Quantitative Afterimage Assessment and Pupillometry: from a Novel Computer Application to Visual Funcitonalities

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Afterimage Assessment and Pupillometry: from a Novel Computer Application to Visual Funcitonalities City Research Online City, University of London Institutional Repository Citation: Bi, Wei (2012). New objective and psychophysical techniques to study the processing of visual signals with emphasis on chromatic afterimages. (Unpublished Doctoral thesis, City University London) This is the unspecified version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2216/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] NEW OBJECTIVE AND PSYCHOPHYSICAL TECHNIQUES TO STUDY THE PROCESSING OF VISUAL SIGNALS WITH EMPHASIS ON CHROMATIC AFTERIMAGES Wei Bi Doctor of Philosophy City University The Applied Vision Research Centre Department of Optometry and Visual Science September 2012 TABLE OF CONTENTS LIST OF TABLES ............................................................................................................................ 6 LIST OF FIGURES .......................................................................................................................... 7 ACKNOWLEDGEMENTS .............................................................................................................. 26 DECLARATION ............................................................................................................................. 27 ABSTRACT.................................................................................................................................... 28 ABBREVIATIONS AND SYMBOLS .............................................................................................. 29 1 INTRODUCTION .................................................................................................................... 30 1.1 ANATOMY AND PHYSIOLOGY OF THE EYE ......................................................................... 30 1.1.1 The structure of the eye ......................................................................................... 31 1.1.2 The structure of the retina ...................................................................................... 34 1.1.3 Post-receptoral and post-retinal processing .......................................................... 43 1.2 COLOUR VISION ........................................................................................................... 55 1.2.1 Normal trichromatic colour vision ........................................................................... 56 1.2.2 Anomalous trichromacies, dichromacies and monochromacies ............................ 57 1.2.3 Dichromacies & Monochromacies .......................................................................... 59 1.3 THE FUNCTION OF PUPIL ............................................................................................... 60 1.3.1 Anatomy of the iris – sphincter and dilator muscles ............................................... 62 1.3.2 Pupillary pathways ................................................................................................. 63 2 EQUIPMENT AND METHODS .............................................................................................. 66 2.1 INTRODUCTION ............................................................................................................ 66 2.2 PUPILLOMETRY ............................................................................................................ 66 2 2.3 ASSESSMENT OF VISUAL ACUITY ................................................................................... 68 2.4 COLOUR SENSITIVITY ASSESSMENT ............................................................................... 70 2.5 COHERENT MOTION TEST ............................................................................................. 73 2.6 MELANOPSIN APPARATUS – ISOLATION OF MELANOPSIN RESPONSE ................................... 74 2.7 QUANTITATIVE AFTERIMAGE ASSESSMENT ...................................................................... 76 3 THE DESIGN OF THE QAA TEST ........................................................................................ 80 3.1 INTRODUCTION ............................................................................................................ 80 3.2 REQUIREMENTS ........................................................................................................... 81 3.2.1 Functional requirements ......................................................................................... 82 3.2.2 Non-functional requirements .................................................................................. 83 3.3 SYSTEM DESIGN ........................................................................................................... 85 3.3.1 The modules of the QAA test ................................................................................. 86 3.3.2 The psychophysics module .................................................................................... 89 3.4 IMPLEMENTATION ......................................................................................................... 90 3.4.1 Implementation of the psychophysics module ....................................................... 91 3.4.2 The implementation of interfaces between modules.............................................. 94 3.5 MONITOR CALIBRATION FOR THE QAA ............................................................................ 95 3.5.1 The QAA calibration procedure .............................................................................. 96 3.5.2 The QAA calibration results ................................................................................... 97 3.5.3 The usage of calibration in the QAA application .................................................... 99 3.6 SUMMARY ................................................................................................................. 105 4 QUANTITATIVE AFTERIMAGE ASSESSMENT ................................................................ 107 4.1 INTRODUCTION .......................................................................................................... 107 3 4.2 METHODS ................................................................................................................. 