Aviation Maintenance Technicians Prepare Students to Enter the World of Aviation Where the Student Will

Total Page:16

File Type:pdf, Size:1020Kb

Aviation Maintenance Technicians Prepare Students to Enter the World of Aviation Where the Student Will PREPARING STUDENTS WITH THE SKILLS TO BE AVIATION SUCCESSFUL IN THE MAINTENANCE MODERN WORKFORCE.... TECHNICIAN SCHOOLS CTECS’ schools for aviation maintenance technicians prepare students to enter the world of aviation where the student will: • Study in a facility equipped for practical hands-on training. LOCATIONS • Be exposed to a variety of theory and shop classes: metalwork, woodwork, welding, hydraulics, electrical, electronics, painting and engine AMTS #EM9T117R overhaul. 500 LINDBERGH DRIVE • Learn to interpret FAA regulations and HARTFORD, CT manufacturer’s technical specifications. CTAERO.CTTECH.ORG AMTS #TF5T221N GREAT MEADOW ROAD STRATFORD, CT SSAMT.CTTECH.ORG ... LEARN MORE TWO LOCATIONS FOR MORE INFORMATION HARTFORD, CT CONTACT: 860-584-8433 STRATFORD, CT CTECS is committed to a policy of nondiscrimination. CTECS does not discriminate on the basis of race, color, national origin, sex, age, disability, religion, gender identity, sexual orientation, or any other reason prohibited by law in any employment practice or educational program or activity, including admissions and vocational opportunities. The persons designated to coordinate compliance with this policy are: Levy Gillespie, State Department of Education, 450 Columbus Ave, Hartford CT 06103, 860-807-2071 or Christine Spak, CTECS, 39 Woodland St, Hartford, CT 06105, 860-807-2212. OUR TUITION Tuition is $7,200* and is payable in three PROGRAM segments, on or before the start of each block of instruction. A $50 registration fee applies. The two-year Aviation Maintenance Technician CTECS Adult Education programs offer financial program provides training that enables the aid through the Title IV/Pell grants to eligible student to develop operative skills that meet students. Our adult education programs do the license requirements of the Federal Aviation not participate in federal loans. Students may Administration (FAA). Both locations are FAA Part seek private loans from a financial institution of 147 approved schools. CURRICULUM their choice. The school is also approved for the EACH STUDENT LEARNS TO training of eligible veterans under federal laws. INTERPRET FAA REGULATIONS AND * Tuition amount is subject to change at anytime. MANUFACTURER’S TECHNICAL SUBJECTS SPECIFICATIONS. General Block ... DEVELOP HANDS-ON AND THEORETICAL • Basic Electricity • Basic Physics SKILLS WHILE WORKING WITH REAL Upon successful completion of the General, • Aircraft Drawings • Cleaning & Corrosion AIRCRAFT IN A REAL-WORLD ENVIRONMENT. Airframe and Power Plant curriculum, students • Aircraft Weight & Balance Control are eligible to take the FAA examinations to • Fluid Lines & Fittings • Maintenance Forms certify as a Airframe and Power Plant Aviation • Materials & Processes & Records Maintenance Technician. • Mathematics • Maintenance Publications • Ground Operation & • Mechanic Privileges CAREER Graduates from this program may obtain jobs as Servicing & Limitations airport mechanics and technicians for aircraft and Airframe Block power plant companies. ... OPPORTUNITIES Aviation maintenance technician is • Wood Structures • Cabin Atmosphere Control a career in demand according to the A typical school day starts at 7:40 a.m. and ends • Aircraft Covering • Aircraft Instrument at 2:30 p.m. The program is split into three blocks, • Aircraft Finishes • Communication Connecticut Department of Labor, General, Airframe and Power Plant. Each block • Sheet Metal & Non-metallic & Navigation with salary ranges between $52,000 - will cover a variety of subjects within. Structures • Aircraft Fuel Systems $104,000. • Welding • Aircraft Electrical Systems Please check the school websites for up-to-date • Assembling & Rigging • Position & Warning Some of our graduate career paths enrollment information and dates. • Airframe Inspections Systems include: commercial or private • Aircraft Landing Gear • Ice & Rain Control airline maintenance, inspection • Hydraulic & Pneumatic • Fire Protection Power authorized mechanic, aircraft engine manufacturing, wind turbine technician, avionics Power Plant Block ... technician, vintage aircraft restoration, airframe • Reciprocating Engines • Engine Fuel Systems and powerplant technician, sales at manufacturer • Turbine Engines • Induction & Engine facilities, rotocraft maintenance, cargo or passenger • Engine Inspection Airflow Systems fleet management, record keeping and compliance, • Engine Instrument • Engine Cooling Systems unmanned aircraft systems. • Engine Fire Protection • Engine Exhaust • Engine Electrical Systems & Reverser Systems • Lubrication Systems • Propellers CT Aero Tech School for Aviation Maintenance Technicians and • Ignition & Starting Systems • Unducted Fans Stratford School for Aviation Maintenance Technicians are • Fuel Metering Systems • Auxiliary Powerplants extension campuses of Bristol Technical Education Center..
