Late Quaternary Glacial and Periglacial Environments, Snake Range, Nevada

Total Page:16

File Type:pdf, Size:1020Kb

Late Quaternary Glacial and Periglacial Environments, Snake Range, Nevada UNLV Retrospective Theses & Dissertations 1-1-2003 Late Quaternary glacial and periglacial environments, Snake Range, Nevada John G Van Hoesen University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Van Hoesen, John G, "Late Quaternary glacial and periglacial environments, Snake Range, Nevada" (2003). UNLV Retrospective Theses & Dissertations. 2558. http://dx.doi.org/10.25669/miuo-0qf5 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI" Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. NOTE TO USERS Page(s) not included in the original manuscript are unavailable from the author or university. The manuscript was microfilmed as received. 40, 76 , 90, 160, 175,210 This reproduction is the best copy available. UMI* Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LATE QUATERNARY GLACIAL AND PERIGLACIAL ENVIRONMENTS, SNAKE RANGE, NEVADA by John G. Van Hoesen Bachelor of Science, Geology University of Albany 1998 Master of Science, Geoscience University of Nevada, Las Vegas 2000 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree in Geoscience Department of Geoscience College of Sciences Graduate College University of Nevada, Las Vegas December 2003 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3 1 1 5 8 9 8 Copyright 2004 by Van Hoesen, John G. All rights reserved. UMI UMI Microform 3115898 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. 60x1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © 2004 John Van Hoesen All Rights Reserved Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Dissertation Approval The Graduate College uNiyUNIVilHSIÎVüF NtVADA LAS.VltOAS University of Nevada, Las Vegas October 2 ^20 03 The Dissertation prepared by John G. Van Hoesen Entitled Late Quaternary Glacial and Perielacial Environments. Snake Range, Nevada. is approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geoscience Examination Committee Chair Dean of the Graduate College Examination Committee Member Examination Committee Member \ ^ . NC l Graduate College Faculty Representative PR/1017-52/1-00 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT Late Quaternary Glacial and Periglacial Environments, Snake Range, Nevada by John G. Van Hoesen Dr. Richard L. Orndorff, Examining Committee Chair Assistant Professor of Geology Eastern Washington University Limited research has been conducted on the paleoclimatic significance of glacial and periglacial features in the Great Basin. Glacial features in the range were first recognized and described by early explorers (Gilbert, 1875; Simpson; 1876 and Russell, 1884) and subsequent authors have continued to substantiate and elaborate on earlier reports (Heald, 1956; Kramer, 1962; Currey, 1969; Peigat, 1980; Osborn and Bevis, 2001). Since this early reconnaissance work, few studies have focused on the Late Quaternary evolution and paleoclimatic implications of glacial and periglacial landforms in the Great Basin (Wayne, 1983; Osborn, 1989; Bevis, 1995; and Osborn and Bevis, 2001). Wayne (1984) describes relict rock glaciers, sorted circles, debris islands, solifluction lobes and sorted stripes in the Ruby, Schell Creek, and Snake ranges. While Cuixey (1969) and Osborn and Bevis, (2001) discuss the distribution of rock glaciers in numerous ranges throughout the Great Basin, including the Snake Range, and the surrounding regions. Ill Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This study presents new data on the glacial and periglacial Late Quaternary conditions in the interior Great Basin based on studies carried out in the Snake Range, located in east-central Nevada. I propose the Lehman rock glacier is an ice-cemented landform that evolved via a recessional genesis, contrary to present glacial or periglacial models that primarily propose constructional geneses for rock glaciers. Preliminary GPR evidence suggests the Lehman rock glacier may retain interstitial lenses of ice; remnant ice that has stagnated under modem climate conditions. The spatial distribution of both glacial and periglacial landforms provides paleoclimatic information derived using field evidence and computer modeling. Neoglacial temperature depression estimates calculated using modem freezing and thawing indices for relict rock glaciers, range from -0.25 °C to -1.00 °C while temperature estimates calculated using the methodology described by Frauenfelder and Kaab, (2000) and Frauenfelder et al., (2001) are 0.35 to 0.97 degrees lower than those calculated using freezing and thawing indices. Full Glacial MAAT depression estimates range from approximately -5.16°C to -6.61°C calculated using periglacial landforms, to approximately -4.55°C to -5.77 °C, calculated from reconstmcted Angel Lake equilibrium line altitudes (ELAs). Finally, using scanning electron microscopy, it is possible to differentiate between a glacial and non-glacial origin for pebbles and cobbles entrained in enigmatic sedimentary deposits is a useful tool. Each depositional