PROCESSING EffectsonDryCanineDiets

Promotoren Prof.Dr.Ir.M.W.A.Verstegen EmeritusHoogleraarDiervoeding WageningenUniversiteit Prof.Dr.Ir.W.H.Hendrik s HoogleraarDiervoeding WageningenUniversiteit Copromotor Dr.Ir.A.F.B.vanderPoel UniversitairHoofddocent LeerstoelgroepDiervoeding WageningenUniversiteit Promotiecommissie Prof.Dr.Ir.J.A.J.Verreth ,WageningenUniversiteit,Nederland Prof.Dr.B.Svihus ,NHL,AgriculturalUniversityofNorway,As,Norway Dr.Ir.M.Thomas ,ZetadecB.V.,Wageningen,Nederland Prof.Dr.G.Janssens ,GhentUniversity,Belgium Ditonderzoekisuitgevoerdbinnendeonderzoekschool WageningenInstituteofAnimalSciences(WIAS)

EXTRUSIONPROCESSING EffectsonDryCanineDiets

TrnðìnhQuang Proefschrift terverkrijgingvandegraadvandoctor opgezagvanderectormagnificus vanWageningenUniversiteit, Prof.Dr.M.J.Kropff, inhetopenbaarteverdedigen opmaandag25februari2008 desnamiddagstevieruurindeAula

Q.D.Tran,2008 Extrusionprocessing:effectsondrycaninediets Ph.D.Thesis,WageningenUniversityandResearchCentre,Wageningen,theNetherlands. WithsummaryinEnglish,inDutchandinVietnamese. ISBN:9789085049036

ABSTRACT. Tran, Q.D. Extrusion processing: effects on dry canine diets. Extrusion cookingisausefulandeconomicaltoolforprocessinganimalfeed.Thishightemperature,shorttime processing technology causes chemical and physical changes that alter the nutritional and physical qualityoftheproduct.Effectsofextrusiononthefeedqualityforotheranimalsthanpetshavebeen wellrecognized.Ourstudiesinvestigatedtowhatextentextrusionand/ordryingofacompletecanine dietaffectslysinereactivity,aminoacids,fattyacids,gelatinizationandphysicalparameters. Inordertocreateageneralviewofdogfoodqualityinpractice,thephysicalandnutritional qualityofcommercialcaninedietsavailableintheNetherlandswereexamined.Thisstudyshowed unveiled variation in lysine reactivity and starch gelatinization of commercial dry canine diets. A studywasthencarriedoutontheeffectsofextrusiononthephysicalandnutritionalvaluesofcanine dietsinaFIDOmodel.Theextrusionconditions(temperaturesintherangeof110to150ºC,300g/kg moisture) increased lysine reactivity, starch gelatinization and invitro starch digestibility. digestibilityanddispersibilitywerenotaffectedbytheextrusionconditionsused.Theincreaseinthe extrusiontemperatureused(110to150ºC)decreasedkibbledurabilitybutdidnotaffecthardness.This studyalsoconcludedthatoptimisationofextrusionconditionsduringproductionofcommercialcanine diets should include the measurement of the reactive to total lysine ratio. Single ingredients of a completecaninedietdidnotrespondinasimilarwayduringextrusion:extrusionhadnoeffectson animalingredients(higherlysinecontents)whileextrusioncoulddecrease(inbarley)orincrease(in rice)thereactivelysinecontentinvegetableingredients(lowerlysinecontent).Bothreactivelysine contentandratiosofreactivetototallysineofthemixtureofallvegetableingredientswerehugely increasedduringextrusion.Finally,anadditionalstudywascarriedoutontheeffectsofdryingon extrudedcaninediets.Theresultsofthisstudyshowedthatdryingtemperature(intherangeof120 160ºC)anddryingtimedidnotaffectthequalityofextrudedcaninedietsintermsofaminoacidsand fattyacidslevelswhilethesedryingtemperaturesreduceddryingtimefromhourstominutes.Drying temperatureonlyaffectedthereactivelysinecontentand,therefore,theratioofreactivetototallysine ofkibblesdriedatatemperatureof200ºC.Dryingtemperaturealsoaffectedaminorityoffattyacids withfattyacidC18:3n3beingthemostaffectedatadryingtemperatureof200ºC. Inconclusion,extrusionattemperaturesintherangeof130150ºCandatamoistureof300 g/kgisamildheattreatmentwithrespecttoproteinqualityforpetfoodproduction.Measurementof theratioofreactivetototallysineshouldbeincludedinoptimisationofextrusionconditionsduring petfoodproduction.Dryingtemperatureintherangeof120160ºCanddryingtimedonotaffectthe aminoacidsandfattyacidslevelofextrudedcaninediets. Keywords: Extrusion,Caninediet,Protein,Lysine,Starchgelatinization,Palatability,Drying.

InMemoryofmyFather InDedicationtomyMother,mywifeandmydaughters

Contents

Chapter1 Generalintroduction 1

Chapter2 Effectsofextrusionprocessingonnutrientsindrypetfood 11

Chapter3 Lysine reactivity and starch gelatinization in extruded and 29 pelletedcaninediets

Chapter4 Effectsofextrusiononthenutritionalvalueofcaninedietsas 39 assessedby invitro indicators

Chapter5 Effects of extrusion on the nutritional quality of single 57 ingredientsandofacompletedrycaninediet

Chapter6 Effectsofdryingofacaninedietextrudedata4or8mmdie 73 sizeonphysicalandnutritionalqualityindicators

Chapter7 Generaldiscussion 91

Summary i

Samenvatting vii

Tómtt xiii

Publications xix

Acknowledgements xxi

Abouttheauthor xxv

WIASTrainingandSupervisionAchievements xxvi

Chapter1 GeneralIntroduction Chapter1______

Theprocessofextrusionhasbeenappliedfornearlyacentury.Itbeganintherubber industry where extrusion was used for the production of items such as hoses and belting. Extrusion has been also used since then for the production of by means of a batch extrusionconcept.Theuseofcontinuousextrusioninhumanfoodsfounditsfirstapplication inthe1940'sfortheproductionofpuffedcerealsandfromcornmealorgritsandpasta fromsemolina.Examplesoffooditemsincludeaninfinitevarietyofsnacks,pasta,textured vegetableprotein,breakfastcerealsandthelike.Extrusionprocessingofdietaryingredients andfeed/foodforanimalsbeganinthe1950'stoproducecompletefoodsfordogs. Theextrusionprocessisahightemperature,shorttimebioreactorthatcantransform anynumberofrawmaterialsintointermediateorfinishedproductsthathaveahighconsumer appeal.Intermsoftonnage,petfoodreignsatthetop.Nowadays,thepetfoodindustryinthe USaloneisworthUS$13billionandhasnearlythesamevalueinEurope(Combelles,2004). Extrusiontechnologyenablesthecontinuouscookingofthestarchfractionofafoodoran ingredient. This makes it possible to make starch available for rapid digestion and thus enablestheproductionofdietsthatmeettherequirementsofenergyforcompanionanimals. Inaddition,itprovidestheprocessortheabilitytocreatenearlyanyshapeofadietthatmight appealtothepetowner. 1.1.Extrusioncookingsystemanditsvariables Anextruderisamachinethatmanufacturesextrudates,acommonformofcommercial drycaninefoods.Thistechnologyofpetfoodprocessingforcesthemixtureoftheingredients throughaspiralscrewandthenthroughthedieoftheextruder.Duringextrusionprocessing, the ingredients are ground, mixed and heattreated. As a result, a ribbonlike product (the extrudate)isproducedanddriedafterwards.Extrusioncookingprovidesaveryusefuland economical tool for producing pet diets, since extrusion technology can use animal by products that otherwise need to be buried or burnt, which is costly or environmentally polluting(RokeyandPlattner,1995).Extrusioncookingis,therefore,widelyusedtoprocess, mix, functionally improve, detoxify, sterilize and texturize an increasing variety of feed

2 ______Generalintroduction commoditiesandfoodingredients(Cheftel,1986);about95percentofpetdietsareextruded (SpearsandFaheyJr,2004). A food extruder consists of a flighted screw which rotates in a tightly fitting cylindricalbarrel.Rawingredientsarepregroundandblendedbeforebeingputinthefeeding systemoftheextruder(Fig.1.1).Theactionoftheflightsonthescrewpushestheprocessing products forward. In this way, the constituents are mixed into a viscous like mass (Serrano,1996). In

Levelindicator Ventedduct Silo Water Followindicators Steam Liquids andpressureswitches

Conditioner Steamflowindicators

PT100

Extruder

Jacket forheating Fig.1.1.Extrusioncookingsystem CommoncomponentsofanextrusionsystemareshowninFig.1.1.Asthematerial movesthroughtheextruder,thepressurewithinthebarrelincreasesduetoarestrictionatthe dischargeofthebarrel(Harper,1978).Thisrestrictioniscausedbyoneormoreorificesor shapedopeningscalledadie.Dischargepressurestypicallyvarybetween3to6MPa(Harper, 1978).Whentheflightsonthescrewofafeedextruderarefilled,theproductissubjectedto highshearrateasitisconveyedandflowedforwardbytherotationofthescrew.Thesehigh shearrateareastendtoalignlongmoleculesintheproductandthisgivesrisetocrosslinking orrestructuring.Thisgivestheextrudedfooditstypicalandcharacteristictexture.