Recommended publications
  • Easy Access Rules for Auxiliary Power Units (CS-APU)
    APU - CS Easy Access Rules for Auxiliary Power Units (CS-APU) EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published February 20181 1 The published date represents the date when the consolidated version of the document was generated. Powered by EASA eRules Page 2 of 37| Feb 2018 Easy Access Rules for Auxiliary Power Units Disclaimer (CS-APU) DISCLAIMER This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the certification specifications with the related acceptable means of compliance. However, this is not an official publication and EASA accepts no liability for damage of any kind resulting from the risks inherent in the use of this document.
    [Show full text]
  • Exec Summary (PDF)
    BEECHCRAFT® AT-6 The Future of Light Attack is Here. Capable. Affordable. Sustainable. Interoperable. One platform with multiple missions: initial pilot training, weapons training, operational NetCentric ISR and Light Attack capabilities for irregular warfare. The Beechcraft AT-6 is a multi-role, multi-mission aircraft system designed to meet a wide spectrum of warfighter needs: • Based on the proven Beechcraft USAF T-6A and USN T-6B • Designed to accommodate 95% of the aircrew population; widest range in its class • Lockheed Martin plug-and-play mission system architecture adapted from A-10C • Sensor suite adapted from the MC-12W • Flexible, reconfigurable hardpoints with six external store stations Unparalleled attributes with • Long persistence with two aircrew and weapons; up to 1,485 nm self-deployment range a wide range of options. • Extensive variety of weapons including general purpose, laser guided and inertially-aided munitions AIRFRAME AND POWERPLANT • 1,600 shaft horsepower engine • The only fixed-wing aircraft to fire laser guided rockets • ISR suite and six external store hardpoints • Light armor COMBAT MISSION SYSTEMS • Mission systems by Lockheed Martin • NVIS cockpit • Helmet-mounted cueing system • Infrared missile warning and countermeasures COMMUNICATIONS SUITE • Secure voice and data • Rover-compatible full motion video • SADL/Link-16 compatible • SATCOM ISR SUITE • MX-15Di WEAPONS INTEGRATION • 17 60 capable stores management system • .50 Cal Gun • 20mm Gun • 250/500 lb. laser guided GPS or GP bombs • Laser guided missiles • Laser guided rockets • Small 1760 weapons Learn more. Call +1.316.676.0800 or visit Beechcraft.com 13LSAT6HW Specifications and performance are subject to change without notice.