109 4.3 RESULTS FROM NORMAL SUBJECTS .............................................................................. 112 4.3.1 The effect of the gap duration .............................................................................. 112 4.3.2 The effect of reference stimulus duration ............................................................. 113 4.3.3 The effect of the chromatic saturation of the reference stimulus ......................... 114 4.3.4 The effect of chromatic direction .......................................................................... 115 4.3.5 The effect of background luminance .................................................................... 117 4.4 RESULTS FROM DEUTERANOPES .................................................................................. 118 4.5 RESULTS FROM SUBJECTS WITH PALINOPSIA AND VISUAL SNOW ...................................... 121 4.6 MECHANISMS FOR CHROMATIC AFTERIMAGES................................................................ 124 4.6.1 Normal Trichromats .............................................................................................. 124 4.6.2 The afterimage thresholds reveal dichromacy ..................................................... 127 4.6.3 Pupil colour responses in dichromacy depend on signal difference from the two types of cones ............................................................................................................... 131 5 A STUDY OF PUPIL RESPONSE COMPONENTS IN NORMAL SUBJECTS AND IN PATIENTS WITH CONGENITAL OR ACQUIRED HEMIANOPIA ............................................. 140 5.1 INTRODUCTION .......................................................................................................... 140 5.2 METHODS ................................................................................................................. 142 5.2.1 Subjects ................................................................................................................ 142 5.2.2 Apparatus & pupillometry stimuli .......................................................................... 143 5.3 RESULTS................................................................................................................... 146 5.3.1 Pupil light reflex response measurements ........................................................... 146 5.3.2 Pupil colour responses measurements ................................................................ 151 5.4 DISCUSSION .............................................................................................................. 155 6 MELANOPSIN SIGNALS AND THE PUPIL
Recommended publications
  • Pupil Responses Associated with Coloured Afterimages Are Mediated by the Magno-Cellular Pathway
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aston Publications Explorer Vision Research 43 (2003) 1423–1432 www.elsevier.com/locate/visres Pupil responses associated with coloured afterimages are mediated by the magno-cellular pathway S. Tsujimura *, J.S. Wolffsohn, B. Gilmartin Neurosciences Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK Received 14 August 2002; received in revised form 27 January 2003 Abstract Sustained fixation of a bright coloured stimulus will, on extinction of the stimulus and continued steady fixation, induce an afterimage whose colour is complementary to that of the initial stimulus; an effect thought to be caused by fatigue of cones and/or of cone-opponent processes to different colours. However, to date, very little is known about the specific pathway that causes the coloured afterimage. Using isoluminant coloured stimuli recent studies have shown that pupil constriction is induced by onset and offset of the stimulus, the latter being attributed specifically to the subsequent emergence of the coloured afterimage. The aim of the study was to investigate how the offset pupillary constriction is generated in terms of input signals from discrete functional elements of the magno- and/or parvo-cellular pathways, which are known principally to convey, respectively, luminance and colour signals. Changes in pupil size were monitored continuously by digital analysis of an infra-red image of the pupil while observers viewed isoluminant green pulsed, ramped or luminance masked stimuli presented on a computer monitor. It was found that the amplitude of the offset pupillary constriction decreases when a pulsed stimulus is replaced by a temporally ramped stimulus and is eliminated by a luminance mask.
    [Show full text]
  • Real Time Measurement and Processing of Pupillary Light Reflex for Early Detection of Disease
    Journal of Computers Real Time Measurement and Processing of Pupillary Light Reflex for Early Detection of Disease Ippei Torii*, Takahito Niwa Aichi Institute of Technology, Dept. of Information Science, 1247 Yachigusa, Yakusa-cho, Toyota, Aichi, Japan. * Corresponding author. Tel.: 81-565-48-8121; email: mac[aitech.ac.jp Manuscript submitted January 10, 2019; accepted March 8, 2019. doi: 10.17706/jcp.14.3.161-169 Abstract: Recently, pupillary measurements have begun to be considered effective in the diagnosis of various physical conditions. Apart from optic neuropathy and retinal disorders, which are ocular diseases, diversions can be expected in the diagnosis of autonomic disturbance due to sympathetic and parasympathetic nerve disorders, cranial nerve disorders, cerebral infarction, depression, and diabetes. In this study, we have developed a real-time pupil diameter measuring system that is inexpensive and does not require a complicated device. When strong light is projected onto the eyeball, this system can measure the reaction time until the start of miosis, the time to achieve maximal miosis, and the difference in reaction speed of the left and right eyes. With this system, the status of a disease can be judged based on the distance from the threshold value. Key words: Real time measurement, eye movement, early detection of disease, image processing. 1. Introduction There are approximately one hundred million photoreceptor cells in the retina of human eyes. Light that shines on those cells is converted to nerve signals, which transmit the information to the brain, resulting in the visual recognition of objects. When light is radiated onto the eye, the pupillary light reflex is triggered, causing the pupillary diameter to decrease with a time delay of less than 1 sec.