environment creates distinct micro-features that can be identified and used to establish a glacial or non-glacial history. IV Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS ABSTRACT.....................................................................................................................................Hi LIST OF FIGURES.......................................................................................................................vii LIST OF TABLES........................................................................................................................... x ACKNOWLEDGEMENTS......................................................................................................... xii CHAPTER 1 SIGNIFICANCE OF LATE QUATERNARY LANDFORMS IN THE INTERIOR GREAT BASIN OF THE SOUTHWESTERN UNITED STATES................................................................................................................1 References ...........................................................................................................................12 CHAPTER 2 THE PALEOCLIMATIC SIGNIFICANCE OF RELICT GLACIAL AND PERIGLACIAL LANDFORMS, SNAKE RANGE, NEVADA.. 19 Introduction ........................................................................................................................20 Study A rea.........................................................................................................................22 Methods ...............................................................................................................................25 Results.................................................................................................................................29 Discussion .........................................................................................................................
Recommended publications
  • Travels in Alaska
    Travels in Alaska John Muir Travels in Alaska Table of Contents Travels in Alaska.......................................................................................................................................................1 John Muir.......................................................................................................................................................2 Preface............................................................................................................................................................3 Part I. The Trip of 1879...............................................................................................................................................5 Chapter I. Puget Sound and British Columbia...............................................................................................6 Chapter II. Alexander Archipelago and the Home I found in Alaska............................................................9 Chapter III. Wrangell Island and Alaska Summers.....................................................................................13 Chapter IV. The Stickeen River...................................................................................................................19 Chapter V. A Cruise in the Cassiar..............................................................................................................23 Chapter VI. The Cassiar Trail......................................................................................................................30
    [Show full text]
  • HISTORY of the TOIYABE NATIONAL FOREST a Compilation
    HISTORY OF THE TOIYABE NATIONAL FOREST A Compilation Posting the Toiyabe National Forest Boundary, 1924 Table of Contents Introduction ..................................................................................................................................... 3 Chronology ..................................................................................................................................... 4 Bridgeport and Carson Ranger District Centennial .................................................................... 126 Forest Histories ........................................................................................................................... 127 Toiyabe National Reserve: March 1, 1907 to Present ............................................................ 127 Toquima National Forest: April 15, 1907 – July 2, 1908 ....................................................... 128 Monitor National Forest: April 15, 1907 – July 2, 1908 ........................................................ 128 Vegas National Forest: December 12, 1907 – July 2, 1908 .................................................... 128 Mount Charleston Forest Reserve: November 5, 1906 – July 2, 1908 ................................... 128 Moapa National Forest: July 2, 1908 – 1915 .......................................................................... 128 Nevada National Forest: February 10, 1909 – August 9, 1957 .............................................. 128 Ruby Mountain Forest Reserve: March 3, 1908 – June 19, 1916 ..........................................