3 Chapter1______

Therearetwotypesofextruders:singlescrewandtwinscrewextruders(Harperand Jansen,1981)andeachtypehasaspecificrangeofapplication.Eachtypeofextruderhasits own unique operation conditions, along with advantages and disadvantages. Choosing the proper extruder configuration is crucial to successfulextrusion.Thechoicedependsonthe typeofrawmaterialtobeused,thedesiredproduct,theprocessingrateandotherfactors.A singlescrewextruderhasadvantagesintermsofcost,operationandmaintenancecomparedto atwinscrewone.Withadvancesinpreconditioningtechniques,singlescrewextruderscan produce pet foods with 1720 percent (Phillips, 1994). With twinscrew technology, however,fatlevelcanbehigher,upto25percent. This allows twinscrew extruders to be usedinprocessingrawanimalbyproducts,inwhichthemoisturecontentrangesfrom500 900g/kg(Ferket,1991),intopetfoods.Consistencyofhighfatproductsiseasytomaintain withatwinscrewextruder. Duringextrusion,mechanicalshearforcesandheating are applied simultaneously. Thismayincreasethenutritionalandphysicalqualitycharacteristicsoftheproduct.Extrusion isusedtoproduceawidevarietyofcaninedietsor canine dinner ingredients over a wide range of its processing variables such as moisture, shear, pressure, time and temperature. Typically,theextrusionprocessistheapplicationofbothrelativelyhightemperatures(80 200°C)andshortresidencetimes(10270seconds). Moreover,therearehighpressureand high shear forces (Björck and Asp, 1983) and extrusion cooking is considered as a high temperature,shorttimeprocess(Harper,1978).Thiskindofprocessingtendstomaximizethe beneficial effects of heat treatment as well as minimize its detrimental impacts (Serrano, 1996). Theextrusioncookingprocesscombinestheeffectofheatwiththemechanicalaction ofextrusion.Heatisaddedtothefeeddoughasitpassesthroughscrewbyoneormoreof thesemechanisms(Serrano,1996):(i)viscousdissipationofmechanicalenergybeingadded totheshaftofthescrew;(ii)heattransferfromsteamorelectricalheaterssurroundingthe barrel; and (iii) direct injection of steam which is mixed with the dough in the screw. Extrusioncookingcanbeconductedunderrelativelywetordryconditions(Serrano,1996) whichdependsonthelevelofwaterandsteamtopreparetheproductbeforebeingextruded ortheabsenceofthis.Wetextrusioncookingoftenimpliestheuseofaconditioner(Fig.1.1) andthisalwaysimpliestheuseofadownstreamdrier.

4 ______Generalintroduction

Principally, important indicators of extrusion processes include system variables (specificmechanicalenergy,torque,diepressureandproducttemperature)aswellasproduct characteristics (degree of expansion, starch gelatinization, shear strength, water solubility index,colour,etc.)oftheextrudate(Linetal.,1997). 1.2.Extrusioncookinganddogfoodproduction Forvariousreasons,ownersprefertopurchasecompleteandbalanceddietsfortheir dogsinsteadofformulatingdietsbymixingvariousingredientsthemselves.Commercialpet foods can basically be divided into four basic types of diets: dry, semimoist, moist and snacks.Drypetfoodscomprisethelargestsegmentoftheamountandvalueofpetfoodssold worldwide(Laxhuber,1997).Reducingthemoisturecontentofpetfoodstoaspecificlow levelprovidesgoodconditionsforthecoatingofthekibble.Inaddition,thelowwatercontent providesanoptimalshelfstabilityduringstorage(extramoistureaidsmicrobialdevelopment) and transportation (costly for transport of water). In moist foods, microbial growth can developifthefoodsarenotprocessedand/orstoredcorrectly.Thiscanresultinspoilageand indevelopmentoftoxins.Thepetfoodindustrypredominantlyusesextrusiontomanufacture dry pet foods because of the ability to pasteurize, to increase nutrient digestibility and availability,toachieveadesireddensityandtoformtheproductsinoneapplication. Inpetfoodmanufacturing,extrudatesareproducedfromrawmaterialssuchasfish, ,cerealsandothervegetableproductsinvariousshapesandsizes.Therawmaterialscan be processed (preconditioning) in various ways before extrusion cooking and automation stepscan be used at different levels (Fig. 1.2). This first phase is to mix the various raw materialsandtoaddwaterinadefinedmixingratio.Thegrindingbeforemixingisconducted toachieveauniformparticlesizedistributionwhichpromotesauniformmoistureuptakeby allparticles.Theuniformityofthemixturepriortoextrusionensuresthateachparticlewillbe adequately and uniformly cooked. This results in better appearance and palatability in pet foods(Phillips,1994).Inthenextphase,thematerialisprocessedthroughanextruderand severalextrusionprocessesandtypesofdeviceshavebeendevelopedforthispurpose.After

5 Chapter1______ extrusion, extrudates are usually dried to obtain the desired consistency and storage properties.Extrudatesareoftensprayedwithacoatinginordertoaddaroma/spicysubstances totheextrudate.Inaddition,sometimesenergyyieldingcompoundsareaddedlikelipids,and sometimesthepurposeistoimprovethesurfacestructure.Inpetfoodproduction,fatandoil basedsuspensionsareoftenusedasacoating.Duringthecoatingprocess,fatisappliedtothe hot,driedextrudatesandfatmustbeabsorbedasrapidlyandcompletelyaspossiblebefore cooling. Depending on products and materials used for coating, another drying or cooling stagemaybenecessary. Foodandfeedextrudersgenerally Grinding allow control over the settings and configu ration of the machine in order to obtain a Mixing combination of various process parameters. The process variables determine which influ Preconditioning enceisexertedontheproduct:optimisationof proteindenaturation,starchgelatinizationand Extrusion fat globule modification can be achieved by selective processing. Therefore, positive Drying effectsofextrusionprocessingcanbeselected for,carbohydratesand.Moisture Coating is one of the most important processing variables. Complete moisture penetration of Cooling ingredientparticlesresultsinanincreasedheat transfer which can result in uniform starch Fig.1.2.Stagesoftheextrusionprocess gelatinizationandacompletecookedproduct withahighfatcontent. Physicalcharacteristicsofextrudatesreflecttheeffectivenessoftheprocess.Onecan alsoderivefromthisthesuitabilityofingredientsforextrusion.Food/feedextrusionstudies, therefore,havebeencarriedoutforanumberofdecades.However,methodsofcharacterizing rawmaterialsandevaluationofextrudatesarenotstandardizedasfarasprocessvariablesare concerned.Studyresultscannotbe,therefore,interpretedandcomparedinagoodwayand repeatabilityoftheresultsbecomesdifficult.

6 ______Generalintroduction

Duringextrusion,petfoodsundergochemicalandphysical changes that alter the physical and nutritional quality of the product (Kvamme and Phillips, 2003). The changes mayinvolveformationofdisulphatebridgesinproteinsandformationofMaillardproducts fromareactionbetweenalkalineaminoacidsandreducing.Extrusioncookingbreaks oilglobulestomakeoilfreeforeasyexpansion(Linetal.,1998).Italsotexturizesprotein andcausesdenaturationofproteinandgelatinizationofstarch(Linetal.,1997).Changesin theproteinstructurecanrenderfoodproteinsmoredigestible(MacLeanetal.,1983;Coulter andLorenz,1991).Inthatrespect,proteinqualityisimproved.Extrusionprocessingaffects nutritional characteristics of extruded products by changing the availability of proteins, carbohydrates, lipids and vitamins for metabolism. Denaturation of proteins, alteration of carbohydratestructure,oxidationoflipidsandreactions,e.g.Maillardreactions,mayalterthe nutritional properties of extrudates (Björck and Asp, 1983). In addition, temperature and pressure involved in extrusion cooking inactivates naturally occurring toxins (mycotoxins, glycoalkaloidsandallergens)andnutritionallyactivefactors(trypsininhibitors,gossypol,...). It also eliminates contaminating microorganisms (Harper and Jansen, 1981). From the literature,itappearsthattherearenogeneralrulesregardingwhattemperaturesarerequired toimproveeachspecificphysicalandnutritionalcharacteristic. Extrusionisthusacomplexprocessinvolvinginterrelationshipsbetweenprocessand productparameters.Fromathoroughliteraturereviewintotheprocessofextrusioncooking ofcaninedietsitisdeduced,thateffectsofextrusionhavebeeninsufficientlyexaminedand described.Especially,relationshipsbetweendietingredientsandtheextrusionprocessstages (agglomerationanddrying)arecrucialfeatures.Anumberofimportantquestionsneedtobe answered: 1. Towhatextentdoesextrusioncookingaffectnutritional(e.g.protein,starch)andphysical (e.g.hardness,durability)qualityindogfoods? 2. Towhatextentdoesextrusioncookingatdefinedconditions effect protein quality, i.e. lysinereactivity?Sincemostofpetfoodsareextrudedinpractice,itisimportanttoknow, whatisthelysinereactivityandstarchgelatinizationincommercialdrydogfoods? 3. To what extent does extrusion cooking at defined conditions affect the nutrient (e.g. protein,starch)digestibilityandavailabilityfordogs?

7 Chapter1______

4. Is there a difference in the effects of extrusion between proteins of plant and animal origin? 5. Doesdryingaffectthephysicalandnutritionalqualityofextrudeddogfoods? Proteinisoneofthemostimportantdietarynutrientsincaninefoods.Cerealsareused asamajordietaryingredientforanimalsanditis,therefore,importanttomaintainoreven improvetheproteinqualityofcerealgrainsduringextrusion.Theaminoacidcomposition, availability anddigestibility ofaproteindefinesitsnutritionalquality(Paquetetal.,1987; Finley,1989).Lysineisoftenthemostlimitingaminoacidincerealgrainsforanumberof animalspecies..Becauseofitshighlyreactivefreeεaminogrouplysinecanreactrelatively quicklywithothernutrientssuchas.Thismakeslysineeasytobechangedordamaged (undersevereconditions)andsometimesunavailableformetabolism(HurrellandCarpenter, 1981).Changesinreactivelysinecontent(lysinewithafreeεaminogroup)offoods,feedsor ingredientsmayserveasanindicatorofproteindamage during extrusion (Hendriks et al., 1999)and/orstorage. Inspiteoftheincreasedapplicationofextrusiontechnologyinthepetfoodindustry, mostinformationoftheprocesseffectsisavailableaboutspecificandsingleingredientssuch as , peas, rice flour and other feedstuffs. In addition, studies of the effects of extrusiononproductqualityaremostlyrestrictedtoweaningfeeds,meatreplacers,livestock feedsanddieteticfoods.Literatureontheeffectsofextrusioncookingoncompletedogdiets isscarce. 1.3.Outlineofthedissertation Thisdissertationconsistsofsevenchapters.Thefirstchapterintroducestheproject, researchquestionsandtheoutlineofthethesis.Chapter2providesareviewoftheliterature wheretheeffectsofextrusiononthenutritionalqualityofextrudedcaninedietsarediscussed. Gapsinknowledgeontheeffectsofextrutiononthenutritionalqualityfordogsareprovided. Chapter3describesthephysicalandnutritionalquality of a number of commercial canine dietsavailableintheNetherlandsandprovidesageneraldescriptionofthequalityofcanine

