Loss of Pupillary Reflex, Retinal and Optic Nerve Degeneration, in Partial

Total Page:16

File Type:pdf, Size:1020Kb

Loss of Pupillary Reflex, Retinal and Optic Nerve Degeneration, in Partial Visual System Pathology Caused by Clironic Cerebral Hypoperfusion: Loss of Pupillary Reflex, Retinal and Optic Nerve Degeneration, and the Role of Light Toxicity by William Dale Stevens A thesis submitted to the Faculty of Graduate Studies and Research in partial filfilment of the requirements for the degree of Master of Science (Specialitation in Neuroscience) Department of Psychology and the Carleton Institute of Neuroscience Carleton University Ottawa, Ontario September, 2000 Q 2000 William Dale Stevens National Library Bibliothèque nationale of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rua Wellington Ottawa ON K1A ON4 ûüawaON KIAN Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Cana& to Bibliothèque nationale du Canada de reproduce, loan, dismibute or sell reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be pniited or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. S prague-Dawley rats undenvent permanent bilateral ligation of the common carotid arteries (ZVO)(~63) or sham surgery (n=20). Half of the rats were post- surgically housed in constant darkness, the other half in a standard 12-hour light/dark environment. Rats were sacrificed at 3, 15, and 90 days post-surgery. 2V0 resulted in loss of the pupillary reflex to light in approximately 58% of rats within 7 days post-2VO. Gallyas silver staining revealed ongoing fibre degeneration of the optic nerve (ON) of eyes that lost the reflex (NO-noflex)at 3, 15, and 90 days post-ZVO. Stereoloçy based counting techniques indicated a reduction of cells of the retinal ganglion ceIl layer in 2VO- nofles eyes by 15, and 90 days post-2V0 relative to eyes that retained the reflex (2VO- fles and sham). By 90 days, the NO-noflex eyes showed an absence of Thy-1 immunoreactivity within the retina, and thinning of the inner and outer plexifonn layers. Severe loss of photoreceptors in 2VO-noflex eyes occurred in the light condition ody. It was concluded that 2V0 likely resulted in ischemic damage to the ON, causing loss of pupiliary refi ex and death of retinal ganglion cells in a subset of rats (-58%). Subsequent light toxicity resulted in death of the photoreceptors in these eyes. My first thanks go to my Morn and Dad. Thank you for having always supponed me in everyt hing I have done, in every way I've needed. You have given me the opportunity to follow my dreams, and the means to stnve for the limits of my potential. Thank you for always being there for me. 1 would also like to extend my warmest gratitude to the amazing team of people 1 have been fortunate enough to cal1 my labmates for the last four years. Thanks Maxine for your friendship. Thanks Nicole, for teaching me what you could, for laughing with me, and for being such a bold gambler. And imrneasurable thanks to you Teresa, for teaching me just about everything I needed to know to get here, and for a11 ofyour assistance with this project. 1 never could have done this without you. Most of all, I wodd like to express my deepest respect, gratitude, and admiration for my advisor and mentor, Dr. Bruce Pappas. Thank you for your patience, your generosity, and your confidence in me. The last four years working under you have afforded me the opponunity to explore my ambitions, and gain the expenence 1 needed to take the next step in rny life. 1 move fonvard with the greatest of optirnisrn and anticipation, but 1 wi11 always look back with the fondest of memones. 1 hope one day to be as accomplished a man as you. Thanks Bruce. TABLE OF CONTENTS Title Page .................................................................................................................. i Acceptance Sheet ...................................................................................................... ii a.. a.. Abstract ..................................................................................................................... 111 Acknowledgements .................................................................................................... iv Table of Contents ...................................................................................................... v ... List of Tables .......................................................................................................... VI" List of Figures ........................................................................................................... ix List of Appendices ..................................................................................................... xl List of Abbreviations .................................................................................................. xii Introduction ............................................................................................................... Cerebral Blood Flow and 2V0 ....................................................................... Retinal Blood Flow and 2V0 ......................................................................... Behavioural Effects of 2VO ............................................................................ 2VO and Vision ............................................................................................. 2VO and Retinal Pathology ............................................................................ Pupillary Reflex .............................................................................................. Clinical Relevance of the 3VO Mode1 ............................................................. Sumrnary and Raiionale .................................................................................. Met hods .................................................................................................................... Anirnals .......................................................................................................... Pupillary Reflex .............................................................................................. Groups ........................... .. .......................................................................... Su rge ry .......................................................................................................... Tissue Preparation .......................................................................................... Stereology ...................................................................................................... Thy- 1 ............................................................................................................. Retinal Sublayers ............................................................................................ Optic Nerve ................................................................................................... Results ...................,............................................................................................... Surgery and Pupitlary Reflex ........................................................................ Retinal Ganglion Cell Layer ............................................................................ S tereology .......................................................................................... Thy- 1 .................................... ..... ........................................................ Retinal Sublayer Pathology ............................................................................. Outer Nuclear Layer ........................................................................... Outer Plexiform Layer ........................................................................ Inner Nuclear Layer ............................................................................ Inner Plexifom Layer ......................................................................... Optic Nerve Pathology .................................................................................... Gallyas Silver Stain ............................................................................ 70 GFAP Immunoreactivity ..................................................................... 70 Discussion ................................................................................................................. Pupillary Reflex .............................................................................................. RGCL Pathology ............................................................................................ Retinai Sublayer Pathology ............................................................................. Outer Nuclear Layer .......................... ............................................. Outer Plexiform Layer ........................................................................ Inner Nuclear Layer ............................................................................ Inner Plexiform Layer ......................................................................... Optic
Recommended publications
  • The Pupillary Light Reflex in the Critically Ill Patient
    light must be high for the iris to be seen, which reduces Editorials the step increase induced by the penlight).6 If the pupillary light reflex amplitude is less than 0.3 mm and the maximum constriction velocity is less than 1 mm/s, the reflex is unable to be detected using a The pupillary light reflex in penlight.6 In conscious patients with Holmes-Adie and Argyll-Robertson pupils with ‘absent’ pupillary light the critically ill patient reflexes, small light reflexes have been detected using infrared pupillometry.7 Also in post-resuscitation non- brain dead critically ill patients with ‘absent’ pupillary The pupillary response to light is controlled by the reflexes, the reflex has been demonstrated using a autonomic nervous system. The direct pupillary light portable infrared pupillometer.6 reflex refers to miosis that occurs in the stimulated eye; In this issue of Critical Care and Resuscitation, the consensual pupillary light reflex refers to miosis that Thomas8 describes a case of Guillain Barré syndrome occurs in the other eye. The reflex has a latent period presenting with weakness and fixed dilated pupils who with length of the period, amplitude of the response, and subsequently became ‘locked in’ with absence of any the speed of the pupillary constriction dependent on the clinical response to external stimuli. A positive brain intensity of the stimulus employed.1 For the reflex to be stem auditory evoked response was used to indicate truly tested, an intense stimulus and close observation normal brain stem function. In another recent report, a are required. The reflex has afferent, efferent and central case of ‘reversible fixed dilated pupils’ was associated connections; therefore non-response to light (i.e.
    [Show full text]
  • What's the Connection?
    WHAT’S THE CONNECTION? Sharon Winter Lake Washington High School Directions for Teachers 12033 NE 80th Street Kirkland, WA 98033 SYNOPSIS Students elicit and observe reflex responses and distinguish between types STUDENT PRIOR KNOWL- of reflexes. They then design and conduct experiments to learn more about EDGE reflexes and their control by the nervous system. Before participating in this LEVEL activity students should be able to: Exploration, Concept/Term Introduction Phases ■ Describe the parts of a Application Phase neuron and explain their functions. ■ Distinguish between sensory and motor neurons. Getting Ready ■ Describe briefly the See sidebars for additional information regarding preparation of this lab. organization of the nervous system. Directions for Setting Up the Lab General: INTEGRATION Into the Biology Curriculum ■ Make an “X” on the chalkboard for the teacher-led introduction. ■ Health ■ Photocopy the Directions for Students pages. ■ Biology I, II ■ Human Anatomy and Teacher Background Physiology A reflex is an involuntary neural response to a specific sensory stimulus ■ AP Biology that threatens the survival or homeostatic state of an organism. Reflexes Across the Curriculum exist in the most primitive of species, usually with a protective function for ■ Mathematics animals when they encounter external and internal stimuli. A primitive ■ Physics ■ example of this protective reflex is the gill withdrawal reflex of the sea slug Psychology Aplysia. In humans and other vertebrates, protective reflexes have been OBJECTIVES maintained and expanded in number. Examples are the gag reflex that At the end of this activity, occurs when objects touch the sides students will be able to: or the back of the throat, and the carotid sinus reflex that restores blood ■ Identify common reflexes pressure to normal when baroreceptors detect an increase in blood pressure.
