA Dwingeloo, The Netherlands 6National Institute of Physics
    [Show full text]
  • Understanding the Atmosphere As a Calorimeter for UHE Cosmic Rays
    SLAC Summer Institute on Particle Physics (SSI04), Aug. 2-13, 2004 Understanding the Atmosphere as a Calorimeter for UHE Cosmic Rays Gerd Schatz∗ Fakultat¨ f¨ur Physik, Universitat¨ Heidelberg This contribution discusses the methods to measure the energies of cosmic rays at the extreme upper end of the spectrum. After a short introduction to calorimetry in high energy physics the most important features of extensive air showers (EASs) are described. An EAS is the phenomenon which develops when a high energy particle enters the atmosphere of the Earth. The two methods of determining the energy in the range where ground based detectors have to be used are then described. The contribution ends with listing some of the unsolved problems in the field. 1. Introduction The observational evidence for ultra high energy cosmic rays and possible ways for accelerating them have been discussed extensively by T. Stanev [1] and R. Blanford [2], respectively. It is the purpose of this contribution to describe and critically review the methods for determining the energy of cosmic ray particles in the energy range where direct detection from high flying balloons or satellites is no more possible and ground-based detector systems have to be used. Any particle entering the atmosphere of the Earth from space is characterized by the following 8 parameters position, direction, time, energy, particle kind The last item is a discrete parameter determining mass and charge of the incident particle. When these parameters have been measured we know everything we can ever hope to know about it. The 6 observables in the first line can be measured with reasonable accuracy and do not present any serious problem.
    [Show full text]
  • Air Shower Physics
    Air shower physics SHINE autumn school 27. 10. 2020 Felix Riehn Universidad de Santiago de Compostela / LIP What are air showers? Proton, 100 TeV (simulation) Air shower == cascade of Particle interactions in atmosphere particles hadrons 2 Created by …? Astrophysics: Origin of features ? Acceleration ? Cosmic rays (Unger 2006) 3 Indirect (air showers) Particle physics: ect dir (Engel 2019) CRs through extensive air showers air shower physics (want to know): CR interaction - Astrophysics (primary particle) Energy, mass, direction - Particle physics (primary interaction) multiplicity, cross section … Observables ?? 4 CR air shower observables * particles at (under)ground * energy deposit along path 5 Example: Pierre Auger Observatory Both! (Hybrid measurement) 6 Related to primary? Air shower development: the start CR particle UHE interaction (~100 TeV) ● Hadronic! ● Exotic? ● Black holes? ● UHE secondaries (~100 TeV) Fireball? ● Chiral symmetry? ● Pions, kaons, charmed ... ● New (exotic) particles? ● Lorentz invariance? EAS according to SM ?? 7 EAS according to the Standard Model CR proton Hadronic interaction: Successive interactions: EM cascade hadronic cascade 8 EM cascade Equal sharing of energy All with same interaction Ionisation (continuous length Pair creation Bremsstrahlung energy loss) Multiplicity: 2 Until continuous energy loss dominant Generation 1 ‘generation z’ Generation 2 Etc. 9 Hadronic cascade CR proton Assume pions only Equal sharing of energy Multiplicity: fixed (Matthews 2005) Until pions likely decay 10 Hadronic
    [Show full text]
  • Observation of Inclined Eev Air Showers with the Radio Detector of the Pierre Auger Observatory
    Published in JCAP as DOI: 10.1088/1475-7516/2018/10/026 Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory A. Aab,75 P. Abreu,67 M. Aglietta,49,48 I.F.M. Albuquerque,18 J.M. Albury,12 I. Allekotte,1 A. Almela,8,11 J. Alvarez Castillo,63 J. Alvarez-Muñiz,74 G.A. Anastasi,40,42 L. Anchordoqui,81 B. Andrada,8 S. Andringa,67 C. Aramo,46 N. Arsene,69 H. Asorey,1,26 P. Assis,67 G. Avila,9,10 A.M. Badescu,70 A. Balaceanu,68 F. Barbato,56,46 R.J. Barreira Luz,67 S. Baur,35 K.H. Becker,33 J.A. Bellido,12 C. Berat,32 M.E. Bertaina,58,48 X. Bertou,1 P.L. Biermann,b J. Biteau,30 S.G. Blaess,12 A. Blanco,67 J. Blazek,28 C. Bleve,52,44 M. Boháčová,28 C. Bonifazi,23 N. Borodai,64 A.M. Botti,8,35 J. Brack,f T. Bretz,37 A. Bridgeman,34 F.L. Briechle,37 P. Buchholz,39 A. Bueno,73 S. Buitink,75 M. Buscemi,54,43 K.S. Caballero-Mora,62 L. Caccianiga,55 L. Calcagni,4 A. Cancio,11,8 F. Canfora,75,77 J.M. Carceller,73 R. Caruso,54,43 A. Castellina,49,48 F. Catalani,16 G. Cataldi,44 L. Cazon,67 J.A. Chinellato,19 J. Chudoba,28 L. Chytka,29 R.W. Clay,12 A.C. Cobos Cerutti,7 R. Colalillo,56,46 A. Coleman,86 L. Collica,48 M.R.
    [Show full text]