8 ______Generalintroduction foods,i.e.theeffectofprocessing(extrusion,pelleting)ondrycaninediets.Chapter4reports astudyontheeffectsofextrusiononthephysicalandnutritionalqualityofcaninedietswith regard to reactive lysine and starch gelatinization.Inordertoobtainmoreinsightintothe effectsofextrusiononacaninediet,asecondexperiment, was carried out (Chapter 5) to determinetheeffectofextrusiononsingleingredientsofthesamecompletecaninedietasin the previous trial. An additional study which is reported in Chapter 6, was conducted to examine the effect of drying temperature and dryingtimeafterextrusiononthequalityof extruded canine diets. A general discussion, Chapter 7, provides explanations and interpretations of the results obtained in this dissertation as well as the implication for the optimisation of the extrusion process for the manufacture of pet foods. This chapter also discussesthelimitationsofthestudyandproposesadditionalresearchtobeconductedinthe future. References Björck,I.,Asp,N.G.,1983.Theeffectsofextrusioncookingonnutritionalvalue,aliteraturereview. J.FoodEng.2,281308. Cheftel,J.C.,1986.Nutritionaleffectsofextrusioncooking.FoodChem.20,263283. Combelles, E., 2004. European industry analysis. Petfood Forum Europe 2004, Amsterdam, the Netherlands.WattPublishingCo.,5967. Coulter, L., Lorenz, K., 1991. Extruded corn gritsquinoa blends, part I: proximate composition, nutritionalpropertiesandsensoryevaluation.J.FoodProcess.Pres.15,231242. Ferket,P.,1991.Technologicaladvancescouldmakeextrusionaneconomicallyfeasiblealternativeto pelleting.Feedstuffs.63,1921. Finley,J.W.,1989.Effectsofprocessingonproteins:anoverview.In:[Phillips,R.D.,editor],Protein QualityandtheEffectsofProcessing.MarcelDekker,Inc.,NewYork,USA,pp.17. Harper,J.M.,1978.Foodextrusion.Crit.Rev.FoodSci.11,155215. Harper,J.M.,Jansen,G.R.,1981.Nutritiousfoodsproducedbylowcosttechnology.LECReport10. Hendriks,W.H.,Emmens,M.M.A.,Trass,B.,Pluske,J.R.,1999.Heatprocessingchangestheprotein qualityofcannedcatfoodasmeasuredwitharatbioassay.J.Anim.Sci.77,669676. Hurrell,R.F.,Carpenter,K.J.,1981.TheestimationofavailablelysineinfoodstuffsafterMaillard reaction.Prog.FoodNutr.Sci.5,159175.

9 Chapter1______

Kvamme,J.L.,Phillips,T.D.,2003.PetfoodTechnology.WattPublishingCo.,Mt.Morris,Illinois, 61054USA. Laxhuber,S.,1997.Dryingandcoolinginproductionofextrudates.Kraftfutter.11,460466. Lin,S.,Hsieh,F.,Huff,H.E.,1997.Effectsoflipidsandprocessingconditionsondegreeofstarch gelatinisationofextrudeddrypetfood.Lebensm.Wiss.u.Technol.30,754761. Lin,S.,Hsieh,F.,Huff,H.E.,1998.Effectsoflipidsandprocessingconditionsonlipidoxidationof extrudeddrypetfoodduringstorage.Anim.FeedSci.Technol.71,283194. MacLean,W.C.,DeRomana,G.L.,Gastanaduy,A.,Graham,G.G.,1983.Theeffectofdecortication andextrusiononthedigestibilityofsorghumbypreschoolchildren.J.Nutr.113,21712177. Paquet,A.,Thresher,W.C.,Swaisgood,H.E.,1987.Furtherstudiesoninvitrodigestibilityofsome epimerictripeptides.Nutr.Res.71,581588. Phillips, R.D., 1989. Effect of extrusion cooling on the nutritional quality of plant proteins. In: [Phillips,R.D.,Finley,J.W.,editors],ProteinQuality and the Effects of Processing. Marcel Dekker,Inc.,NewYork,USA,pp.219246. Phillips,T.,1994.Petfoodminutes;Productionupdate.PetfoodIndus.36,4. Rokey, G., Plattner, B., 1995. Process description. In: Pet food production. Wenger Mfg, Inc., Sabetha,KSUSA66534,pp.118. Serrano, X., 1996. The extrusioncooking process in animalfeeding:Nutritionalimplications.Feed manufacturinginSouthernEurope:NewchallengesZaragoza26,107114. Spears,J.K.,FaheyJr,G.C.,2004.Resistantstarchasrelatedtocompanionanimalnutrition.J.Assoc. Off.Anal.Chem.Int.87,787791.

10

Chapter2 Effectsofextrusionprocessingonnutrientsindrypetfood Q.D.Tran a,b,W.H.Hendriks aandA.F.B.vanderPoel a aAnimalNutritionGroup,DepartmentofAnimalSciences,WageningenUniversity,Marijkeweg40 6709PGWageningen,theNetherlands bHumanandAnimalPhysiologyGroup,BiologyFaculty,VinhUniversity,182LeDuanstreet,Vinh,Vietnam JournaloftheScienceofFoodandAgriculture(inpress)

Chapter2______

Abstract Extrusioncookingiscommonlyusedtoproducedrypetfoods.Asaprocessinvolvingheat treatment, extrusion cooking can have both beneficial and detrimental effects on the nutritional quality of the product. Desirable effects of extrusion comprise increase in palatability, destruction of undesirable nutritionally active factors and improvement in digestibility and utilization of proteins and starch. Undesirable effects of extrusion include reduction of protein quality due to e.g. the Maillard reaction, decrease in palatability and losses of heatlabile vitamins. Effects of extrusion processing on the nutritional values of feeds for livestock have been well documented. Literature results concerning effects of extrusionondrypetfoods,however,arescarce.Thepresentreviewdiscussestheresultsof studies investigating the impact of extrusion cooking on the nutritional quality of dry pet foods. Keywords :Extrusion;Proteindenaturation;Reactivelysine;Starchgelatinization;Petfood; Palatability.

12 ______Effectsofextrusiononnutrientsinpetfood

2.1.Introduction Extrusioncookingtechnologyiscommonlyusedforthemanufactureofcommercial drycanineandfelinediets:about95percentofdrypetfoodsareextruded(SpearsandFahey Jr, 2004). In this processing technology, a mixture of ingredients is steam conditioned, compressedandforcedthroughthedieoftheextruder(RokeyandPlattner,1995).Thereason for the widespread use of extrusion cooking to produce pet diets is the versatility of this technologytomixdiets(RokeyandPlattner,1995),functionallyimprove,detoxify,sterilize andtexturizealargevarietyoffoodcommoditiesandfoodingredients(Cheftel,1986). Extensivereviews(Harper,1978;BjörckandAsp,1983;Cheftel,1986;Svihusetal., 2005) on the effects of extrusion cooking on product quality have been published. As a thermomechanical treatment, extrusion cooking can affect characteristics of extruded products(extrudatesorkibbles)bychangingdigestibilityorutilizationofnutrientssuchas proteins,carbohydrates,lipidsandvitamins.Inaddition,denaturationofproteins,alterationof carbohydrate structure, oxidation of lipids and Maillard reactions between different food componentscanalterthenutritionalqualityofextrudates.Publishedreviewsdiscussingthe effects of extrusion cooking technology on product quality have been mostly restricted to dietary ingredients, weaning pig feeds, meat replacers, livestock feeds and dietetic foods. Although the effects of process variables during extrusion have been widely recognized (Cheftel, 1986), the precise effects of extrusion cooking for its application to companion animalfoodsarenotwelldocumented. The present contribution discusses results of studies investigating the effects of extrusionprocessingonthenutritionalqualityofdrypetfoodsandprovidesrecommendations forfurtherstudiestocontroltheextrusionprocessvariablestooptimisethenutritionalquality ofdrypetfoods. 2.2.Effectsofextrusiononstarch Companionanimaldietsmaycontainupto50percentstarchwhichisderivedmainly fromcerealgrains(SpearsandFaheyJr,2004).Thestarchincerealgrainsisorganizedin

13 Chapter2______ concentriclayersofsemicrystallineoramorphousregionsintheendosperm.Thestructural featuresandcomponentsthatareassociatedwiththestarchgranulesuchaslipids,minerals, proteins and nonstarch components have been clearly reviewed (Svihus et al., 2005). Extrusioncookingcausesswellingandruptureofthegranules,modificationofthecrystalline spectra,increaseincoldwatersolubility,reductioninviscosityofthestarchand(partialto complete) release of amylose and amylopectin (Cheftel, 1986). When extruded at a low moisture content, starch granules are partially transformed through the application of heat (loss of crystalline structure) and shear (granular fragmentation) leading to formation of a homogeneousphase,calledastarchmeltor‘gelatinization’(Linetal.,1997;Svihusetal., 2005).Physicalandchemicalcharacteristicsofextrudatesareaffectedbytheviscosityofthe foodmixtureinthebarrel(Linetal.,1997)wheretheviscosityisrelatedtothedegreeof starchgelatinization(SGD)ofthefoodmixture.Ahighscrewspeed(400rpm)duringthe productionofpetfoodshasbeenshowntodecreaseSGDwhereinteractiveeffectshavebeen found with the initial lipid content (Lin et al., 1997). During extrusion of , factors suchastemperature,moisturelevelbeforeextrusion,theamyloseandlipidcontentallmay lead to structural modifications of starch granules. These changes, however, may differ betweencerealandpotatostarches.Gelatinizationimprovesfaecalandilealdigestibilityof tapioca starch but has no effects on wheat starch digectibility (Wolter et al., 1998). In addition,digestiblestarchinbarleyandcornincreased(Table2.1)butwasnotchangedinoat branafterextrusion(Dustetal.,2004).Highmoistureandhightemperatureextrusionresults incompletegelatinizationandinasignificantincreasein invitro (Murrayetal.,2001;Dustet al.,2004)and invivo (Svihusetal.,2005)starchavailability. Table2.1 Effects †ofingredientextrusionontotal,digestibleandresistantstarch(%DM) Totalstarch Digestiblestarch Resistantstarch IngredientControl8090 ‡120130Control8090120130Control8090120130 Barley78.478.481.227.747.550.450.723.120.4 Corn 80.282.883.036.745.658.943.537.224.1 Oatbran67.265.166.442.739.937.624.525.128.8 †Dustetal.(2004) ‡ DegreesCelsius