    [Show full text]
  • A Model of Accommodative-Pupillary Dynamics Stanley Gordon Day Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 A model of accommodative-pupillary dynamics Stanley Gordon Day Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Electrical and Electronics Commons Recommended Citation Day, Stanley Gordon, "A model of accommodative-pupillary dynamics " (1969). Retrospective Theses and Dissertations. 4649. https://lib.dr.iastate.edu/rtd/4649 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microâhned exactly as received 69-15,607 DAY, Stanley Gordon, 1939- A MODEL OF ACCOMMODATIVE-PUPILLARY DYNAMICS. Iowa State University, Ph.D., 1969 Engineering, electrical University Microfilms, Inc., Ann Arbor, Michigan ®Copyright by STANLEY GORDON DAY 1969 A MODEL OF ACCOMMODATIVE-PUPILLARY DYNAMICS by Stanley Gordon Day A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject : Electrical Engineering Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dea^ of Gradulate College Iowa State University Of Science and Technology Ames, Iowa 1969 il TABLE OF CONTENTS Page DEDICATION iii INTRODUCTION 1 REVIEW OF LITERATURE 4 EQUIPMENT AND METHODS 22 RESULTS AND DISCUSSION 47 SUÎ4MARY AND CONCLUSIONS 60 BIBLIOGRAPHY 62 ACKNOWLEDGEMENTS 68 APPENDIX 69 i iii DEDICATION This dissertation is dedicated to Sandra R.
    [Show full text]
  • The Pupillary Light Reflex in Normal Subjects
    Br J Ophthalmol: first published as 10.1136/bjo.65.11.754 on 1 November 1981. Downloaded from British Journal ofOphthalmology, 1981, 65, 754-759 The pupillary light reflex in normal subjects C. J. K. ELLIS From St Thomas's Hospital, London SE] SUMMARY In 19 normal subjects the pupillary reflex to light was studied over a range of stimulus intensities by infrared electronic pupillography and analysed by a computer technique. Increasing stimulus intensity was associated with an increase in direct light reflex amplitude and maximum rate of constriction and redilatation. Latency from stimulus to onset of response decreased with increas- ing stimulus intensity. The normal range for each of these parameters is given and the significance of these results in clinical pupillary assessment discussed. The technique of infrared pupillometry' has allowed PUPILLOMETRY the normal pupillary response to light to be studied in A Whittaker Series 1800 binocular infrared television detail. Lowenstein and Friedman2 have shown that pupillometer was used in this study. All recordings in response to light the pupil constricts after a latent were made in darkness with no correction for refrac- period and that the length of this latent period, the tive error. The eyes were illuminated from a low- copyright. amplitude of the response, and the speed of the intensity, invisible infrared source and observed by pupillary constriction are dependent on the stimulus means of a closed circuit television system sensitive to intensity employed. These findings have subse- infrared light. The pupils were displayed on television quently been confirmed.3" monitor screens providing instantaneous feedback of Borgmann6 gave 95% confidence limits in defining the quality of the pupil images.