    [Show full text]
  • The Pupillary Light Reflex in the Critically Ill Patient
    light must be high for the iris to be seen, which reduces Editorials the step increase induced by the penlight).6 If the pupillary light reflex amplitude is less than 0.3 mm and the maximum constriction velocity is less than 1 mm/s, the reflex is unable to be detected using a The pupillary light reflex in penlight.6 In conscious patients with Holmes-Adie and Argyll-Robertson pupils with ‘absent’ pupillary light the critically ill patient reflexes, small light reflexes have been detected using infrared pupillometry.7 Also in post-resuscitation non- brain dead critically ill patients with ‘absent’ pupillary The pupillary response to light is controlled by the reflexes, the reflex has been demonstrated using a autonomic nervous system. The direct pupillary light portable infrared pupillometer.6 reflex refers to miosis that occurs in the stimulated eye; In this issue of Critical Care and Resuscitation, the consensual pupillary light reflex refers to miosis that Thomas8 describes a case of Guillain Barré syndrome occurs in the other eye. The reflex has a latent period presenting with weakness and fixed dilated pupils who with length of the period, amplitude of the response, and subsequently became ‘locked in’ with absence of any the speed of the pupillary constriction dependent on the clinical response to external stimuli. A positive brain intensity of the stimulus employed.1 For the reflex to be stem auditory evoked response was used to indicate truly tested, an intense stimulus and close observation normal brain stem function. In another recent report, a are required. The reflex has afferent, efferent and central case of ‘reversible fixed dilated pupils’ was associated connections; therefore non-response to light (i.e.
    [Show full text]
  • Subliminal Afterimages Via Ocular Delayed Luminescence: Transsaccade Stability of the Visual Perception and Color Illusion
    ACTIVITAS NERVOSA SUPERIOR Activitas Nervosa Superior 2012, 54, No. 1-2 REVIEW ARTICLE SUBLIMINAL AFTERIMAGES VIA OCULAR DELAYED LUMINESCENCE: TRANSSACCADE STABILITY OF THE VISUAL PERCEPTION AND COLOR ILLUSION István Bókkon1,2 & Ram L.P. Vimal2 1Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Budapest, Hungary 2Vision Research Institute, Lowell, MA, USA Abstract Here, we suggest the existence and possible roles of evanescent nonconscious afterimages in visual saccades and color illusions during normal vision. These suggested functions of subliminal afterimages are based on our previous papers (i) (Bókkon, Vimal et al. 2011, J. Photochem. Photobiol. B) related to visible light induced ocular delayed bioluminescence as a possible origin of negative afterimage and (ii) Wang, Bókkon et al. (Brain Res. 2011)’s experiments that proved the existence of spontaneous and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat’s whole eye, lens, vitreous humor and retina. We also argue about the existence of rich detailed, subliminal visual short-term memory across saccades in early retinotopic areas. We conclude that if we want to understand the complex visual processes, mere electrical processes are hardly enough for explanations; for that we have to consider the natural photobiophysical processes as elaborated in this article. Key words: Saccades Nonconscious afterimages Ocular delayed bioluminescence Color illusion 1. INTRODUCTION Previously, we presented a common photobiophysical basis for various visual related phenomena such as discrete retinal noise, retinal phosphenes, as well as negative afterimages. These new concepts have been supported by experiments (Wang, Bókkon et al., 2011). They performed the first experimental proof of spontaneous ultraweak biophoton emission and visible light induced delayed ultraweak photon emission from in vitro freshly isolated rat’s whole eye, lens, vitreous humor, and retina.
    [Show full text]
  • What's the Connection?