14 ______Effectsofextrusiononnutrientsinpetfood

Thephenomenonofretrogradationofstarchasaresultofextrusionanddownstream processeshasnotbeenstudiedintensively.Retrogradationofstarchisthecrystallizationof gelatinizedstarchinanamorphousmatrixwherebyamylose,asopposedtoamylopectin,has been found to be the most important starch component. The level of retrograded starch dependsontheinitialstarchconcentration,thestarchsourceanditsresistancetodigestionin the small intestine (Svihus et al., 2005). In the large bowel, retrograded starch may be fermented or excreted and thus displays fibrelike (fermentable) properties in companion animals.Studieshaveshownthatcertainretrogradedstarchsourcesarereadilyfermentedin thelargebowel,producingshortchainfattyacids.Meanwhile,otherretrogradedstarchesare lessfermentable,resultinginrelaxationpropertiesincompanionanimals(SpearsandFahey Jr,2004).Forexample,feedingdogsahighretrogradedstarchcontentdietincreasedfaecal bulk (Spears and Fahey Jr, 2004) and increased excretion of microbial matter. The starch digestionrateandthatofretrogradedstarch invivo varyconsiderablyamongdietingredients commonlyusedinpetfoodmanufacturing(Murrayetal.,1998;SpearsandFaheyJr,2004). Since retrograded starch is not only caused by the extrusion itself (Svihus et al., 2005), researchshouldbefocusednotonlyonextrusionbutalsoondownstreamprocesses(drying, cooling), during which retrograded starch can be formed. This modification of a diet ingredient after extrusion to contain more retrograded starch / soluble dietary fibre can increasetheproductionofshortchainfattyacidsespeciallybutyricacid,compoundsknown toincreasethecolonichealthofdogs(Murrayetal.,2001;Dustetal.,2004).Murray etal . (2001) studied the factors that influence the formation of retrograded starch during gelatinizationandretrogradationinstarchesfromcerealsandpotato.Theseauthorsprovidea basic procedure to obtain retrograded starch after gelatinization in an excess of water and subsequentcoolinganddryingwhichcanbeusedinthemanufactureofpetfoods. Extrusion may enhance the formation of complexes of starch with lipids: the hydrophobiccoreoftheamylosemoleculecantrapthehydrocarbonchainoflipidmolecules toformalipidamylosecomplex(Linetal.,1997).Complexformationwithmonoglycerides forexample,mayinhibititsdigestionbyamylase.Similarly,complexeswithothernutrients, e.g.proteinsoraminoacids,canlimithydrolyses.Murrayetal.(1998)usingilealchymeof dogsreportedthatamyloselipidcomplexeswereresistantto invitro digestionwhenamylose was complexed with longchain, saturated monoglycerides. After extrusion, complex

15 Chapter2______ compositions in which molecular interactions among different ingredients are formed, can havebeneficial(e.g.palatability)aswellasadverseaffects(e.g.nutrientlosses).Literatureon theseparateeffectoftheseinteractionsasaresultoftheextrusionprocess,ingeneral,isnot welldocumented. The extrusion variables to control retrograded starch formation and its effectonglycemicindexinrelationtocanineandfelinehealthshouldbesubjectsoffurther research.Moreover,thenutritionaleffectsofinteractionsbetweenstarchandothernutrients duringextrusioninpetfoodneedfurtherstudy. 2.3.Effectsofextrusiononlipids Thenutritionalvalueoflipidsfromsourcessuchastallow,poultryfat,vegetableoil, marineoil,andvariousblendscanbeaffectedduringextrusionasaresultofhydrogenation, isomerization,polymerizationandlipidoxidation(RokeyandPlattner,1995).Lipidoxidation isamajorchallengetopetfoodpreservation.Oxidationrateisaffectedbymanyfactorssuch asfattype,fatcontent,moisturecontentandexpansiondegreewheretheunsaturationinfats increasesthepreservationchallenge(Linetal.,1998;Deffenbaugh,2007).Inaddition,trace minerals,iron,inparticular,andtheuseofbiologicalantioxidantsmayplayasignificantrole inoxidationpostextrusion(Linetal.,1998;Deffenbaugh,2007). Underspecificextrusionconditions,complexesoflipidproteinorlipidstarchcanbe formed. For example, high moisture and high temperature conditions can increase the hydrolysisoflipidswhichincreasespotentialinteractionswiththesidechainsofaminoacids in proteins. Free fatty acids and polar lipids are especially reactive in these situations. If formationofamyloselipidcomplexesdoesnotoccurtoalargeextent,itwillnotimpairthe utilizationofthefat.Forexample,amyloselysolecithincomplexeswerealmostcompletely digestedinrats(BjörckandAsp,1983). Literatureconcerningtheeffectsofextrusiononcrudefatandfattyacids,especiallyin petfooddiets,aresparse.Extrusionofafeedmixtureshowednoeffectonthedigestibilityof nitrogen,drymatter,fatandashinsixmaturedogs(Strouckenetal.,1996).Thisindicates thatiflipidcomplexeswereformedduringextrusionofpetfood,thesecomplexesmaybe readilydigested.Thisisinaccordancewiththehigh lipid digestibility commonly found in

16 ______Effectsofextrusiononnutrientsinpetfood canine and feline diets (Hullár et al., 1998). Extrusion inactivated lipase and lipoxidase presentinthefoodsresultinginlessoxidationofthefattyacidsduringstorage(Linetal., 1998).Especiallytheinteractiveeffectsbetweenprocessvariablesandlipidsandeffectson lipidcomplexationduringextrusionareemphasizedforfutureresearch. 2.4.Effectsofextrusiononprotein Theproteincomponentinpetfoodscanconstitutebetween25to70percentofthedry matter(RokeyandPlattner,1995).Thisrelativehighproportionisrequiredasdogsandcats are carnivorous by nature. The amino acid composition, digestibility and subsequent availability of amino acids in the protein define its nutritional quality (Hullár et al., 1998; Øverlandetal.,2007).Vegetableproteinsourcesalone may not supply sufficient essential aminoacids,e.g.taurineandothersulphuraminoacidsincomparisontoproteinsfromanimal origin(Hickmanetal.,1992).Additionofanimalproteinstothecerealbasedingredientis, therefore,oftennecessarytoprovideabalanceddietaryaminoacidprofileforcatsanddogs. Effectsofextrusionontheproteincomponentcanbeeitherbeneficialordetrimental for the physical and nutritional characteristics of the food mixture. The thermal treatment during extrusion cooking can inactivate proteinbased nutritionally active factors by destroyingtheintegrityoftheirstructureandhencepreventtheiractivities(vanderPoeletal., 1990;Alonsoetal.,2000).Milddenaturationofproteinscanmakethemmoresusceptibleto digestiveenzymesand,therefore,improvethedigestibility of these proteins (Hendriks and Sritharan, 2002). Enzymes (e.g. lipoxygenase, peroxidase) present in pet foods can cause deteriorative effects during storage and can be inactivated as well by extrusion cooking (Cheftel,1986).Thelattercontributestostoragestabilityandincreasestheshelflifeofdry pet foods. Undesirable effects of heat treatment involve destruction of amino acids, racemization of amino acids, inter and extrapeptide linkages and a number of chemical reactions such as Maillard reactions and cross linking reactions of proteinprotein, protein lipidandproteincarbohydratecomplexes(BjörckandAsp,1983). Extrusioncanresultinanincreaseinproteindigestibility.Egañaetal.(1991)reported thatdietextrusionimprovedthedigestibilityofcrudeproteiningrowingdogscomparedto

17 Chapter2______ pelleting the diet. However, Hullár et al (1998) and Øverland et al . (2007) found that the digestibilityofcrudeproteinincatanddogfoodsisnotaffectedbytheextrusionprocess.In soybeansandmanyotherlegumes,proteindigestibilityandavailabilityof(limiting)sulphur aminoacidsincreasevia(i)thermalunfoldingofthemajorseedglobulinsand(ii)thermal inactivation of trypsin inhibitors and lectins (van der Poel et al., 1990). An increase in temperature during extrusion enhances the degree of inactivation of protease inhibitors in wheatflourandthusincreasestheproteindigestibilityoflegumeprotein.Inpetfoods,Bednar etal.(2000)studiedtheeffectofprocessingofvariousvegetableandanimalproteinsources ontheilealnutrientdigestibilityindogsandreportedthatextrudedandpelleteddietswith differentvegetableproteinsourcesprovidedadequatelevelsofhighlydigestibleproteinand aminoacids. Oneofthemainmechanismsresponsibleforareductioninproteinqualityasaresult of extrusion is the Maillard reaction, a nonenzymatic browning and flavouring reaction involvingtheaminoacidlysine.TheMaillardreactioncanbedividedintothreestages:early, advanced and final. The early stage is chemically a welldefined step where there is no formation of coloured components. The advanced stage comprises a variety of reactions leadingtotheproductionofvolatileorsolublesubstanceswhileinsolublebrownpolymers (the melanoidin) are formed during the final stage. These products can provide some flavouringandbrowningoffoods.Severalstudieshaverelatedthelossoflysinetophysical process parameters during extrusion of a model mixture (Ledl and Schleicher, 1990). In general, parameters that promote the Maillard reaction are temperature, moisture content, thermaldurationandpHvalue(Chiang,1983).Extrusiontemperatureanddurationappearto be the most important process parameters for the Maillard reaction with the reaction rate increasing with an increase in both variables. The temperature dependence of chemical reactionsisexpressedastheactivationenergyintheArrheniusequation.Withhighactivation energy, the reaction rate becomes more temperature dependent. The product temperature shouldbekeptbelow180ºCtominimizelossesinpetfoodsandotheranimalfeeds(Cheftel, 1986). LysinecanundergoseveralreactionsincludingtheclassicalMaillardreactionduring extrusionduetoitsfreeepsilonaminogroup.Reactivelysine,alysinemoleculewithafree epsilonamino group as determined in the laboratory, can be used as a predictor for the