    [Show full text]
  • Schedule of Proposed Action (SOPA)
    Schedule of Proposed Action (SOPA) 10/01/2017 to 12/31/2017 Humboldt-Toiyabe National Forest This report contains the best available information at the time of publication. Questions may be directed to the Project Contact. Expected Project Name Project Purpose Planning Status Decision Implementation Project Contact Projects Occurring in more than one Region (excluding Nationwide) Sierra Nevada Forest Plan - Land management planning Completed Actual: 09/17/2013 03/2014 Donald Yasuda Amendment (SNFPA) 09/13/2013 916-640-1168 EIS [email protected] *UPDATED* Description: Prepare a narrowly focused analysis to comply with two orders issued by the Eastern District Court of California on November 4, 2009. Correct the 2004 SNFPA Final SEIS to address range of alternatives and analytical consistency issues. Web Link: http://www.fs.fed.us/r5/snfpa/2010seis Location: UNIT - Eldorado National Forest All Units, Lassen National Forest All Units, Modoc National Forest All Units, Sequoia National Forest All Units, Tahoe National Forest All Units, Lake Tahoe Basin Mgt Unit, Carson Ranger District, Bridgeport Ranger District, Plumas National Forest All Units, Sierra National Forest All Units, Stanislaus National Forest All Units, Inyo National Forest All Units. STATE - California, Nevada. COUNTY - Alpine, Amador, Butte, Calaveras, El Dorado, Fresno, Inyo, Kern, Lassen, Madera, Mariposa, Modoc, Mono, Nevada, Placer, Plumas, Shasta, Sierra, Siskiyou, Tulare, Tuolumne, Yuba, Douglas, Esmeralda, Mineral. LEGAL - Along the Sierra Nevada Range, from the Oregon/California
    [Show full text]
  • Central Nevada
    University of Nevada Reno LATE CENOZOIC GEOLOGY AND TECTONICS OF STEWART AND MONTE CRISTO VALLEYS, WEST - CENTRAL NEVADA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science .I by Mark Philip Molinari fit ; December, 1984 ii ABSTRACT Discontinuous right-normal-slip faults comprise the N30 0W trending, 45 kilometer long Stewart - Monte Cristo fault zone (SMCFZ). Initiation of the SMCFZ postdates the 15.5 to 11.0 m.y. Esmeralda Formation. Right-normal-slip >1 meter occurred on the southern segment of the SMCFZ during the 1932 Cedar Mountain earthquake (Ms= 7.2-7.3). Geomor- phic evidence supports at least three and possibly five or six surface faulting events on the southern segment during the latest Pleistocene and Holocene. Gentle folds in the Esmeralda Formation east of and sub-parallel to the SMCFZ are coeval with and genetically related to faulting. Structural development of the SMCFZ is similar to other right-lateral wrench faults and is consistent with labora- tory wrench fault models. The SMCFZ is the youngest and southeasternmost fault of a system of major late Cenozoic, left-stepping, en echelon right-slip faults in the central Walker Lane. - .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ iii TABLE OF CONTENTS page ABSTRACT .................. S S ii INTRODUCTION . 0 0 1 0 * I Location and Extent of Study Area . S S S S 1 Regional Tectonic and Geologic Setting. S. S a * 0 1 Purpose and Scope ...... a a * a 5 Methodology . 6 Previous Work . 8 Physiography. 10 MESOZOIC STRATIGRAPHY. 13 Sedimentary Rocks . & 13 Mina Formation . 13 Luning Formation . 13 Plutonic Rocks .
    [Show full text]
  • Hydrographic Basins Information
    A p p e n d i x A - B a s i n 54 Crescent Valley Page 1 of 6 Basin 54 - Crescent Valley Crescent Valley is a semi-closed basin that is bounded on the west by the Shoshone Range, on the east by the Cortez Mountains, on the south by the Toiyabe Range, and on the north by the Dry Hills. The drainage basin is about 45 miles long, 20 miles wide, and includes an area of approximately 750 square miles. Water enters the basin primarily as precipitation and is discharged primarily through evaporation and transpiration. Relatively small quantities of water enter the basin as surface flow and ground water underflow from the adjacent Carico Lake Valley at Rocky Pass, where Cooks Creek enters the southwestern end of Crescent Valley. Ground water generally flows northeasterly along the axis of the basin. The natural flow of ground water from Crescent Valley discharges into the Humboldt River between Rose Ranch and Beowawe. It is estimated that the average annual net discharge rate is approximately 700 to 750 acre-feet annually. Many of the streams which drain snowmelt of rainfall from the mountains surrounding Crescent Valley do not reach the dry lake beds on the Valley floor: instead, they branch into smaller channels that eventually run dry. Runoff from Crescent Valley does not reach Humboldt River with the exception of Coyote Creek, an intermittent stream that flows north from the Malpais to the Humboldt River and several small ephemeral streams that flow north from the Dry Hills. Surface flow in the Carico Lake Valley coalesces into Cooks Creek, which enters Crescent Valley through Rocky Pass.