    [Show full text]
  • Air Force Airframe and Powerplant (A&P) Certification Program
    Air Force Airframe and Powerplant (A&P) Certification Program Introduction: Most military aircraft maintenance technicians are eligible to pursue the Federal Aviation Administration (FAA) Airframe & Powerplant (A&P) certification based on documented evidence of 30 months practical aircraft maintenance experience in airframe and powerplant systems per Title 14, Code of Federal Regulations (CFR), Part 65- Certification: Airmen Other Than Flight Crew Members; Subpart D-Mechanics. Air Force education, training and experience and FAA eligibility requirements per Title 14, CFR Part 65.77. This FAA-approved program is a voluntary program which benefits the technician and the Air Force, with consideration to professional development, recruitment, retention, and transition. Completing this program, outlined in the program Qualification Training Package (QTP), will assist technicians in meeting FAA eligibility requirements and being better-prepared for the FAA exams. Three-Tier Program: The program is a three-tier training and experience program. These elements are required for program completion and are important for individual development, knowledge assessment, meeting FAA certification eligibility, and preparation for the FAA exams: Three Online Courses (02AF1-General, 02AF2-Airframe, & 02AF3-Powerplant). On the Job Training (OJT) Qualification Training Package(QTP). Documented evidence of 30 months practical experience in airframe and powerplant systems. Program Eligibility: Active duty, guard and reserve technicians who possess at least a 5-skill level in one of the following aircraft maintenance AFSCs are eligible to enroll: 2A0X1, 2A090, 2A2X1, 2A2X2, 2A2X3, 2A3X3, 2A3X4, 2A3X5, 2A3X7, 2A3X8, 2A390, 2A300, 2A5X1, 2A5X2, 2A5X3, 2A5X4, 2A590, 2A500, 2A6X1, 2A6X3, 2A6X4, 2A6X5, 2A6X6, 2A690, 2A691, 2A600 (except AGE), 2A7X1, 2A7X2, 2A7X3, 2A7X5, 2A790, 2A8X1, 2A8X2, 2A9X1, 2A9X2, and 2A9X3.
    [Show full text]
  • Fly-By-Wire - Wikipedia, the Free Encyclopedia 11-8-20 下午5:33 Fly-By-Wire from Wikipedia, the Free Encyclopedia
    Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Fly-by-wire From Wikipedia, the free encyclopedia Fly-by-wire (FBW) is a system that replaces the Fly-by-wire conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires (hence the fly-by-wire term), and flight control computers determine how to move the actuators at each control surface to provide the ordered response. The fly-by-wire system also allows automatic signals sent by the aircraft's computers to perform functions without the pilot's input, as in systems that automatically help stabilize the aircraft.[1] Contents Green colored flight control wiring of a test aircraft 1 Development 1.1 Basic operation 1.1.1 Command 1.1.2 Automatic Stability Systems 1.2 Safety and redundancy 1.3 Weight saving 1.4 History 2 Analog systems 3 Digital systems 3.1 Applications 3.2 Legislation 3.3 Redundancy 3.4 Airbus/Boeing 4 Engine digital control 5 Further developments 5.1 Fly-by-optics 5.2 Power-by-wire 5.3 Fly-by-wireless 5.4 Intelligent Flight Control System 6 See also 7 References 8 External links Development http://en.wikipedia.org/wiki/Fly-by-wire Page 1 of 9 Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Mechanical and hydro-mechanical flight control systems are relatively heavy and require careful routing of flight control cables through the aircraft by systems of pulleys, cranks, tension cables and hydraulic pipes.
    [Show full text]
  • Novel Airframe Design for the Dual-Aircraft Atmospheric Platform Flight Concept
    Dissertations and Theses 12-2012 Novel Airframe Design for the Dual-Aircraft Atmospheric Platform Flight Concept Eric Michael McKee Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerodynamics and Fluid Mechanics Commons, and the Mechanical Engineering Commons Scholarly Commons Citation McKee, Eric Michael, "Novel Airframe Design for the Dual-Aircraft Atmospheric Platform Flight Concept" (2012). Dissertations and Theses. 104. https://commons.erau.edu/edt/104 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. NOVEL AIRFRAME DESIGN FOR THE DUAL-AIRCRAFT ATMOSPHERIC PLATFORM FLIGHT CONCEPT by Eric Michael McKee A Thesis Submitted to the College of Engineering Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida December 2012 NOVEL AIRFRAME DESIGN FOR THE DUAL-AIRCRAFT ATMOSPHERIC PLATFORM FLIGHT CONCEPT by Eric Michael McKee This thesis was prepared under the direction of the candidate’s Thesis Committee Chair, Dr. William A. Engblom, Professor, Daytona Beach Campus, and Thesis Committee Members Snorri Gudmundsson, Professor, Daytona Beach Campus, and Glenn P. Greiner, Professor, Daytona Beach Campus, and has been approved by the Thesis Committee. It was submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Thesis Review Committee: ____________________________________ William A.