    [Show full text]
  • Pupils and Near Vision
    PUPILS AND NEAR VISION Akilesh Gokul PhD Research Fellow Department of Ophthalmology Iris Anatomy Two muscles: • Radially oriented dilator (actually a myo-epithelium) - like the spokes of a wagon wheel • Sphincter/constrictor Pupillary Reflex • Size of pupil determined by balance between parasympathetic and sympathetic input • Parasympathetic constricts the pupil via sphincter muscle • Sympathetic dilates the pupil via dilator muscle • Response to light mediated by parasympathetic; • Increased innervation = pupil constriction • Decreased innervation = pupil dilation Parasympathetic Pathway 1. Three major divisions of neurons: • Afferent division 2. • Interneuron division • Efferent division Near response: • Convergence 3. • Accommodation • Pupillary constriction Pupil Light Parasympathetic – Afferent Pathway 1. • Retinal ganglion cells travel via the optic nerve leaving the optic tracts 2. before the LGB, and synapse in the pre-tectal nucleus. 3. Pupil Light Parasympathetic – Efferent Pathway 1. • Pre-tectal nucleus nerve fibres partially decussate to innervate both Edinger- 2. Westphal (EW) nuclei. • E-W nucleus to ipsilateral ciliary ganglion. Fibres travel via inferior division of III cranial nerve to ciliary ganglion via nerve to inferior oblique muscle. 3. • Ciliary ganglion via short ciliary nerves to innervate sphincter pupillae muscle. Near response: 1. Increased accommodation Pupil 2. Convergence 3. Pupillary constriction Sympathetic pathway • From hypothalamus uncrossed fibres 1. down brainstem to terminate in ciliospinal centre
    [Show full text]
  • Pupillary Light Reflex in Children with Autism Spectrum Disorders
    PUPILLARY LIGHT REFLEX IN CHILDREN WITH AUTISM SPECTRUM DISORDERS _______________________________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri‐Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _______________________________________________________ by CHATHURI DALUWATTE Dr. Gang Yao, Dissertation Supervisor MAY 2013 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled PUPILLARY LIGHT REFLEX IN CHILDREN WITH AUTISM SPECTRUM DISORDERS presented by Chathuri Daluwatte, a candidate for the degree of Doctor of Philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Gang Yao, Department of Biological Engineering Dr. Judith H. Miles, Thompson Center for Autism & Neurodevelopmental Disorders Dr. Shawn Christ, Department of Psychological Sciences, Thompson Center for Autism & Neurodevelopmental Disorders Dr. Shinghua Ding, Department of Biological Engineering Dr. John Viator, Department of Biological Engineering To Ammi… ACKNOWLEDGEMENTS I wish to express my heartiest gratitude to Dr. Gang Yao, who has served as my advisor during the past four and half years. The inspiration he has been setting was a major driving force throughout my research and I will forever be grateful to Dr. Yao for the challenging way he improved my logical thinking, scientific methodology and professionalism. My deep appreciation is expressed to Dr. Judith H. Miles, for her warmest encouragements, insights and all the guidance throughout the research. She has been a great inspiration for me. I am grateful to Dr. Shawn Christ and Dr. David Beversdorf for their valuable contributions which tremendously improved the quality of this research. I would also like to express my gratitude for Jill Akers and Nicole Takahashi for their amazing job in recruiting and coordinating such a large number of research participants.
    [Show full text]
  • MDMA Enhances Or Impairs Accuracy of Mental State Decoding Depending on Emotional Valence of the Stimuli
    Hysek and Liechti Effects of MDMA on the pupillary light reflex on its own and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin Cédric M. Hysek and Matthias E. Liechti* Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal Medicine, University Hospital and University of Basel, Switzerland Running title: MDMA and pupillary function *Corresponding author: Matthias E. Liechti, Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Hebelstrasse 2, CH-4031 Basel. Phone: +41 61 328 68 68; Fax: +41 61 265 45 60; E-mail: [email protected] 1 Hysek and Liechti Abstract Rationale: Pupillometry can be used to characterize autonomic drug effects. Objective: To determine the autonomic effects of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) on pupillary function, administered alone and after pretreatment with reboxetine, duloxetine, clonidine, carvedilol, and doxazosin. Methods: Infrared pupillometry was performed in five placebo-controlled randomized clinical studies. Each study included 16 healthy subjects (eight men, eight women) who received placebo-MDMA (125 mg), placebo-placebo, pretreatment-placebo, or pretreatment-MDMA using a crossover design. Results: MDMA produced mydriasis, reduced the response to light, prolonged the latency to the light reflex, and shortened the recovery time. The impaired reflex response was short-lasting and associated with subjective, cardiostimulant, and hyperthermic drug effects and returned to normal within 5-6 h after MDMA administration when plasma MDMA levels were still high. Mydriasis was associated with the changes in plasma MDMA concentration over time and longer-lasting. Both reboxetine and duloxetine interacted with the effects of MDMA on pupillary function. Duloxetine even prevented MDMA-induced impairments in the light reflex response despite having similar effects when administered alone.