18 ______Effectsofextrusiononnutrientsinpetfood availability of lysine invivo and can also serve as an indicator for protein damage during extrusion (Hurrell and Carpenter, 1981; Hendriks et al., 1999). Recently, Williams et al. (2006)showedthattherewasalargedifference(upto58percent)betweenthetotallysine and Omethylisourea(OMIU) reactive lysine content of canine foods indicating that the extrusionandsubsequentdryingprocessmaycausesignificantlysinebinding.Infelinefoods, Rutherfurdetal.(2007)measuredthedifferencebetweenthetotalandOMIUreactivelysine inmoistanddrydietsandfoundadifferenceof20to50percentforthedrydiets,similarto the result of Williams et al. (2006). Fig. 2.1 presents analysed data on the relationship betweentotalandOMIUreactivelysinecontentincanineandfelinedrydiets.Felinediets appeartohavealargerdifferencebetweentotalandreactivelysine,whichmaybeduetothe smallerkibblesizeoffelinediets.Inaddition,Rutherfurdetal.(2007)alsodeterminedthe trueilealdigestibletotalandreactivelysinecontentusingaratsbioassayandobservedalarge overestimation of the available lysine content such that the amino acid pattern relative to lysineinthesedietsmaynotbeoptimaltopromotehealth.Inadditiontolysine,otheramino acidssuchasarginine,tryptophan,cysteineandhistidinecanalsobeaffectedbytheextrusion process.Ofparticularimportancemaybethesulphuraminoacids(cysteineandmethionine) whichareoftenlimitingindietsforcatsastheseaminoacidsaresusceptibletooxidation. 2,5 Feline 2 Canine

1,5

1

0,5 OMIU-reactive lysine (%) lysine OMIU-reactive 0 0 0,5 1 1,5 2 2,5 Total lysine (%) Fig.2.1.TotalandOMIUreactivelysinecontentindrycanineandfelinefoods(after Williamsetal.(2006);Rutherfurdetal.(2007)andHendriks,unpublished).

19 Chapter2______

Achangeinproteinreactivitymayalsoincludetheracemizationorformationofnon nutritiveDaminoacidsfromtheirnaturallyoccurringLconfiguration.Thisracemizationof amino acids, therefore, impairs the protein nutritional quality (Table 2.2). It also enables formationofbondsthatresist invivo hydrolysis. Table2.2 Racemizationofaminoacidsuponexpansionprocessing † Feedtreatment Asparticacidform Glutamicacidform L D D/L ‡ L D D/L Untreated(mash) 13.41.08 8 28.4 0.46 2 Expanded 10.91.21 11 25.1 0.46 2 Expandedpelleted 10.81.23 11 24.7 0.46 2 † vanderPoelAFB,FledderusJandBeumerH(unpublished) ‡ RatioDtoL=D/L*100 Finally,proteinscanreactwithcarbohydrates,lipidsandtheiroxidationproductslike oxidizedpolyphenols,vitaminB6andotheradditives(HurrellandCarpenter,1981).Studying andunderstandingthedifferencesinaminoacidutilizationasaresultofproteininteractions duringextrusionwillallowamoreaccurateinclusionofvaluableproteiningredientsinpet foodanddevelopmentofanidealpatternofdigestibleaminoacidstomaintainhealth. 2.5.Effectsofextrusiononvitamins A number of vitamins are sensitive to physical and chemical treatments. Vitamin stabilitydependsonthechemicalstructureofthevitamininquestionandcanbedecreased duetoexposuretoheat,light,oxygen,moistureand minerals. In general, literature on the effectsofextrusiononvitaminsinanimaldietsisnotabundant.Inanextensivereviewonthe effectsofextrusiononespeciallyBgroupvitaminsinfoodandfeedproducts,Killeit(1994) showedalargevarietyinextrusioneffectsonvitaminretention.Asvitaminsdiffergreatlyin chemicalstructureandcomposition,theirstabilityduringextrusionisvariable(Singhetal., 2007).Theeffectsofextrusion,however,weremainlydestructiveeffectsforvitaminsfrom theBgroup,vitaminAandvitaminE;nodataontheretentionforvitaminDandvitaminK werepresented(Killeit,1994). 20 ______Effectsofextrusiononnutrientsinpetfood

Table2.3 Vitaminlossesduringextrusionofdrycaninefoods Vitamin Vitaminloss(%) Anonymous(1981) † Frye(1995) § Anonymous(2001) ‡ VitaminA 20.0 9.5 65.0 VitaminE 0.0 15.4 16.0 Thiamin(B 1) 7.0 4.0 20.0 Riboflavin(B 2) 26.0 0.0 8.0 VitaminB 12 0.0 0.0 11.0 Folicacid 14.0 8.5 30.0 Pyridoxine(B 6) 7.0 0.0 21.0 Niacin 21.0 0.0 30.0 Biotin 14.0 0.0 31.0 † Extrusionat107ºC. ‡ Extrusionat131135ºC. § Extrusiontemperaturenotgiven. In pet foods, extrusion cooking was shown to be detrimental for the vitamin concentrationswithoxidationbeingamainmechanismofdegradation(Cheftel,1986)andthe ironcontentofthefoodmixturetocatalyseoxidation.Asummaryofvitaminlossesduring petfoodmanufacturingispresentedinTable2.3.Itisnoted,thatthelossesofvitaminsarethe result of the extrusion process including the downstream processes such as drying. From Table 2.3, it can be deduced that the reported vitamin losses in pet foods appear to vary highly,dependingontheextrusionvariables.Extrusiontemperaturemaybeadecisivefactor forvitaminretentionsinceanextrusiontemperatureof130135°Cshowedhigherlossesin comparisonwithanextrusiontemperatureof107°C(Anonymous(1981,2001);Table2.3).It is,however,notelucidatedwhetherashortretentiontimeduringhightemperatureextrusion resultsinahigherretentionofvitamins.Theresultsimplythatfurtherstudiesontheeffectof extrusionvariablesonvitaminsinthetargetfoodsforcompanionanimalsareneeded.These studiesshouldtakeintoaccountthedifferentformsofvitaminswhichhavebeenshownto havedifferentstabilities(Anonymous,2001).Theresultsofthevitaminretentionstudiescan beusedinastrategytoenrichdrypetfoodswith vitamins, either before extrusion, i.e. an overdosingduringmixingoruseofimprovedstability forms to compensate for processing and storage losses, or after extrusion, i.e. downstream extrusion coating (Killeit, 1994; EngelenandvanderPoel,1999).

21 Chapter2______

2.6.Effectsofextrusiononnutritionallyactivefactors The nutritional quality of certain dietary ingredients, especially grain legumes, are suchthatinclusionlevelsindietsarelimitedduetothepresenceofnutritionallyactivefactors (NAFs)thathampernutrientdigestionorutilization.Reductionorinactivationofthesefactors by means of processing technology requires knowledge of the type, distribution, chemical reactivityandthermalsensitivityofthesefactorswithinthematrixoftheseed.Theprinciples, adequacyandprocessoptimisationforthesefactorshavebeenpreviouslydescribed(Melcion andvanderPoel,1993). Table2.4 Effectsofextrusioncookingandsoakingonnutritionallyactivefactorsinfabaandkidney beans Treatment TI ‡ CTI αAI HgA PA CT Pph Viciafaba Rawseeds 4.47 3.56 18.9 49.3 21.7 1.95 3.92 Soaking 4.27 3.41 16.1 49.3 14.6 1.02 3.73 Extrusion 0.05 1.68 0.00 0.20 15.9 0.89 2.80 PhaseolusVulgaris Rawseeds 3.10 3.97 248 74.5 15.9 3.59 2.07 Soaking 2.93 3.37 220 74.5 15.0 2.72 1.64 Extrusion 0.43 0.00 0.00 0.20 12.6 0.58 1.12 † Alonsoetal.(2000) ‡ TI,trypsininhibitors(IUmg 1DM);CTI,chymotrypsininhibitors(IUmg 1DM);αAI,αamylaseinhibitors (IUmg 1DM);HgA,haemagglutinatingactivity(HUmg 1DM);PA,phyticacid(gkg 1DM);CT,condensed tannins(geqcatkg 1DM);Pph,polyphenols(gkg 1DM). Asaheattreatment,extrusioncookinginactivatesNAFactivityespeciallythoseofa proteinaceousstructure(vanderPoeletal.,1990;Alonsoetal.,2000).Extrusioncookingis the most effective method to reduce the activity of trypsin inhibitors (Purushotham et al., 2007)ofchymotrypsininhibitorsandofalphaamylaseinhibitors(Table2.4).Accordingto BjörckandAsp(1983),anextruderbarreltemperatureintherangeof133139°Cissufficient to inactivate 95 percent or more of the trypsin inhibitors. At a constant temperature, the inactivation of these factors increased with a longer residence time and higher moisture content.Comparedtotraditionalprocessingmethods,extrusionshowedthelargesteffectsin

22 ______Effectsofextrusiononnutrientsinpetfood reductionofthelevelofseveralenzymeinhibitorsandlectins(Alonsoetal.,2000;Hajosand Osagie, 2004) with a concomitant improvement of invitro starch and protein digestibility (Alonsoetal.,2000). InformationonthecontentofotherNAFsinpetfoodsislimited.Anumberofstudies havereportedhighconcentrationsofphytoestrogens(Cerundoloetal.,2004;Belletal.,2006) andmycotoxins(Leungetal.,2006)incanineandfelinediets.BothtypesofNAFshavebeen showntobephysiologicallyactiveincatsanddogs.Routineextrusiontechnology,however, doesnotinactivatethesethermallystableNAFs(Hughesetal.,1999)andothermeanssuchas ingredientselection,theuseofabsorptionclays,therefore,wouldbemoreappropriatewaysto reduceitsconcentrationinpetfoods. Additionalresearchshouldfocusonelucidatingthefateofrelativelyheatstableactive factors after extrusion or study coprocesses such as the combination of extrusion and the application of enzymes (Hajos and Osagie, 2004). In addition, the contribution of single factors to nutritional effects should be assessed properly since several factors in dietary ingredientsaresimultaneouslypresentandactsynergisticallytoexertnegativeeffects(Hajos andOsagie,2004).Althoughtheinactivationofundesiredfactorsduringtheheatprocessing ofseparateingredientiswelldocumented,theirinactivationwhenprocessingacompletepet dietrequirefurtherresearch. 2.7.Effectsofextrusiononpetdietpalatability Inpetfoodproduction,palatability,whichdeals with factors such as taste, aroma, mouthfeel(texture,shapeandparticlesize),istypicallyreferredtoasameasuredvalueof foodpreferencesandingestivebehaviour.Palatabilityisakeyfactorintheselectionofadiet by a dog or cat. This may be influenced by a number of factors such as the nutrient composition, e.g. fat and carbohydrate ratio (Case et al., 2000) of the food and processing conditions(Hulláretal.,1998). AccordingtoKvammeandPhillips(2003),extrusion may play a role in affecting palatabilitybythecontrolofthelevelofspecificmechanicalenergy(SME).Energyaddedto the extrusion processing comprises two main forms: thermal (from steam and water) and