    [Show full text]
  • Position Outreach Announcement
    USDA FOREST SERVICE INTERMOUNTAIN REGION, R4 HUMBOLDT-TOIYABE NATIONAL FOREST AUSTIN/TONOPAH RANGER DISTRICTS Rangeland Management Specialist December 17, 2009 About thePosition… The Humboldt-Toiyabe National Forest will soon be filling a Rangeland Management Specialist position, GS-0454-5/7/9, located in Austin, Nevada on the Austin/Tonopah Ranger Districts. The Austin/Tonopah Ranger Districts administer grazing on 47 cattle allotments and 2 sheep allotments. The Districts also manage thirteen wild horse and burro territories. This position offers a variety of opportunities for individuals to develop skills and enjoy a variety of challenging experiences. Are you Interested? Interested applicants, or those desiring further information, should contact Steven Williams, Austin/Tonopah District Ranger, at (775) 964-2671 or email at: [email protected] ; or Heather Mobley 775-964-2671 or email at [email protected] For additional Forest and District information, check out the H-T website… http://www.fs.fed.us/htnf/ The Forest … At over 6.3 million acres, the Humboldt-Toiyabe National Forest is the largest National Forest in the contiguous United States. The Forest spans the entire state of Nevada, with one million acres of land in the eastern part of California, along the Eastern Sierra Front. The Districts … The Austin/Tonopah Ranger Districts have two offices one in Austin and the other in Tonopah, Nevada. The Districts are managed as one unit under one District Ranger, with employees working out of both offices. The Austin/Tonopah Ranger Districts are responsible for the management of approximately 2.2 million acres of National Forest System Lands.
    [Show full text]
  • F I N a L Mineral Assessment Report
    BLM F I N A L MINERAL ASSESSMENT REPORT Battle Mountain District Office - Nevada J A N U A R Y 2 0 1 2 This page intentionally left blank Bureau of Land Management Mineral Assessment Report SUMMARY The Bureau of Land Management (BLM) Battle Mountain District Office (BMDO) is in the process of revising the district’s Resource Management Plan (RMP). As part of the RMP revision process, the BLM is required to prepare a Mineral Assessment Report providing information regarding mineral occurrences and potential within the BMDO Planning Area (planning area). This report provides an intermediate level of detail for mineral assessment as prescribed in BLM Manual 3060 (BLM 1994). Information presented in this report will be summarized and incorporated into an Environmental Impact Statement (EIS) for the proposed RMP and into the final RMP. The geologic history of central and southern Nevada and the planning area is very complex and includes two major cycles of sedimentation (western and eastern facies sources), episodic thrust faulting, mountain building, and associated intrusive and igneous activity. More recent geologic history includes a period of crustal extension that was accompanied by bimodal (rhyolite-basalt) volcanism, large volume caldera volcanism, and basin and range block-faulting resulting in high-levels of shallow crustal heat flow. The regional and local geologic setting has been instrumental in the location of and potential for numerous economic metallic mineral deposits in the planning area, as well as development of economic geothermal resources. MINING AND MINERAL ACTIVITY IN NEVADA Mineral exploration, particularly for gold, is an ongoing enterprise in Nevada by both operators of existing mines and by other exploration companies.