    WHAT’S THE CONNECTION? Sharon Winter Lake Washington High School Directions for Teachers 12033 NE 80th Street Kirkland, WA 98033 SYNOPSIS Students elicit and observe reflex responses and distinguish between types STUDENT PRIOR KNOWL- of reflexes. They then design and conduct experiments to learn more about EDGE reflexes and their control by the nervous system. Before participating in this LEVEL activity students should be able to: Exploration, Concept/Term Introduction Phases ■ Describe the parts of a Application Phase neuron and explain their functions. ■ Distinguish between sensory and motor neurons. Getting Ready ■ Describe briefly the See sidebars for additional information regarding preparation of this lab. organization of the nervous system. Directions for Setting Up the Lab General: INTEGRATION Into the Biology Curriculum ■ Make an “X” on the chalkboard for the teacher-led introduction. ■ Health ■ Photocopy the Directions for Students pages. ■ Biology I, II ■ Human Anatomy and Teacher Background Physiology A reflex is an involuntary neural response to a specific sensory stimulus ■ AP Biology that threatens the survival or homeostatic state of an organism. Reflexes Across the Curriculum exist in the most primitive of species, usually with a protective function for ■ Mathematics animals when they encounter external and internal stimuli. A primitive ■ Physics ■ example of this protective reflex is the gill withdrawal reflex of the sea slug Psychology Aplysia. In humans and other vertebrates, protective reflexes have been OBJECTIVES maintained and expanded in number. Examples are the gag reflex that At the end of this activity, occurs when objects touch the sides students will be able to: or the back of the throat, and the carotid sinus reflex that restores blood ■ Identify common reflexes pressure to normal when baroreceptors detect an increase in blood pressure.
    [Show full text]
  • Cortical Mechanisms of Colour Vision
    REVIEWS CORTICAL MECHANISMS OF COLOUR VISION Karl R. Gegenfurtner The perception of colour is a central component of primate vision. Colour facilitates object perception and recognition, and has an important role in scene segmentation and visual memory. Moreover, it provides an aesthetic component to visual experiences that is fundamental to our perception of the world. Despite the long history of colour vision studies, much has still to be learned about the physiological basis of colour perception. Recent advances in our understanding of the early processing in the retina and thalamus have enabled us to take a fresh look at cortical processing of colour. These studies are beginning to indicate that colour is processed not in isolation, but together with information about luminance and visual form, by the same neural circuits, to achieve a unitary and robust representation of the visual world. SENSORY SYSTEMS It has been known since the nineteenth century that In the retinal ganglion cells, three channels convey there are three types of photoreceptor for daylight information from the eye to the brain7,8. In the L + M or vision in the human eye1,2. Since then, the shapes of the luminance channel, the signals from L- and M-cones spectral absorption functions of the different cones are added to compute the intensity of a stimulus. In the have been determined with increasing precision in L – M colour-opponent channel, the signals from L- and psychophysical experiments and verified using various M-cones are subtracted from each other to compute electrophysiological methods3. On the molecular the red–green component of a stimulus.
    [Show full text]
  • A Model of Accommodative-Pupillary Dynamics Stanley Gordon Day Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 A model of accommodative-pupillary dynamics Stanley Gordon Day Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons Recommended Citation Day, Stanley Gordon, "A model of accommodative-pupillary dynamics " (1969). Retrospective Theses and Dissertations. 4649. https://lib.dr.iastate.edu/rtd/4649 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microâhned exactly as received 69-15,607 DAY, Stanley Gordon, 1939- A MODEL OF ACCOMMODATIVE-PUPILLARY DYNAMICS. Iowa State University, Ph.D., 1969 Engineering, electrical University Microfilms, Inc., Ann Arbor, Michigan ®Copyright by STANLEY GORDON DAY 1969 A MODEL OF ACCOMMODATIVE-PUPILLARY DYNAMICS by Stanley Gordon Day A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject : Electrical Engineering Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dea^ of Gradulate College Iowa State University Of Science and Technology Ames, Iowa 1969 il TABLE OF CONTENTS Page DEDICATION iii INTRODUCTION 1 REVIEW OF LITERATURE 4 EQUIPMENT AND METHODS 22 RESULTS AND DISCUSSION 47 SUÎ4MARY AND CONCLUSIONS 60 BIBLIOGRAPHY 62 ACKNOWLEDGEMENTS 68 APPENDIX 69 i iii DEDICATION This dissertation is dedicated to Sandra R.