23 Chapter2______ mechanical(fromthemaindrivemotor).Themechanicalenergycanbeadjustedbyhardware toolssuchasscrewconfiguration,dieconfigurationandextruderspeedandwithextraSME, palatabilityforcatsincreases(KvammeandPhillips,2003).Dogsseemedtofavouramore thermallycookedproduct(Dunsfordetal.,2002).Asthethermalenergywasincreased,the palatabilityincreasedfordogs. Lossofpalatabilitymaybecausedbyriskfactors such as microbial growth, auto oxidation, changes in aroma and texture (Deffenbaugh, 2007). Control of the expansion degree thus seems important (Lin et al., 1998). In addition, shelf life studies should also include palatability testing, once a target palatability is first accomplished after extrusion, dryingandotherdownstreamprocesses(Deffenbaugh,2007). 2.8.Conclusion Extrusioncookingisacomplexprocessinvolvinginterrelationsbetweenprocessand productparametersthataffectsnutrientreactivityoftheproductquality.Themostimportant process variables are temperature, residence time, moisture and pH values, which can be controlledtoachievedesiredresults. Recentresearchontheeffectsofextrusiononnutrientssuchasstarch,proteinsand lipidsinpetfoodshasbeenconsideredand,ingeneral,thereisonlylittleknownaboutthe effectsoftheextrusionprocess(variables)onthequalityofpetdiets.Amongtheeffectof extrusion on pet foods are starch gelatinization, protein denaturation, vitamin loss and the inactivationofnutritionallyactivefactors. Theeffectsofextrusionparametersonretrogradedstarch,aminoacidreactivity,lipid oxidation and nutrient utilization by pets should be studied. Moreover, nutrient interaction duringextrusionandstoragemaybeareasonofthedifferenceinnutrientutilizationbypets. Inaddition,itisemphasizedtostudytheeffectsoftheextrusiondownstreamprocessessuch as drying on nutrient retention. Quantification of nutrient modification and its interactions afterextrusionandstoragewillprovidemorepossibilitiestocontrolthenutritionalvalueof petfoods.

24 ______Effectsofextrusiononnutrientsinpetfood

References Alonso,R.,Aguirre,A.,Marzo,F.,2000.Effectsofextrusionandtraditionalprocessingmethodson antinutrientsand invitro digestibilityofproteinandstarchinfabaandkidneybeans.Food Chem.68,159165. Anonymous, 1981. Rationale for Roche recommended vitamin fortification dogs and cats. HoffmannLaRoche,Nutley,N.J.,USA. Anonymous,2001.Vitaminstabilityinpremixesandfeeds:apracticalapproach.BASFCorporation, MountOlive,N.J.,USA. Bednar, G.E., Murray, S.M., Patil, A.R., Flickinger, A.E., Merchen, N.R., Fahey Jr, G.C., 2000. Selectedanimalandplantproteinsourcesaffectnutrientdigestibilityandfecalcharacteristics ofileallycannulateddogs.Arch.Anim.Nutr.53,127140. Bell, K.M., Rutherfurd, S.M., Hendriks, W.H., 2006. The isoflavone content of commercially availablefelinedietsinNewZealand.NewZeal.Vet.J.54,103108. Björck,I.,Asp,N.G.,1983.Theeffectsofextrusioncookingonnutritionalvalue,aliteraturereview. J.FoodEng.2,281308. Case,L.P.,Carey,D.P.,Hirakawa,D.A.,Daristotle,L.,2000.Canineandfelinenutrition:Aresource forcompanionanimalprofessionals.Mosby,Inc.,St.Louis,Missouri,USA. Cerundolo, R., Court, M.H., Hao, Q., Michel, K.E., 2004. Identification and concentration of soy phytoestrogensincommercialdogfoods.Am.J.Vet.Res.65,592596. Cheftel,J.C.,1986.Nutritionaleffectsofextrusioncooking.FoodChem.20,263283. Chiang, G.H., 1983. A simple and rapid HighPerformance Liquid Chromatographic procedure for determination of furosine, lysinereducing sugar derivative.J.Agri.FoodChem.31,1373 1374. Deffenbaugh, L., 2007. Optimizing pet food, aquatic and livestock feed quality. In: [Riaz, M.N., editor],Extrudersandexpandersinpetfood,aquaticandlivestockfeeds.AgrimediaGmbH, Clenze,Germany,pp.327342. Dunsford,B.,Plattner,B.,Greenbury,B.,Rockey,G.,2002.Theinfluenceofextrusionprocessingon petfoodpalatability.ProceedingsofPetfoodForum. Dust,J.M.,Gajda,M.A.,Flickinger,A.E.,Burkhalter, T.M., Merchen, N.R., Fahey Jr, G.C., 2004. Extrusion conditions affect chemical composition and invitro digestion of selected food ingredients.J.Agri.FoodChem.52,29892996. Egaña,J.I.,López,A.,Quezada,Q.,1991.Effectof extrusion on acceptability and digestibility of growingdogdiets.Arch.Latinoam.Nutr.41,111120.

25 Chapter2______

Engelen, G.M.A., van der Poel, A.F.B., 1999. Postpelleting application of liquid additives. WageningenPers,Wageningen,theNetherlands. Frye,T.,1995.Vitaminstabilityincannedandextrudedpetfood.Hill'sPetNutrition,Inc.,Science andTechnologyCenter,Topeka,K.S.,USA. Hajos,G.,Osagie,A.U.,2004.Technicalandbiotechnologicalmodificationsofantinutritionalfactors inlegumeandoilseeds.Recentadvancesofresearchinantinutritionalfactorsinlegumeseeds andoilseeds,293301. Harper,J.M.,1978.Foodextrusion.Crit.Rev.FoodSci.11,155215. Hendriks,W.H.,Emmens,M.M.A.,Trass,B.,Pluske,J.R.,1999.Heatprocessingchangestheprotein qualityofcannedcatfoodasmeasuredwitharatbioassay.J.Anim.Sci.77,669676. Hendriks, W.H., Sritharan, K., 2002. Apparent ileal and fecal digestibility of dietary protein is differentindogs.J.Nutr.132,16921694. Hickman,M.A.,Rogers,Q.A.,Morris,J.M.,1992.Taurinebalanceisdifferentincatsfedpurifiedand commercialdiets.J.Nutr.122,553559. Hughes,D.M.,Gahl,M.J.,Graham,C.H.,Grieb,S.L.,1999.Overtsignsoftoxicitytodogsandcatsof dietarydeoxynivalenol.J.Anim.Sci.77,693700. Hullár,I.,Fekete,S.,Szōcs,Z.,1998.Effectofextrusiononthequalityofbasedcatfood.J. Anim.PhysiolAn.N.80,201206. Hurrell,R.F.,Carpenter,K.J.,1981.TheestimationofavailablelysineinfoodstuffsafterMaillard reaction.Prog.FoodNutr.Sci.5,159175. Killeit,U.,1994.Vitaminsretentioninextrusioncooking.FoodChem.49,149155. Kvamme,J.L.,Phillips,T.D.,2003.PetfoodTechnology.WattPublishingCo.,Mt.Morris,Illinois, 61054USA. Ledl,F.,Schleicher,E.,1990.NewaspectsoftheMaillardreactioninfoodsandinthehumanbody. Angew.Chem.Int.Ed.Engl.29,565594. Leung,M.C.K.,DiazLlano,G.,Smith,T.K.,2006.Mycotoxinsinpetfood:Areviewonworldwide prevalenceandpreventativestrategies.J.Agri.FoodChem.54,96239635. Lin,S.,Hsieh,F.,Huff,H.E.,1997.Effectsoflipidsandprocessingconditionsondegreeofstarch gelatinisationofextrudeddrypetfood.Lebensm.Wiss.u.Technol.30,754761. Lin,S.,Hsieh,F.,Huff,H.E.,1998.Effectsoflipidsandprocessingconditionsonlipidoxidationof extrudeddrypetfoodduringstorage.Anim.FeedSci.Technol.71,283194. Melcion,J.P.,vanderPoel,A.F.B.,1993.Processtechnologyandantinutritionalfactors:principles, adequacyandprocessoptimisation.Recentadvancesofresearchinantinutritionalfactorsin legumeseeds,419434.