    [Show full text]
  • THE PUPIL Alpha Omega Pupil the PUPIL Alpha Omega Pupil
    THE PUPIL Observation and Grading Alpha Omega Pupil JohnJohn J. J. Pulaski,Pulaski, O.D.,O.D., FCSOFCSO CollegeCollege ofof SyntonicSyntonic OptometryOptometry 101101 CourseCourse May 2020 Pulaski AO Pupil The Pupil And Syntonics How do you know if a person needs Syntonic Treatment? Pulaski AO Pupil The Pupil And Syntonics Three keys elements in Syntonic Clinical evaluationevaluation andand treatmenttreatment application.application. 1. The Pupil - AO 2.2. The The FieldField -- Kinetic Kinetic 3.3. The The PatientPatient HistoryHistory Pulaski AO Pupil Pulaski AO Pupil The Pupil One of the most sensitive measures of ANS activity. •• ANS/Brainstem ANS/Brainstem functionfunction •• “Eyes “Eyes areare thethe windowwindow toto thethe Soul”Soul” TheThe PupilsPupils areare thethe window.window. •• Portal Portal ofof EnergyEnergy ReceptionReception andand Projection.Projection. PortalPortal throughthrough whichwhich we interact with our world •• Non-verbal Non-verbal CommunicationCommunication andand strongstrong emotionalemotional indicatorindicator .. •• Reception Reception ofof “nutrition”“nutrition” - - LIGHT LIGHT Pulaski AO Pupil Pulaski AO Pupil The Pupil Neurological Pathways ParasympatheticParasympathetic -- Constriction Constriction •The•The PupillaryPupillary LightLight ReflexReflex (PLR)(PLR) •Influence•Influence onon IrisIris SphincterSphincter •Light-Inhibited•Light-Inhibited SympatheticSympathetic PathPath •Trigeminal•Trigeminal NerveNerve –– sensory sensory stimulationstimulation toto eye/iriseye/iris SympatheticSympathetic ––
    [Show full text]
  • Studying the Effect of Iris Mechanics on the Pupillary Light Reflex Using
    Eye Movements, Strabismus, Amblyopia, and Neuro-Ophthalmology Studying the Effect of Iris Mechanics on the Pupillary Light Reflex Using Brimonidine-Induced Anisocoria Yanjun Chen,1,2 and Randy H. Kardon1,3 1Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa 2Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 3Department of Veterans Affairs Hospital, Iowa City VA Center for Prevention and Treatment of Visual Loss, Iowa City, Iowa Correspondence: Yanjun Chen, 2828 PURPOSE. To study and correct for the limiting effect of iris mechanics on the amplitude of Marshall Court, Suite 200, Madison, light-evoked pupil contractions in order to derive a more clinically accurate assessment of WI 53705; [email protected]. afferent input to the visual system. Submitted: September 6, 2012 METHODS. Transient pupil responses were recorded to a series of 1-second red Ganzfeld light Accepted: January 2, 2013 stimuli with a stepwise increase in stimulus intensity using a binocular infrared computerized Citation: Chen Y, Kardon RH. Studying pupillometer. One eye of eight healthy subjects was treated with 0.2% brimonidine tartrate the effect of iris mechanics on the ophthalmic solution to induce pupil size reduction. The amount of pupil contraction as a pupillary light reflex using function of stimulus intensity was compared between the brimonidine-treated, miotic eye and brimonidine-induced anisocoria. the untreated eye. Invest Ophthalmol Vis Sci. 2013;54:2951–2958. DOI:10.1167/ RESULTS. Brimonidine treatment produced significant reduction in pupil size in healthy iovs.12-10916 subjects (mean reduction in pupil size: 1.78 6 0.35 mm, P < 0.05).
    [Show full text]
  • Neurological Pupil Index and Pupillary Light Reflex by Pupillometry
    Neurocrit Care https://doi.org/10.1007/s12028-019-00717-4 ORIGINAL WORK Neurological Pupil Index and Pupillary Light Refex by Pupillometry Predict Outcome Early After Cardiac Arrest Richard R. Riker1* , Mary E. Sawyer2, Victoria G. Fischman3, Teresa May1, Christine Lord1, Ashley Eldridge1 and David B. Seder1 © 2019 Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society Abstract Background: The absence of the pupillary light refex (PLR) 3 days after cardiac arrest predicts poor outcome, but quantitative PLR assessment with pupillometry early after recovery of spontaneous circulation (ROSC) and throughout targeted temperature management (TTM) has rarely been evaluated. Methods: Fifty-fve adult patients treated with TTM with available pupillometry data from the NeurOptics NPi-200 were studied. Discharge outcome was classifed good if the cerebral performance category score was 1–2, poor if 3–5. Pupil size, PLR percent constriction (%PLR), and constriction velocity (CV) were determined at TTM start and 6 ( 2)-h post-ROSC (“early”), and throughout TTM using data from the worst eye at each assessment. The Neurologi- cal± Pupil index (NPi) was also determined at each pupil assessment; the NPi is scored from 0 (nonreactive) to 5 (brisk) with values < 3 considered sluggish or abnormal. Prognostic performance to predict poor outcome was assessed with receiver operator characteristic curves. Results: All nine patients with 1 nonreactive pupil (NPi 0) within 6 ( 2) h after ROSC died, and 12/14 (86%) with sluggish pupils (0 < NPi < 3) had≥ poor outcomes. 15/29 (52%)= patients with± normal pupil reactivity (NPi 3) had poor outcomes, four survived with cerebral performance category 3, three died of cardiac causes, and eight≥ died of neu- rologic causes.