    [Show full text]
  • Jack Stewart Publications
    NBMG publications by John H. Stewart Bulletin 65: Precambrian and Lower Cambrian rocks, by J.H. Stewart; in Mineral and water resources of Nevada: Cornwall (1964) Bulletin 78: Geology and mineral deposits of Esmeralda County, Nevada: Albers and Stewart (1972) Bulletin 88: Geology and mineral deposits of Lander County, Nevada: Stewart, McKee, and Stager (1977) Map 50: Geologic map of north-central Nevada: Stewart and Carlson (1976) 1:250,000 Map 52: Cenozoic rocks of Nevada--four maps and brief description of distribution, lithology, age, and centers of volcanism: Stewart and Carlson (1976), 1:1,000,000 Map 57: Million-scale geologic map of Nevada: Stewart and Carlson (1977) 1:1,000,000 Map 118: Geologic map of the Carson City 30 x 60 minute quadrangle, Nevada: Stewart (1999) 1:100,000 Open-File Report 02-4: Evidence of a hidden hydrothermal system: The North Valley hydrothermal explosion craters, western Nevada, USA, by Stewart and Roddy Special Publication 4: Geology of Nevada: a discussion to accompany the Geologic map of Nevada (USGS): Stewart (1980) Geologic map of Nevada, compiled by John H. Stewart and John E. Carlson, prepared by U.S. Geological Survey in cooperation with Nevada Bureau of Mines and Geology (1978) 1:500,000 USGS and other publications by John H. Stewart Many publications done by John Stewart and listed below were published by the U.S. Geological Survey in cooperation with the Nevada Bureau of Mines and Geology. You can view the USGS citations with online links at their website. Go to this link and search by author: http://pubs.er.usgs.gov/ Albers, J.P.
    [Show full text]
  • Deglaciation and Postglacial Environmental Changes in the Teton Mountain Range Recorded at Jenny Lake, Grand Teton National Park, WY
    Quaternary Science Reviews 138 (2016) 62e75 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Deglaciation and postglacial environmental changes in the Teton Mountain Range recorded at Jenny Lake, Grand Teton National Park, WY * Darren J. Larsen , Matthew S. Finkenbinder, Mark B. Abbott, Adam R. Ofstun Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA article info abstract Article history: Sediments contained in lake basins positioned along the eastern front of the Teton Mountain Range Received 21 September 2015 preserve a continuous and datable record of deglaciation and postglacial environmental conditions. Here, Received in revised form we develop a multiproxy glacier and paleoenvironmental record using a combination of seismic 19 February 2016 reflection data and multiple sediment cores recovered from Jenny Lake and other nearby lakes. Age Accepted 22 February 2016 control of Teton lake sediments is established primarily through radiocarbon dating and supported by Available online xxx the presence of two prominent rhyolitic tephra deposits that are geochemically correlated to the widespread Mazama (~7.6 ka) and Glacier Peak (~13.6 ka) tephra layers. Multiple glacier and climate Keywords: fl Holocene climate change indicators, including sediment accumulation rate, bulk density, clastic sediment concentration and ux, fl d13 d15 Lake sediment organic matter (concentration, ux, C, N, and C/N ratios), and biogenic silica, track changes in Western U.S. environmental conditions and landscape development. Sediment accumulation at Jenny Lake began Deglaciation centuries prior to 13.8 ka and cores from three lakes demonstrate that Teton glacier extents were greatly Grand Teton National Park reduced by this time.