26 ______Effectsofextrusiononnutrientsinpetfood

Murray,S.M.,Flickinger,A.E.,Patil,A.R.,Merchen,N.R.,BrentJr,J.L.,FaheyJr,G.C.,2001. In vitro fermentationcharacteristicsofnativeandprocessedcerealgainsandpotatostarchusing ilealchymefromdogs.J.Anim.Sci.79,435444. Murray,S.M.,Patil,A.R.,FaheyJr,G.C.,Merchen,N.R.,Wolf,B.W.,Lai,C.S.,Garleb,K.A.,1998. Apparent digestibility of a debranched amylopectinlipid complex and resistant starch incorporatedintoenteralformulasfedtoilealcannulateddogs.J.Nutr.128,20322035. Øverland,M.,Romarheim,O.H.,Ahlstrøm,Ø.,Storebakken,T.,Skrede,A.,2007.Technicalquality ofdogfoodandsalmonfeedcontainingdifferentbacterialproteinsourceandprocessedby differentextrusionconditions.Anim.FeedSci.Technol.134,124137. vanderPoel,A.F.B.,Blonk,J.,vanZuilichem,D.J.,vanOort,M.G.,1990.Thermalinactivationof lectins and trypsin inhibitor activity during steam processing of dry beans ( Phaseolus vulgaris )andeffectsonproteinquality.J.Sci.FoodAgri.53,215228. Purushotham, B., Radhakrishna, P.M., Sherigara, B.S., 2007. Effects of steam conditioning and extrusiontemperatureonsomeantinutritionalfactorsofsoyabean( Glycinemax )forpetfood applications.Am.J.Anim.Vet.Sci.2,15. Rokey, G., Plattner, B., 1995. Process description. In: Pet food production. Wenger Mfg, Inc., Sabetha,KSUSA66534,pp.118. Rutherfurd, S.M., RutherfurdMarkwich, K.J., Moughan, P.J., 2007. Available (ileal digestible reactive)lysineinselectedpetfoods.J.Agri.FoodChem.55,35173522. Singh,S.,Gamlath,S.,Wakeling,L.,2007.Nutritionalaspectsoffoodextrusion:areview.Int.J. FoodSci.Technol.42,916929. Spears,J.K.,FaheyJr,G.C.,2004.Resistantstarchasrelatedtocompanionanimalnutrition.J.Assoc. Off.Ana.Chem.Int.87,787791. Stroucken,W.P.J.,vanderPoel,A.F.B.,Kappert,H.J.,Beynen,A.C.,1996.Extrudingvspelletingof afeedmixturelowersapparentnitrogendigestibilityindogs.J.Sci.FoodAgri.71,520522. Svihus, B., Uhlen, A.K., Harstad, O.M., 2005. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: a review. Anim. Feed Sci. Technol.122,303320. Williams,B.A.,Hodgkinson,S.M.,Rutherfurd,S.M.,Hendriks,W.H.,2006.Lysinecontentincanine dietscanbeseverelyheatdamaged.J.Nutr.136,1998S2000S. Wolter,R.,Socorro,E.P.,Houdre,C.,1998.Faecalandilealdigestibilityinthedogofdietsrichin wheatortapioca(inFrench).Resc.Med.Vet.174,4555.

27

28

Chapter3 Lysinereactivityandstarchgelatinizationinextrudedandpelleted caninediets Q.D.Tran a,b ,C.G.J.M.vanLin a,W.H.Hendriks a,A.F.B.vanderPoel a a AnimalNutritionGroup,DepartmentofAnimalSciences,WageningenUniversity,Marijkeweg40, 6709PGWageningen,theNetherlands b HumanandAnimalPhysiologyGroup,Biologyfaculty,VinhUniversity,182LeDuanstreet,Vinh,Vietnam AnimalFeedScienceandTechnology138(2007)162168

Chapter3______ Abstract Fifteendryadultcaninediets(i.e.,dinners,extrudates,pellets)werecollectedfromretailersin Wageningen, the Netherlands, and chemically and physically characterized. Quality measurements were lysine Omethylisourea (OMIU) reactivity and starch gelatinization degree (SGD). In general, extruded diets had a higher crude fat and starch content than pellets.Meanvaluesforstarchgelatinizationwerehigherinpelletsandrangedbetween0.78 and0.91.Themeanvalueofreactive/totallysineratioinextrudatesampleswasabout5to10 percenthigherthaninpelletsamples.Incommercialdiets,thereisabout20%boundlysinein pellets,12%inextrudatesand17%indinners.Variationofanalysednutrientsinpelletswas larger than in extrudates. Inclusion of animal or vegetable ingredients and the process variables during extrusion or pelleting are the likely causative factors for the variation in lysinereactivityandstarchgelatinization. Keywords: Extrudate;Lysine;Pellet;Petfood;Starch. Abbreviations: ADF,aciddetergentfibre;DM,drymatter;OMIU,Omethylisourea; SGD,starchgelatinizationdegree.

30 ______Lysinereactivityandstarchgelatinizationinextrudedandpelletedcaninediets

3.1.Introduction Commercialpetfoodscanbecategorizedintofour basic types of dry, semimoist, moist and snacks. Dry pet foods comprise the largest segment of the total pet foods sold worldwideand0.95ofpetdiets,inpractice,areextruded(SpearsandFahey,2004).Thepet food industry predominantly uses extrusion to manufacture dry pet foods because of the abilitytopasteurize,increasedigestibility/availability,achieveadesireddensityandformthe productsinoneapplication(Douglas,2006).Thishightemperatureshorttimeprocessdoes, however, have detrimental effects on nutritional quality (Björck and Asp, 1983; Cheftel, 1986). Pelleting and extrusion are thermomechanical processes that promote chemical changes such as Maillard reactions between the εamino group of lysine and the carbonyl groupofothercompounds(BjörckandAsp,1983;vanBarneveld,1993)andproteincross linking reactions (Stanley, 1989; Arêas, 1992). Protein quality can be affected by these reactionssincetheproductsformedarenotalwaysutilizedbytheanimalwhendigestedand absorbed (Hendriks et al., 1999). In addition, carbohydrate quality may be modified by thermomechanicaltreatmentsthroughthegelatinizationofstarch(Lankhorstetal.,2007)or a shift to the development of resistant starch (Dust et al., 2004). Process conditions used duringthepelletingorextrusionprocessdeterminedigestibility/availabilitytoalargeextent. Indeed,ithasbeenestablishedthatlysinereactivitywasaffectedindrycommercialcanine diets(Williamsetal.,2006)andexperimentalextrudeddiets(Lankhorstetal.,2007),andis dependentontheconditionsusedduringdietmanufacture.Comparedtoextrusioncooking, pelletingmaygeneratelessshearforcesonthefeedingredientsandoperatesatmuchlower product endtemperatures. Extrusion versus pelleting leads to a decrease in nitrogen digestibilityandanincreaseinashabsorptionindogsfeddietswithahighinclusionlevelof productsofanimalorigin(Strouckenetal.,1996). This study investigated variation in total and reactive lysine contents, gelatinization degreesofstarchandphysicalpropertiesofdrycaninefoodscommerciallyavailableinthe Netherlands.

31 Chapter3______ 3.2.Materialsandmethods 3.2.1Caninedietsandsamplepreparation FifteendryadultcaninedietswereobtainedfromsupermarketsinWageningen,the Netherlands.Dietsincluded4extrudeddiets,4pelleteddietsand7dinners.Thedinnerswere composedofdifferentlyprocessedingredientssuchasextrudates,puffedcerealsandflaked grains.Alldietswereground(RetschZM100mill,RetschBV,Ochten,theNetherlands)to passa1mmsieveandstoredinairtightplasticcontainersat4°Cpriortoanalysis. 3.2.2.Chemicalandphysicalanalysis Thecompositionofthedietswasdeterminedbythe standard analysis methodology (AOAC,1990).Drymatter(DM)wasanalyzedbydrying samples to a constant weight at 103˚C; the ash content was determined after combustion at 550ºC and N was determined usingtheKjeldahltechniquewithCuSO 4 asacatalyst.Crudefatlevelwasdeterminedusing the Berntrop treatment (acid hydrolysis) prior to extraction with petroleum ether in a continuousextractor(Soxhlet). Starch content and starch gelatinization degree (SGD) were enzymatically (i.e., amyloglucosidase)determinedasdescribedbyLankhorstetal.(2007).Totallysinecontent was determined according to the method described by Hendriks et al. (2002) while O methylisourea (OMIU)reactive lysine content was determined according to Moughan and Rutherfurd (1996). In the latter method, lysine with a free εamino group is converted to homoargininebytheuseofOMIUandthereactivelysineiscalculatedfromthemolaramount offormedhomoarginine.Allchemicalanalyseswerecarriedoutinduplicate. DurabilityandhardnessoftheextrudatesandpelletsweremeasuredusingtheHolmen (simulationofpneumatictransportduring60sec)andanautomaticKahldevice,respectively, asdescribedbyThomasandvanderPoel(1996).Specificdensitywascalculatedasmean (n=12)quotientofkibbleweighttokibblevolume. In this calculation for specific density, caninedinnerswerenotincluded.

32 ______Lysinereactivityandstarchgelatinizationinextrudedandpelletedcaninediets

3.2.3.Statisticalanalysis Thecorrelationcoefficientsbetweenthevariousquality indicators of the products, (i.e., the specific density and the reactive/total lysine ratio) were determined using the correlationprocedureofSAS9.1.3ServicePack4(SAS,2003). Table3.1 Nutritionalandphysicalqualityofcommercialdrycaninediets Caninediet Extrudate Pellet Dinner Numberofsamples 4 4 7 Nutrient Drymatter g/kgfood 917±11 ּ6 911±5 ּ6 911±18 ּ2 Ash g/kgDM a 75±5 ּ1 77±13 ּ6 78±6 ּ9 Crudefat g/kgDM 97±24 ּ9 76±30 ּ8 73±16 ּ8 Crudeprotein g/kgDM 276±9 ּ9 267±36.8 245±21 ּ2 ADF g/kgDM 51±2 ּ5 62±18 ּ7 57±6 ּ2 Starch g/kgDM 388±49 ּ0 362±91 ּ7 418±63 ּ7 SGD proportion 0.76±0.05 0.86±0.06 0.79±0.09 Totallysine g/kgDM 14±1 ּ3 12±0.9 11±1 ּ6 Reactivelysine g/kgDM 12±1 ּ1 9±1 ּ0 9±2 ּ1 Ratio b 0.88±0.05 0.80±0.09 0.83±0.10 Physicalproperty Durability % 88±10 ּ7 95±1 ּ2 ND c Hardness kg 17±6 ּ7 16±3 ּ5 ND a DM,Drymatter;ADF,Aciddetergentfibre;SGD, Starchgelatinizationdegree b Reactive/totallysineratio cNotdetermined 3.3.Results Minimumandmaximumvaluesforthenutrientcompositionofthecaninedietswere (g/kg DM; range): crude fat 50120; crude protein 221317; starch 231495; ADF 5090; .lysine8ּ414ּ6andreactivelysine6.813.0.Moisturecontentrangedfrom56109g/kgdiet Theanalysisshowsthatthefatcontentintheextrudateswashigherthanthatofthepelleted diets and dinners (Table 3.1). In general, variation of all nutrient contents in pellets was