    [Show full text]
  • For Improved Airplane Performance
    BLENDED WINGLETS FORFOR IMPROVEDIMPROVED AIRPLANEAIRPLANE PERFORMANCEPERFORMANCE New blended winglets on the Boeing Business Jet and the 737-800 commercial airplane offer operational benefits to customers. Besides giving the airplanes a distinctive appear- ance, the winglets create more efficient flight characteristics in cruise and during takeoff and climbout, which translate into additional range with the same fuel and payload. ROBERT FAYE ROBERT LAPRETE MICHAEL WINTER TECHNICAL DIRECTOR ASSOCIATE TECHNICAL FELLOW PRINCIPAL ENGINEER BOEING BUSINESS JETS AERODYNAMICS TECHNOLOGY STATIC AEROELASTIC LOADS BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES BOEING COMMERCIAL AIRPLANES TECHNOLOGY/PRODUCT DEVELOPMENT AERO 16 vertical height of the lifting system (i.e., increasing the length of the TE that sheds the vortices). The winglets increase the spread of the vortices along the TE, creating more lift at the wingtips (figs. 2 and 3). The result is a reduction in induced drag (fig. 4). The maximum benefit of the induced drag reduction depends on the spanwise lift distribution on the wing. Theoretically, for a planar wing, induced drag is opti- mized with an elliptical lift distribution that minimizes the change in vorticity along the span. For the same amount of structural material, nonplanar wingtip 737-800 TECHNICAL CHARACTERISTICS devices can achieve a similar induced drag benefit as a planar span increase; however, new Boeing airplane designs Passengers focus on minimizing induced drag with 3-class configuration Not applicable The 737-800 commercial airplane wingspan influenced by additional 2-class configuration 162 is one of four 737s introduced BBJ TECHNICAL CHARACTERISTICS The Boeing Business Jet design benefits. 1-class configuration 189 in the late 1990s for short- to (BBJ) was launched in 1996 On derivative airplanes, performance Cargo 1,555 ft3 (44 m3) medium-range commercial air- Passengers Not applicable as a joint venture between can be improved by using wingtip Boeing and General Electric.
    [Show full text]
  • Combined Airframe and Subsystems Evolvability Exploration During Conceptual Design
    COMBINED AIRFRAME AND SUBSYSTEMS EVOLVABILITY EXPLORATION DURING CONCEPTUAL DESIGN Albert S.J. van Heerden, Marin D. Guenov, Arturo Molina-Cristóbal, Atif Riaz, Yogesh Bile Cranfield University, Cranfield, MK43 0AL, United Kingdom Keywords: Evolvability, commonality assessment, airframe subsystems, conceptual design. Abstract Several systematic methods for designing for and exploring evolvability during conceptual de- Evolvable designs allow development costs of fu- sign have emerged over the past few years, such ture products to be lowered significantly. This as in Lim [2]. However, these usually require work contributes to aircraft conceptual design ‘change rules’ (or commonality) to be specified space exploration by enabling simultaneous com- a priory and either focus exclusively on the air- bined exploration of both airframe and subsystem frame (i.e. the wing, fuselage, empennage, and evolvability. This is made possible by combin- undercarriage) or the subsystems (such as the hy- ing existing subsystems-architecting and design draulic, pneumatic, and electrical power systems, space exploration techniques with novel com- the environmental control system, and so forth). monality assessment algorithms. The proposed In this paper, a framework is proposed that techniques are demonstrated via a simple single- promotes evolvability exploration of the com- aisle passenger aircraft evolvability study. bined airframe-subsystems unit. Particularly, it enables searching for commonality across the air- 1 Introduction frames and subsystems of pairs of input aircraft designs, rather than requiring this commonality Evolvability is a vital consideration during the to be ‘pre-specified’. An important contribution design of a new aircraft. It refers to the extent is that the framework allows input airframes and to which components, subsystems, and associ- subsystems pairs that have dissimilar architec- ated processes (e.g.