    [Show full text]
  • The Pupillary Light Reflex in Normal Subjects
    Br J Ophthalmol: first published as 10.1136/bjo.65.11.754 on 1 November 1981. Downloaded from British Journal ofOphthalmology, 1981, 65, 754-759 The pupillary light reflex in normal subjects C. J. K. ELLIS From St Thomas's Hospital, London SE] SUMMARY In 19 normal subjects the pupillary reflex to light was studied over a range of stimulus intensities by infrared electronic pupillography and analysed by a computer technique. Increasing stimulus intensity was associated with an increase in direct light reflex amplitude and maximum rate of constriction and redilatation. Latency from stimulus to onset of response decreased with increas- ing stimulus intensity. The normal range for each of these parameters is given and the significance of these results in clinical pupillary assessment discussed. The technique of infrared pupillometry' has allowed PUPILLOMETRY the normal pupillary response to light to be studied in A Whittaker Series 1800 binocular infrared television detail. Lowenstein and Friedman2 have shown that pupillometer was used in this study. All recordings in response to light the pupil constricts after a latent were made in darkness with no correction for refrac- period and that the length of this latent period, the tive error. The eyes were illuminated from a low- copyright. amplitude of the response, and the speed of the intensity, invisible infrared source and observed by pupillary constriction are dependent on the stimulus means of a closed circuit television system sensitive to intensity employed. These findings have subse- infrared light. The pupils were displayed on television quently been confirmed.3" monitor screens providing instantaneous feedback of Borgmann6 gave 95% confidence limits in defining the quality of the pupil images.
    [Show full text]
  • The Effect of Eye Movements and Blinks on Afterimage Appearance and Duration
    Journal of Vision (2015) 15(3):20, 1–15 http://www.journalofvision.org/content/15/3/20 1 The effect of eye movements and blinks on afterimage appearance and duration School of Psychology, Cardiff University, # Georgina Powell Cardiff, Wales, UK $ School of Psychology, Cardiff University, # Petroc Sumner Cardiff, Wales, UK $ Lyon Neuroscience Research Center, # Aline Bompas Centre Hospitalier Vinatier, Bron, Cedex, France $ The question of whether eye movements influence argued that afterimage signals are inherently ambigu- afterimage perception has been asked since the 18th ous, and this could explain why their visibility is century, and yet there is surprisingly little consensus on influenced by cues, such as surrounding luminance how robust these effects are and why they occur. The edges, more than are real stimuli (Powell, Bompas, & number of historical theories aiming to explain the Sumner, 2012). Helmholtz (1962) identified another cue effects are more numerous than clear experimental that is important to take into account when conducting demonstrations of such effects. We provide a clearer afterimage experiments: characterization of when eye movements and blinks do or do not affect afterimages with the aim to distinguish For obtaining really beautiful positive after- between historical theories and integrate them with a images, the following additional rules should be modern understanding of perception. We found neither saccades nor pursuit reduced strong afterimage observed. Both before and after they are devel- duration, and blinks actually increased afterimage oped, any movement of the eye or any sudden duration when tested in the light. However, for weak movement of the body must be carefully avoided, afterimages, we found saccades reduced duration, and because under such circumstances they invariably blinks and pursuit eye movements did not.
    [Show full text]
  • Melanopsin and Cone Photoreceptor Inputs to the Afferent Pupil Light Response
    ORIGINAL RESEARCH published: 22 May 2019 doi: 10.3389/fneur.2019.00529 Melanopsin and Cone Photoreceptor Inputs to the Afferent Pupil Light Response Andrew J. Zele 1,2*, Prakash Adhikari 1,2, Dingcai Cao 3 and Beatrix Feigl 1,4,5 1 Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia, 2 School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia, 3 Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States, 4 School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia, 5 Queensland Eye Institute, Brisbane, QLD, Australia Background: Retinal photoreceptors provide the main stage in the mammalian eye for regulating the retinal illumination through changes in pupil diameter, with a small population of melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) forming the primary afferent pathway for this response. The purpose of this Edited by: study is to determine how melanopsin interacts with the three cone photoreceptor Victoria Susan Pelak, University of Colorado Denver, classes in the human eye to modulate the light-adapted pupil response. United States Methods: We investigated the independent and combined contributions of the inner Reviewed by: and outer retinal photoreceptor inputs to the afferent pupil pathway in participants with Jason Charng, Lions Eye Institute, Australia trichromatic color vision using a method to independently control the excitations of Chiara La Morgia, ipRGCs, cones and rods in the retina. IRCCS Istituto delle Scienze Neurologiche di Bologna (ISNB), Italy Results: We show that melanopsin-directed stimuli cause a transient pupil constriction *Correspondence: generated by cones in the shadow of retinal blood vessels; desensitizing these penumbral Andrew J.
