Respiratory Tract and Mediastinum 2
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
General Pathomorpholog.Pdf
Ukrаiniаn Medicаl Stomаtologicаl Аcаdemy THE DEPАRTАMENT OF PАTHOLOGICАL АNАTOMY WITH SECTIONSL COURSE MАNUАL for the foreign students GENERАL PАTHOMORPHOLOGY Poltаvа-2020 УДК:616-091(075.8) ББК:52.5я73 COMPILERS: PROFESSOR I. STАRCHENKO ASSOCIATIVE PROFESSOR O. PRYLUTSKYI АSSISTАNT A. ZADVORNOVA ASSISTANT D. NIKOLENKO Рекомендовано Вченою радою Української медичної стоматологічної академії як навчальний посібник для іноземних студентів – здобувачів вищої освіти ступеня магістра, які навчаються за спеціальністю 221 «Стоматологія» у закладах вищої освіти МОЗ України (протокол №8 від 11.03.2020р) Reviewers Romanuk A. - MD, Professor, Head of the Department of Pathological Anatomy, Sumy State University. Sitnikova V. - MD, Professor of Department of Normal and Pathological Clinical Anatomy Odessa National Medical University. Yeroshenko G. - MD, Professor, Department of Histology, Cytology and Embryology Ukrainian Medical Dental Academy. A teaching manual in English, developed at the Department of Pathological Anatomy with a section course UMSA by Professor Starchenko II, Associative Professor Prylutsky OK, Assistant Zadvornova AP, Assistant Nikolenko DE. The manual presents the content and basic questions of the topic, practical skills in sufficient volume for each class to be mastered by students, algorithms for describing macro- and micropreparations, situational tasks. The formulation of tests, their number and variable level of difficulty, sufficient volume for each topic allows to recommend them as preparation for students to take the licensed integrated exam "STEP-1". 2 Contents p. 1 Introduction to pathomorphology. Subject matter and tasks of 5 pathomorphology. Main stages of development of pathomorphology. Methods of pathanatomical diagnostics. Methods of pathomorphological research. 2 Morphological changes of cells as response to stressor and toxic damage 8 (parenchimatouse / intracellular dystrophies). -
Of the Pediatric Mediastinum
MRI of the Pediatric Mediastinum Dianna M. E. Bardo, MD Director of Body MR & Co-Director of the 3D Innovation Lab Disclosures Consultant & Speakers Bureau – honoraria Koninklijke Philips Healthcare N V Author – royalties Thieme Publishing Springer Publishing Mediastinum - Anatomy Superior Mediastinum thoracic inlet to thoracic plane thoracic plane to diaphragm Inferior Mediastinum lateral – pleural surface anterior – sternum posterior – vertebral bodies Mediastinum - Anatomy Anterior T4 Mediastinum pericardium to sternum Middle Mediastinum pericardial sac Posterior Mediastinum vertebral bodies to pericardium lateral – pleural surface superior – thoracic inlet inferior - diaphragm Mediastinum – MR Challenges Motion Cardiac ECG – gating/triggering Breathing Respiratory navigation Artifacts Intubation – LMA Surgical / Interventional materials Mediastinum – MR Sequences ECG gated/triggered sequences SSFP – black blood SE – IR – GRE Non- ECG gated/triggered sequences mDIXON (W, F, IP, OP), eTHRIVE, turbo SE, STIR, DWI Respiratory – triggered, radially acquired T2W MultiVane, BLADE, PROPELLER Mediastinum – MR Sequences MRA / MRV REACT – non Gd enhanced Gd enhanced sequences THRIVE, mDIXON, mDIXON XD Mediastinum – Contents Superior Mediastinum PVT Left BATTLE: Phrenic nerve Vagus nerve Structures at the level of the sternal angle Thoracic duct Left recurrent laryngeal nerve (not the right) CLAPTRAP Brachiocephalic veins Cardiac plexus Aortic arch (and its 3 branches) Ligamentum arteriosum Thymus Aortic arch (inner concavity) Trachea Pulmonary -
Clinical Case
Annals of Oncology 9: 95-100. 1998. © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Clinical case Management of an isolated thymic mass after primary therapy for lymphoma S. Anchisi, R. Abele, M. Guetty-Alberto & P. Alberto Division of Oncology, Department of Medicine, University Hospital, Geneva, Switzerland Key words: CT scan, galliumscintigraphy, Hodgkin's disease, lymphoma, residual mass, thymus hyperplasia Introduction pose tissue constituting less than 40% of the total mass. The patient is still in CR 51 months after the end of The appearance of an anterior mediastinal mass during treatment. the follow-up of patients successfully treated for lym- phoma is worrisome, and may suggest treatment failure. Case 2 However, benign 'rebound' thymic hyperplasia (TH), a well documented phenomenon in children [1-3] and in A 26-year-old woman presented with a stage IVB young adults treated for malignant testicular teratoma nodular sclerosing HD, with liver and spleen infiltration [4], is an important differential diagnosis