    [Show full text]
  • Fly-By-Wire: Getting Started on the Right Foot and Staying There…
    Fly-by-Wire: Getting started on the right foot and staying there… Imagine yourself getting into the cockpit of an aircraft, finishing your preflight checks, and taxiing out to the runway ready for takeoff. You begin the takeoff roll and start to rotate. As you lift off, you discover your side stick controller is not responding correctly to your commands. Panic sets in, and you feel that you’ve lost total control of the aircraft. Thanks to quick action from your second in command, he takes over and stabilizes the aircraft so that you both can plan to return to the airport under reversionary mode. This situation could have been a catastrophe. This happened in August of 2001. A Lufthansa Airbus A320 came within less than two feet and a few seconds of crashing during takeoff on a planned flight from Frankfurt to Paris. Preliminary reports indicated that maintenance was performed on the captain’s sidestick controller immediately before the incident. This had inadvertently created a situation in which control inputs were reversed. The case reveals that at least two "filters," or safety defenses, were breached, leading to a near-crash shortly after rotation at Frankfurt’s Runway 18. Quick action by the first officer prevented a catastrophe. Lufthansa Technik personnel found a damaged pin on one segment of the four connector segments (with 140 pins on each) at the "rack side," as it were, of the avionics mount. This incident prompted an article to be published in the 2003 November-December issue of the Flight Safety Mechanics Bulletin. The report detailed all that transpired during the maintenance and subsequent release of the aircraft.
    [Show full text]
  • Overview of the Aviation Maintenance Profession
    Subject: OVERVIEW OF THE AVIATION Date: 11/09/01 AC No: 65-30A MAINTENANCE PROFESSION Initiated By: AFS-305 Change: 1. PURPOSE. This advisory circular (AC) was prepared by the Federal Aviation Administration (FAA) Flight Standards Service to provide information to prospective airframe and powerplant mechanics and other persons interested in the certification of mechanics. It contains information about the certificate requirements, application procedures, and the mechanic written, oral, and practical tests. 2. CANCELLATION. AC 65-30, Overview of the Aviation Maintenance Profession, dated June 27, 2000, and AC 65-11B, Airframe and Power Plant Mechanics Certification Information, revised in 1987, are canceled. 3. RELATED 14 CFR REFERENCES. Title 14 of the Code of Federal Regulations (14 CFR). a. Part 65, Certification: Airmen other than Flight Crewmembers. b. Part 145, Repair Stations. c. Part 147, Aviation Maintenance Technician Schools. d. Part 187, Fees. 4. RELATED READING MATERIAL. a. To obtain a directory of names and school locations that are FAA certified under the provision of 14 CFR part 147, write to: U.S. Department of Transportation; Subsequent Distribution Office; Ardmore East Business Center; 3341 Q. 75th Ave.; Landover, MD 20785. Request AC 147-2EE, Directory of FAA Certificated Aviation Maintenance Technician Schools. This AC is a free publication. b. For educational assistance, contact the Department of Education, Office of Student Financial Assistance, 400 Maryland Ave, S.W., Washington D.C. 20202. AC 65-30A 11/09/01 c. A comprehensive list of all airlines, repair stations, manufacturers, and fixed base operators (FBO) can be found in the World Aviation Directory at the reference section of your local library.