    [Show full text]
  • Retinal Sensitivity Measured by the Pupillary Light Reflex in Rcs and Albino Rats
    VisionRus. Vol. 22. pp. II63 to 1171, 1982 0042-6989/82/091 l63-09$03.00/O Printedin Great Britain Pergamon Press Ltd RETINAL SENSITIVITY MEASURED BY THE PUPILLARY LIGHT REFLEX IN RCS AND ALBINO RATS LEONARD J. TREJO* and CAROL M. CICERONE Department of Psychology, C-009, University of California, San Diego, La Jolla, CA 92093, U.S.A. (Receiwd 14 July 1981; in reuised,fbrm 17 February 1982) Abstract-The effects of retinal degeneration on the sensitivity of the retina were studied in the Royal College of Surgeons (RCS) rat by measuring the light reflex of the pupil in response to ganzfeld (full field) flashes. Light reflex thresholds were measured for animals from 32 to 683 days of age, and an age-related decrease in sensitivity of 5.2 log units (maximum) was measured. In contrast, thresholds for non-dystrophic albino controls increased only slightly during a comparable period. RCS rat thresholds increased more for short wavelength light than for long wavelength light. The end result was an altered action spectrum of the light reflex which largely, but not exclusively, reflected cone function. Even in cases of advanced degeneration the light reflex thresholds we measured showed significant input from rods. Pupillary dark adaptation measured following ganzfeld bleaches (10%) with test stimuli of two different wavelengths revealed two mechanisms; a photopic mechanism (&,.,, = 520) determined thresholds early in dark adaptation, but later a scotopic mechanism (;.,,,,,, = 500) participated in the light reflex INTRODUCTION (dark adapted) conditions. Although the exclusive presence of units with photopic sensitivity in the RCS The Royal College of Surgeons (RCS) rat suffers from hereditary retinal degeneration (Dowling and Sidman, retina provides evidence for the selective survival of cones, it is conceivable that many scotopic units 1962) and has served as an animal model of the class of inherited human diseases, retinitis pigmentosa remain undetected.
    [Show full text]
  • Psychophysical Investigations Into the Neural Basis of Synaesthesia V
    doi 10.1098/rspb.2000.1576 Psychophysical investigations into the neural basis of synaesthesia V. S. Ramachandran* andE.M.Hubbard Center for Brain and Cognition, University of California, San Diego, 9500 Gilman Drive, LaJolla, CA 92093-0109, USA We studied two otherwise normal, synaesthetic subjects who `saw' a speci¢c colour every time they saw a speci¢c number or letter. We conducted four experiments in order to show that this was a genuine perceptual experience rather than merely a memory association. i)The synaesthetically induced colours could lead to perceptual grouping, even though the inducing numerals or letters did not. ii)Synaesthetically induced colours were not experienced if the graphemes were presented peripherally. iii)Roman numerals were ine¡ective: the actual number grapheme was required. iv)If two graphemes were alternated the induced colours were also seen in alternation. However, colours were no longer experienced if the graphemes were alternated at more than 4 Hz. We propose that grapheme colour synaesthesia arises from `cross-wiring' between the `colour centre' area V4 or V8)and the `number area', both of which lie in the fusiform gyrus. We also suggest a similar explanation for the representation of metaphors in the brain: hence, the higher incidence of synaesthesia among artists and poets. Keywords: synaesthesia; multisensory; extrastriate visual areas; psychophysics that the visual number grapheme rather than the numer- 1. INTRODUCTION ical concept is required for evoking colours. However, they The bizarre phenomenon of synaesthesia, e.g. `seeing both noted that if they `imaged' the corresponding Arabic sounds' or seeing speci¢c colours upon seeing speci¢c numeral then the corresponding colour was evoked, but numerals Galton 1880, 1883; Cytowic 1989; Paulesu et al.
    [Show full text]