even in the and a bulky mediastinum. adult population [5]. Magnetic resonance imaging (MRI) disclosed a dif- fuse infiltration of the thoracic and lumbar vertebral bodies. The result of a bone-marrow biopsy was normal. Case reports Five courses of VEMP chemotherapy (vincristine, eto- poside, mitoxantrone, prednisone) produced a partial Between July 1990 and December 1994, we observed response greater than 75%. The treatment was intensi- two cases of TH among 58 adults treated consecutively fied with a BEAM chemotherapy (carmustine, etoposide, at our institution. Thirty of the 58 had de novo Hodgkin's cytosine arabinoside, melphalan), followed by an autol- disease (HD) and 28 had aggressive non-Hodgkin's ogous bone marrow transplant (BMT). -
Preventing Thymus Involution in K5.Cyclin D1 Transgenic Mice Sustains the Naïve T Cell Compartment with Age
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 PREVENTING THYMUS INVOLUTION IN K5.CYCLIN D1 TRANSGENIC MICE SUSTAINS THE NAÏVE T CELL COMPARTMENT WITH AGE Michelle L. Bolner Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cell Biology Commons, Immunology and Infectious Disease Commons, Molecular Biology Commons, and the Molecular Genetics Commons Recommended Citation Bolner, Michelle L., "PREVENTING THYMUS INVOLUTION IN K5.CYCLIN D1 TRANSGENIC MICE SUSTAINS THE NAÏVE T CELL COMPARTMENT WITH AGE" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 636. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/636 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. PREVENTING THYMUS INVOLUTION IN K5.CYCLIN D1 TRANSGENIC MICE SUSTAINS THE NAÏVE T CELL COMPARTMENT WITH AGE BY Michelle Lynn Bolner, Ph.D. Candidate APPROVED: _____________________________________ Ellen R. Richie, Ph.D., Supervisory Professor _____________________________________ Shawn B. Bratton, Ph.D. _____________________________________ David G. Johnson, Ph.D. -
Rebound Thymic Hyperplasia After Chemotherapy in Children
View metadata, citation and similar papers at core.ac.uk brought to you by CORE + MODEL provided by Elsevier - Publisher Connector Pediatrics and Neonatology (2016) xx,1e7 Available online at www.sciencedirect.com ScienceDirect journal homepage: http://www.pediatr-neonatol.com ORIGINAL ARTICLE Rebound Thymic Hyperplasia after Chemotherapy in Children with Lymphoma Chih-Ho Chen a, Chih-Chen Hsiao a, Yu-Chieh Chen a, Sheung-Fat Ko b, Shu-Hua Huang c, Shun-Chen Huang d, Kai-Sheng Hsieh a, Jiunn-Ming Sheen a,* a Department of Pediatrics, Chang Gung Memorial HospitaldKaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan b Department of Radiology, Chang Gung Memorial HospitaldKaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan c Department of Nuclear Medicine, Chang Gung Memorial HospitaldKaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan d Department of Pathology, Chang Gung Memorial HospitaldKaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan Received Sep 24, 2015; received in revised form Nov 30, 2015; accepted Feb 5, 2016 Available online --- Key Words Background: Development of mediastinal masses after completion of chemotherapy in pediat- lymphoma; ric patients with malignant lymphoma is worrisome and challenging to clinicians. prognosis; Methods: We performed a retrospective review of 67 patients with lymphoma treated at our rebound thymic hospital from January 1, 2001 to June 1, 2013. Patients who received at least two chest hyperplasia; computed tomography (CT) examinations after complete remission (CR) was achieved were recurrence further analyzed. Gallium-67 scans and positron emission tomography (PET) were recorded and compared between these patients. -
Normative Values of Thymus in Healthy Children; Stiffness by Shear Wave Elastography
Diagn Interv Radiol 2020; 26:147–152 PEDIATRIC RADIOLOGY © Turkish Society of Radiology 2020 ORIGINAL ARTICLE Normative values of thymus in healthy children; stiffness by shear wave elastography Zuhal Bayramoğlu PURPOSE Mehmet Öztürk Thymus grows after birth, reaches maximal size after the first few years and involutes by puber- Emine Çalışkan ty. Because of the postnatal developmental and involutional duration, we aimed to investigate normal stiffness values of mediastinal thymus by shear wave elastography (SWE) in different age Hakan Ayyıldız groups of children and discuss imaging findings of thymus. İbrahim Adaletli METHODS We prospectively examined 146 children (90 girls, 56 boys) who underwent a thyroid or neck ultrasound examination. All subjects underwent ultrasound and SWE evaluation of mediastinal thymus by parasternal and suprasternal approach. We grouped the subjects based on age as 0 to 2 months, >2 to 6 months, >6 months to 2 years, >2 to 5 years, >5 to 8 years, and greater than 8 years old. We investigated differences of mean shear wave elasticity (kPa) and shear wave veloc- ity (m/s) values among age groups and the association of SWE values with age, body mass index (BMI), height, and weight of the patients. RESULTS Median and range of age, height, weight, and BMI were 24 months (2–84 months), 85 cm (55– 120 cm), 12 kg (4.55–22 kg), 15.37 kg/m2 (13.92–17.51 kg/m2), 11 cc (2.64–23.15 cc), respectively. Mean shear wave elasticity of thymus of all participants was 6.76±1.04 kPa. Differences of mean elasticity values among the age and gender groups were not statistically significant. -