    [Show full text]
  • University Microfilms, a XEROX Company, Ann Arbor, Michigan
    I I 72-4508 GUNNER, John Duncan, 1945- AGE AND ORIGIN OF THE NIMROD GROUP AND OF THE GRANITE HARBOUR INTRUSIVES, BEARDMORE GLACIER REGION, ANTARCTICA. The Ohio State University, Ph.D., 1971 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED AGE AND ORIGIN OP THE NIMROD GROUP AND OF THE GRANITE HARBOUR INTRUSIVES, BEARDMORE GLACIER REGION, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By John Duncan Gunner, 3.A., M.A ****** The Ohio State University 1971 Approved by Adviser Department of Geology PLEASE NOTE: Some Pages have indistinct p rin t. Filmed as received. UNIVERSITY MICROFILMS igure 1: View across the Beardmore Glacier from the Summit of Mount Kyffin. The Rocks in the Foreground are Argillites and Arenites of the 'Goldie Formation, and the Sharp Peak is formed of Hope Granite. The Rounded Mountain on the Left Horizon is The Cloudmaker. ACKNOWLEDGMENTS I am greatly indebted to Dr. Gunter Faure for his enthusiastic ad­ vice and encouragement throughout this study. I am grateful also to the members of the Institute of Polar Studies expeditions to the Beardmore Glacier region during the 1967-1968 and 1969-1970 field seasons, and especially to David Johnston and to Drs. I. C. Rust and D. H. Elliot for willing assistance and stimulating dis­ cussions in the field. Logistic field support was provided by Squadron VXE-6 of the U. S. Naval Support Force, Antarctica, without whose help this study would not have been possible.
    [Show full text]
  • Interpreting the Timberline: an Aid to Help Park Naturalists to Acquaint Visitors with the Subalpine-Alpine Ecotone of Western North America
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1966 Interpreting the timberline: An aid to help park naturalists to acquaint visitors with the subalpine-alpine ecotone of western North America Stephen Arno The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Arno, Stephen, "Interpreting the timberline: An aid to help park naturalists to acquaint visitors with the subalpine-alpine ecotone of western North America" (1966). Graduate Student Theses, Dissertations, & Professional Papers. 6617. https://scholarworks.umt.edu/etd/6617 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INTEKFRETING THE TIMBERLINE: An Aid to Help Park Naturalists to Acquaint Visitors with the Subalpine-Alpine Ecotone of Western North America By Stephen F. Arno B. S. in Forest Management, Washington State University, 196$ Presented in partial fulfillment of the requirements for the degree of Master of Forestry UNIVERSITY OF MONTANA 1966 Approved by: Chairman, Board of Examiners bean. Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP37418 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • HUMBOLDT-TOIYABE NATIONAL FOREST 2019 Year in Review
    HUMBOLDT-TOIYABE NATIONAL FOREST 2019 Year In Review United States Forest Department of Service Agriculture USDA is an Equal Opportunity Employer & Provider. Forest Supervisor’s Message MESSAGE he Humboldt-Toiyabe National Forest had another successful year in T 2019. As I reflect on the past year’s accomplishments, I cannot help but think of the USDA Forest Service’s mission statement: “To sustain the health, diversity, and productivity of the Nation’s forests and grass- lands to meet the needs of present and future generations.” Every initiative we undertake tiers to this mission and it is the backbone of our Forest’s strategic plan and our daily work. You will see that in the last year we accomplished a number of key initia- tives and projects with the States of Nevada and California, Tribes, local communities, and collaborative groups. Especially significant in 2019, a Shared Stewardship Agreement was signed by the Nevada Governor, Intermountain and Pacific Southwest Regional Foresters, Bureau of Land Management (BLM) Nevada State Director, and Pacific Southwest Region- al U.S. Fish and Wildlife Service (USFWS) Director. Nevada becomes the ninth state in the nation to sign such an agreement, 2019 LEADERSHIP HIGHLIGHTS but it is the only state so far to also include the BLM and USFWS in the agreement. We encouraged this given the ownership boundaries of fed- • Completed 24,069 acres of hazardous fuels treatments helping the Forest become more eral lands in the state. fire-resilient and healthy. While “shared stewardship” or working across jurisdictions and taking an • Hired a Tribal Relations Specialist to continue “all lands” approach is not new for the employees on the Humboldt-Toi- to build stronger relationships and work col- laboratively with local tribes.
    [Show full text]