    [Show full text]
  • Risk Management in Fly-By-Wire Systems
    NASA Technical Memorandum 104757 Risk Management in Fly-by-Wire Systems Karyn T. Knoll March 1993 NASA r (NASA-TM-104757) RISK MANAGEMENT N93-22703 IN FLY-BY-WIRE SYSTEMS (NASA) 23 p Unclas G3/17 0156304 NASA Technical Memorandum 104757 Risk Management in Fly-by-Wire Systems KarynT. Knoll Lyndon B. Johnson Space Center Houston, Texas March 1993 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas CONTENTS Section Page Abstract 1 Introduction . 1 Description of Fly-by-Wire Systems 1 Risks Inherent in Fly-by-Wire Systems 2 Risk Management in the Fly-by-Wire Industry 5 Configuration Control '. 5 Verification and Validation 6 Tools 7 Backup Flight Control Systems 9 Risk Management and the Space Shuttle Program 12 References 17 TABLE Table Page 1 Right Control System Summary 15 PRECEDING PAGE BLANK NOT FILMED Abstract A general description of various types of fly-by-wire systems is provided. The risks inherent in digital flight control systems, like the Space Shuttle, are identified. The results of a literature survey examining risk management methods in use throughout the aerospace industry are presented. The applicability of these methods to the Space Shuttle program is discussed. Introduction Since the development of the Space Shuttle, many other aerospace vehicles have incorporated fly-by-wire technologies in their flight control systems in an effort to improve performance, efficiency, and reliability. Because the flight control system is a critical component of any aerospace vehicle, it is especially important that the risks inherent in using fly-by-wire technologies are thoroughly understood and carefully managed.
    [Show full text]
  • Airframe & Aircraft Components By
    Airframe & Aircraft Components (According to the Syllabus Prescribed by Director General of Civil Aviation, Govt. of India) FIRST EDITION AIRFRAME & AIRCRAFT COMPONENTS Prepared by L.N.V.M. Society Group of Institutes * School of Aeronautics ( Approved by Director General of Civil Aviation, Govt. of India) * School of Engineering & Technology ( Approved by Director General of Civil Aviation, Govt. of India) Compiled by Sheo Singh Published By L.N.V.M. Society Group of Institutes H-974, Palam Extn., Part-1, Sec-7, Dwarka, New Delhi-77 Published By L.N.V.M. Society Group of Institutes, Palam Extn., Part-1, Sec.-7, Dwarka, New Delhi - 77 First Edition 2007 All rights reserved; no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publishers. Type Setting Sushma Cover Designed by Abdul Aziz Printed at Graphic Syndicate, Naraina, New Delhi. Dedicated To Shri Laxmi Narain Verma [ Who Lived An Honest Life ] Preface This book is intended as an introductory text on “Airframe and Aircraft Components” which is an essential part of General Engineering and Maintenance Practices of DGCA license examination, BAMEL, Paper-II. It is intended that this book will provide basic information on principle, fundamentals and technical procedures in the subject matter areas relating to the “Airframe and Aircraft Components”. The written text is supplemented with large number of suitable diagrams for reinforcing the key aspects. I acknowledge with thanks the contribution of the faculty and staff of L.N.V.M.
    [Show full text]
  • Aircraft Technology Roadmap to 2050 | IATA
    Aircraft Technology Roadmap to 2050 NOTICE DISCLAIMER. The information contained in this publication is subject to constant review in the light of changing government requirements and regulations. No subscriber or other reader should act on the basis of any such information without referring to applicable laws and regulations and/or without taking appropriate professional advice. Although every effort has been made to ensure accuracy, the International Air Transport Association shall not be held responsible for any loss or damage caused by errors, omissions, misprints or misinterpretation of the contents hereof. Furthermore, the International Air Transport Association expressly disclaims any and all liability to any person or entity, whether a purchaser of this publication or not, in respect of anything done or omitted, and the consequences of anything done or omitted, by any such person or entity in reliance on the contents of this publication. © International Air Transport Association. All Rights Reserved. No part of this publication may be reproduced, recast, reformatted or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without the prior written permission from: Senior Vice President Member & External Relations International Air Transport Association 33, Route de l’Aéroport 1215 Geneva 15 Airport Switzerland Table of Contents Table of Contents ..............................................................................................................................................................................................................
    [Show full text]