Icd-9-Cm (2010)
ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular -
The Mediastinum—Is It Wide? Emerg Med J: First Published As 10.1136/Emj.18.3.183 on 1 May 2001
Emerg Med J 2001;18:183–185 183 The mediastinum—Is it wide? Emerg Med J: first published as 10.1136/emj.18.3.183 on 1 May 2001. Downloaded from C E Gleeson, R L Spedding, L A Harding, M Caplan Abstract Objective—To determine if the 8 cm upper limit for mediastinal width applies in the trauma setting of today. To define the upper limit of normal mediastinal width for supine chest films. Methods—A retrospective review of chest computed tomography scans was con- ducted to determine the width and posi- tion of the mediastinum within the supine chest. Radiographs were performed using a model that enabled the degree of mediastinal magnification to be ascer- tained in a variety of clinical settings. Figure 1 CT scan of the chest at the level of the aortic Results—The mean mediastinal width is arch. 6.31 cm. With standard radiographical techniques this mediastinum is magnified where pathology distorted the mediastinum to 8.93–10.07 cm. With minor adaptations were excluded. The remaining scans were then in radiographical technique this can be examined at the level of the maximum reduced to 7.31–7.92 cm. diameter of the aortic arch to determine: Conclusion—The 8 cm upper limit for (1) The composition and transverse diameter normal mediastinal width, set in the 1970s of the mediastinum at this level. does not apply in the modern trauma (2) The maximum width of the aortic arch. room. Changes in the position of the x ray (3) The distance from the anterior surface of cassette, and lengthening of the distance the aortic arch to the skin of the posterior between the patient and the x ray source chest wall. -
CT-Based Mediastinal Compartment Classifications and Differential
Japanese Journal of Radiology (2019) 37:117–134 https://doi.org/10.1007/s11604-018-0777-5 INVITED REVIEW CT‑based mediastinal compartment classifcations and diferential diagnosis of mediastinal tumors Takahiko Nakazono1 · Ken Yamaguchi1 · Ryoko Egashira1 · Yukari Takase2 · Junichi Nojiri1 · Masanobu Mizuguchi1 · Hiroyuki Irie1 Received: 16 July 2018 / Accepted: 10 September 2018 / Published online: 20 September 2018 © Japan Radiological Society 2018 Abstract Division of the mediastinum into compartments is used to help narrow down the diferential diagnosis of mediastinal tumors, assess tumor growth, and plan biopsies and surgical procedures. There are several traditional mediastinal compartment classifcation systems based upon anatomical landmarks and lateral chest radiograph. Recently, the Japanese Association of Research of the Thymus (JART) and the International Thymic Malignancy Interest Group (ITMIG) proposed new mediastinal compartment classifcation systems based on transverse CT images. These CT-based classifcation systems are useful for more consistent and exact diagnosis of mediastinal tumors. In this article, we review these CT-based mediastinal compart- ment classifcations in relation to the diferential diagnosis of mediastinal tumors. Keywords Mediastinum · Compartment · Computed tomography · Magnetic resonance imaging Introduction have resulted in confusion among physicians. In addition, the traditional models are based on lateral chest radiographs, The mediastinum is anatomically bound on the lateral side and thus some mediastinal lesions cannot be reliably local- by the parietal pleural refections along the medial aspects ized to a specifc compartment, since considerable overlap of both lungs, superiorly by the thoracic inlet, inferiorly by exists among the radiographically imaged compartments. the diaphragm, anteriorly by the sternum, and posteriorly Because mediastinal lesions are optimally evaluated with by the thoracic vertebral bodies. -
Superior and Posterior Mediastina Reading: 1. Gray's Anatomy For