    [Show full text]
  • Pupillary Responses in Amblyopia Br J Ophthalmol: First Published As 10.1136/Bjo.74.11.676 on 1 November 1990
    676 BritishlournalofOphthalmology, 1990,74,676-680 Pupillary responses in amblyopia Br J Ophthalmol: first published as 10.1136/bjo.74.11.676 on 1 November 1990. Downloaded from Alison Y Firth Abstract light was then alternatively switched from one Relative afferent pupillary defects (RAPD) eye to the other, giving a period of stimulation of were detected in 32*3% ofpatients with ambly- 1 to 2 seconds, and the initial pupillary con- opia by a modification ofthe swinging flashlight striction was observed. The light was then left in test and the synoptophore. After consideration front ofeach eye for a count of3 and the pupillary ofvarious clinical investigations the significant escape noted. factors identified in patients showing a RAPD If a pupillary defect was observed, a neutral were: anisometropia, early age of onset where density filter was placed in the arm of the strabismus was present, level of visual acuity synoptophore in front of the eye without the following treatment, longer period ofocclusion defect. In practice it was not found possible to therapy. These points bear similarities to the quantify the defect to within 0-1 log unit as has results of pattern electroretinograms (PERG) previously been reported,5 but merely to confirm in amblyopes, and the possibility of the its presence. Where no defect was initially causative defect being at ganglion cell level is apparent, a 0-3 log unit NDF was placed in discussed. The effect of occlusion treatment either arm in turn to produce a difference in cannot be predicted from the presence or response. In some cases this revealed a subtle absence of a RAPD.
    [Show full text]
  • Scamper Through America, Or Fifteen Thousand Miles of Ocean and Continent in Sixty Days
    Library of Congress Scamper through America, or fifteen thousand miles of ocean and continent in sixty days A SCAMPER THROUGH AMERICA. PRINTED BY T. H. NORTH, NORTHERN EVENING MAIL OFFICE, WEST HARTLEPOOL. A SCAMPER THROUGH AMERICA OR, FIFTEEN THOUSAND MILES OF OCEAN AND CONTINEN1T IN SIXTY DAYS. By T. S. HUDSON. THE LIBRARY OF CONGRESS SECOND THOUSAND GRIFFITH & FARRAN, Successors to Newbury and Harris, WEST CORNER ST. PAUL'S CHURCHYARD, LONDON. E. P. DUTTON & Co., NEW YORK. 1882. E168 .H89 4888 .01 The Rights of Translation and Reproduction are Reserved. Dedication. TO MY OFTENTIMES Co-voyageur H. BYRON REED, ESQ., THIS RECORD OF A PLEASANT HOLIDAY IS DEDICATED WITH CORDIAL ASSURANCE THAT HIS GENIAL Scamper through America, or fifteen thousand miles of ocean and continent in sixty days http://www.loc.gov/resource/lhbtn.08552 Library of Congress COMPANIONSHIP AND READY RESOURCE WERE EVER BROUGHT TO MIND WHEN ON BROAD PRAIRIE, LOFTY MOUNTAIN, AND BARREN DESERT; WHILE BREAKING FAST AMID THE ETERNAL SNOWS, AND SUPPING IN THE LAND OF PERENNIAL SUMMER; BY HIS AFFECTIONATE FRIEND, THE AUTHOR. INTRODUCTION. A description of the voyages to and from, and a tour in, America, may appear to be the telling of a more than thrice-told tale; but, with all previous knowledge acquired by reading, one finds upon coming to have personal experience of such a journey that there is enough to fill volumes with facts and impressions that other, and more literary, travellers have not thought it worth while to narrate. CONTENTS. Dedication v Introduction vii Day
    [Show full text]