Dr. Weyrich G07: Superior and Posterior Mediastina Reading: 1. Gray’s Anatomy for Students, chapter 3 Objectives: 1. Subdivisions of mediastinum 2. Structures in Superior mediastinum 3. Structures in Posterior mediastinum Clinical Correlate: 1. Aortic aneurysms Superior Mediastinum (pp.181-199) 27 Review of the Subdivisions of the Mediastinum Superior mediastinum Comprises area within superior thoracic aperture and transverse thoracic plane -Transverse thoracic plane – arbitrary line from the sternal angle anteriorly to the IV disk or T4 and T5 posteriorly Inferior mediastinum Extends from transverse thoracic plane to diaphragm; 3 subdivisions Anterior mediastinum – smallest subdivision of mediastinum -Lies between the body of sternum and transversus thoracis muscles anteriorly and the pericardium posteriorly -Continuous with superior mediastinum at the sternal angle and limited inferiorly by the diaphragm -Consists of sternopericardial ligaments, fat, lymphatic vessels, and branches of internal thoracic vessels. Contains inferior part of thymus in children Middle mediastinum – contains heart Posterior mediastinum Superior Mediastinum Thymus – lies posterior to manubrium and extends into the anterior mediastinum -Important in development of immune system through puberty -Replaced by adipose tissue in adult Arterial blood supply -Anterior intercostals and mediastinal branches of internal thoracic artery Venous blood supply -Veins drain into left brachiocephalic, internal thoracic, and thymic veins 28 Brachiocephalic Veins - Formed by the -
ICD–9–CM Codes Denied
Federal Register / Vol. 66, No. 226 / Friday, November 23, 2001 / Rules and Regulations 58837 Code Description 999.2 ................................................................. Other vascular complications 999.8 ................................................................. Other transfusion reactions V08 ................................................................... Asymptomatic HIV infection V12.1 ................................................................ History of nutritional deficiency V12.3 ................................................................ Personal history of diseases of blood and blood-forming organs V12.50–V12.59 ................................................. Diseases of circulatory system V15.1 ................................................................ Personal history of surgery to heart and great vessels V15.2 ................................................................ Personal history of surgery of other major organs V42.0 ................................................................ Kidney replaced by transplant V42.1 ................................................................ Heart replaced by transplant V42.2 ................................................................ Heart valve replaced by transplant V42.6 ................................................................ Lung replaced by transplant V42.7 ................................................................ Liver replaced by transplant V42.8 ............................................................... -
(12) Patent Application Publication (10) Pub. No.: US 2007/0292883 A1 Ossovskaya Et Al
US 20070292883A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0292883 A1 Ossovskaya et al. (43) Pub. Date: Dec. 20, 2007 (54) METHOD OF TREATING DISEASES WITH (52) U.S. Cl. ............................. 435/6: 435/723: 514/394; PARP INHIBITORS 514/543; 514/309; 514/312: 435/91.2: 514/415: 514/457 (76) Inventors: Valeria S. Ossovskaya, San Francisco, CA (US); Barry M. Sherman, Hillsborough, CA (US) (57) ABSTRACT Correspondence Address: SSSSSS(pDRICH & ROSAT The present invention relates to methods of identifying a PALO ALTO, CA 94304-1050 (US) disease treatable with PARP modulators by identifying a 9 level of PARP in a sample of a subject, making a decision (21) Appl. No.: 11/818,210 regarding identifying the disease treatable by the PARP modulators wherein the decision is made based on the level (22) Filed: Jun. 12, 2007 of PARP. The method further comprises of treating the O O disease in the subject with the PARP modulators. The Related U.S. Application Data methods relate to identifying up-regulated PARP in a disease (60) Provisional application No. 60/804,563, filed on Jun. and making a decision regarding the treatment of the disease 12, 2006. Provisional application No. 60/866,602, with PARP inhibitors. The extent of PARP up-regulation in filed on Nov. 20, 2006. a disease can also help in determining the efficacy of the treatment with PARP inhibitors. The present invention dis Publication Classification closes various diseases that have up-regulated or down regulated PARP and can be treated with PARP inhibitors or (51) , C.