33 Chapter3______ larger.Levelsofstarchwerealsohigherintheextrudates(Table3.2)butthedegreeofstarch gelatinizationwashigherinthepelletsshowingarangeasaproportionof0.780.91.Both totalandreactivelysinecontentintheextrudateswashigherthaninthepellets,causingthe reactive/totallysineratiotobehighest.TheratioofOMIUreactiveandtotallysine,reactive lysine expressed per unit of total lysine a property related to the effect of thermal mechanical processing, was lower in the pellets compared to extrudates. In pellets, the averageratiowas0.80(n=4)whileintheextrudatestheratiowas0.87(n=4). Table3.2 Density, starch gelatinization degree (SGD) and lysine characteristics of commercial dry canineextrudatesandpellets Density SGD TotallysineReactivelysineRatio a Diet Foodform (g/cm 3)(proportion) (g/kgDM b) (g/kgDM) Extrudate 0ּ47 0.73 14ּ612ּ5 0.85 1 Extrudate 0ּ49 0.76 12ּ910ּ6 0.83 2 Extrudate 0ּ57 0.83 12ּ111ּ3 0.93 3 Extrudate 0ּ64 0.79 14ּ513ּ0 0.89 4 Pellet 0ּ97 0.78 13ּ09ּ4 0.72 5 Pellet 0ּ99 0.91 11ּ510ּ8 0.93 6 Pellet 1ּ01 0.85 10ּ98ּ4 0.77 7 Pellet 1ּ15 0.90 11ּ79ּ0 0.76 8 aReactive/totallysineratio bDrymatter Extrudedsampleswere10percentlessdurable,buthadahighervalueforhardness, versus dietswhichwerepelleted.Forexample,therangewithinallextrudatesforhardness .was11ּ3to26ּ8andfordurability,69ּ4to99ּ8 The correlation coefficients calculated between components and several physical determinations such as kibble thickness, volume and density mostly resulted in no clear correlation(datanotshown).However,thespecificdensityofextrudateshadacorrelation(r P<0ּ001)withtheratioofreactive/totallysine.Incontrast,thepelletdensitywasnot ;0ּ59= correlated (r =0ּ18; P=0ּ23). For all diets (n=8, dinners not included), the correlation .(betweenthicknessandreactive/totallysineratiowas0ּ58( P<0ּ001

34 ______Lysinereactivityandstarchgelatinizationinextrudedandpelletedcaninediets

3.4.Discussion Except for total starch and fat content, mean contents for other components in extrudatesandpellets,respectively,aresimilar.Qualitymeasurementforstarchmodification revealsadegreeofstarchgelatinizationbetween0.78and0.86,indicatingcurrentvaluesat higherextrusiontemperaturesasreportedfromstudieswithexperimentalconditionsduring extrusion(Linetal.,1997;Dustetal.,2004;Lankhorstetal.,2007). Changesinstarchgelatinizationareconsideredtobeoneofthebeneficialeffectsof thermal processing, and high temperature short time extrusion process increases SGD (Harper,1978;BjörckandAsp,1983;Linetal.,1997;Murrayetal.,2001).Gelatinization increasessusceptibilityforamylolyticdegradationduetolossofcrystallinestructure(Holmet al.,1988;Björcketal.,2000;Kishidaetal.,2001).Holmetal.(1988)reportedacorrelation of 0ּ96 between extent of gelatinization and digestion rate in dogs. Extrusion processing usually results in a more complete gelatinization and disintegration of starch granules than pelleting (Asp and Björck, 1989). However, the possibility cannot be excluded that starch componentsareusedwhichalreadyhavebeengelatinizedpriorto mixingfor thepelleting process. The mean contents of bound lysine (i.e., total lysine minus reactive lysine) in extrudates and pellets were 12% and 20%, respectively (Table 3.1). The variation for this qualityparameterofpellets,however,waslargerthanextrudates.Inthepellets,forexample,a minimumboundlysineof7%occurredwhilethehighestvaluewas28%boundlysine(Table 3.2).Thevariationincaninefoodsofdifferentbrands may reflect conditions used for the preparation of food ingredients, such as maize grain. Moreover, conditions in food preparation,suchasextrusion(Lankhorstetal.,2007)orpelleting(Thomas,1998),almost certainly affect quality measurements such as lysine damage, since heat and shear are involvedinbothprocesses.Theratioofreactive/totallysinewasconsideredaqualityproperty directlyaffectedbytechnologicaltreatments.Itisnotablethatthelowestratioofreactive/total lysineoccurredin3of4pellets,ratherthanintheextrudatesinvestigated.Itiswellknown thatshearanddiepressureplayamajorroleinphysicochemical properties of the formed product(Linetal.,1997;Williamsetal.,2006).

35 Chapter3______ Extrusionisahighpressuretreatmentatahighmoisturelevel,suggestingthatfood expansionandsubsequentlyrelaxationwilloccurcausedbythepressuredropjustafterthe die. Pelleting, however, is a process whereby food is produced at a much lower moisture level,usingalongerdieholewherenoexpansionandhardlyanyrelaxationoftheproduct occurs(Thomas,1998).Inpractice,extruderdiethicknessissmallerthanapelletdie.With pelleting, increasing die hole length increases pellet residence time in the die, resulting in improvedpelletdurabilityalthoughitmayaffectlysinereactivity.Theseexamplesshowthat, inagglomeratingprocesses,diedesignandthecorrelatedsectionalexpansionindexoffoods duringextrusion(AlvarezMartinezetal.,1988)maybeimportantdeterminantsofnutrient modification.Inaddition,ithasalsobeenshownthatextrusionoflowreactivelysinefoods mayincreasethereactivelysinelevel(Lankhorstet al., 2007). Where steam conditioning, shearandcoolingareprocessesinvolvedineithersteampelletingorextrusionofcaninediets, extrusioncookingisfollowedbyadryingandcoatingprocesspriortocooling,aprocessthat mayalsoaffectthereactivelysinecontent. 3.5.Conclusions Commercial diets vary considerably in levels of modified starch and the ratio of total/reactivelysine.Thereactive/totallysineratioofextrudateswas5to10percenthigher than pellets, although statistical analysis shows no difference in the determined nutrients between foods. Both the interaction between food ingredient properties (i.e., animal versus vegetable ingredients) and process variables during pelleting and extrusion, including die expansionphenomenashouldbefurtherstudiedtopredicttheireffectsonreactivityoflysine and starch gelatinization in the agglomerating and drying processes, as well as their interaction.

36 ______Lysinereactivityandstarchgelatinizationinextrudedandpelletedcaninediets

Acknowledgements SpecialthankstoMrS.Rutherfurd(MasseyUniversity,PalmerstonNorth,NewZealand)for conductingthereactivelysineanalysis. References AlvarezMartinez,L.,Kondury,K.P.,Harper,L.M.,1988.Ageneralmodelforexpansionofextruded products.J.FoodSci.53,609615. AOAC,1990.OfficialMethodsofAnalyses,AOAC,15thEdition.AOAC,Arlington,VA,USA. Arêas,J.A.G.,1992.Extrusionoffoodproteins.Critic.Rev.FoodSci.Nutr.32,365392. Asp, N.G., Björck, I., 1989. Nutritional properties of extruded foods, In: Mercier, C., Linko, P., Harper,J.(Eds.),Extrusioncooking,AmericanAssociationofCerealChemistsInc.,St.Paul, MN,USA,pp.399434. vanBarneveld,R.J.,1993.Effectofheatingproteinsonthedigestibility,availabilityandutilizationof lysine by growing pigs, Department of Agriculture, University of Queensland, Brisbane, Queensland,Australia,p.220. Björck,I.,Asp,N.G.,1983.Theeffectsofextrusioncookingonnutritionalvalue,aliteraturereview. J.FoodEng.2,281308. Björck,I.,Liljeberg,H.,Östman,E.,2000.Lowglycaemicindexinfoods.Brit.J.Nutr.83,149155. Cheftel,J.C.,1986.Nutritionaleffectsofextrusioncooking.FoodChem.20,263283. Douglas,P.,2006.Changingmarketsrequireflexibledryerdesign.FeedTech10,2426. Dust,J.M.,Gajda,M.A.,Flickinger,A.E.,Burkhalter, T.M., Merchen, N.R., Fahey Jr, G.C., 2004. Extrusion conditions affect chemical composition and invitro digestion of selected food ingredients.J.Agri.FoodChem.52,29892996. Harper,J.M.,1978.Foodextrusion.CRCCritic.Rev.FoodSci.Nutr.11,155215. Hendriks,W.H.,Butts,C.A.,Thomas,D.V.,James,K.A.C.,Morel,P.C.A.,Verstegen,M.W.A.,2002. Nutritionalqualityandvariationofmeatandbonemeal.AsianAustralasianJ.Anim.Sci.15, 15071516. Hendriks,W.H.,Emmens,M.M.A.,Trass,B.,Pluske,J.R.,1999.Heatprocessingchangestheprotein qualityofcannedcatfoodasmeasuredwitharatbioassay.J.Anim.Sci.77,669676.

37 Chapter3______ Holm,J.,Lundquist,I.,Björck,I.,Eliasson,A.C.,Asp,N.G.,1988.Relationshipbetweendegreeof gelatinisation, digestion rate invitro , and metabolic response in rats. Am. J. Clin. Nutr. 47, 10101016. Kishida,T.,Nogami,H.,Himeno,S.,Ebihara,K.,2001. Heat moisture treatment of high amylose cornstarchincreasesitsresistantstarchcontentbutnotitsphysiologicaleffectsinrats.J.Nutr. 131,27162721. Lankhorst,C.,Tran,Q.D.,Havenaar,R.,Hendriks,W.H.,vanderPoel,A.F.B.,2007.Theeffectof extrusiononthenutritionalvalueofcaninedietsasassessedby invitro indicators.Anim.Feed Sci.Technol.,138,285297. Lin,S.,Hsieh,F.,Huff,H.E.,1997.Effectsoflipidsandprocessingconditionsondegreeofstarch gelatinisationofextrudeddrypetfood.Lebensm.Wiss.u.Technol.30,754761. Moughan,P.J.,Rutherfurd,S.M.,1996.Anewmethodfordeterminingdigestiblereactivelysinein foods.J.Agri.FoodChem.44,22022209. Murray,S.M.,Flickinger,A.E.,Patil,A.R.,Merchen,N.R.,BrentJr,J.L.,FaheyJr,G.C.,2001. In vitro fermentationcharacteristicsofnativeandprocessedcerealgainsandpotatostarchusing ilealchymefromdogs.J.Anim.Sci.79,435444. SASInstituteInc.2003.SAS®OnlineTutor9.1:Programming.Cary,NC,USA. Spears,J.K.,Fahey,G.C.,2004.Resistantstarchasrelatedtocompanionanimalnutrition.J.Assoc. Offic.Anal.Chem.Internatio.87,787791. Stanley,D.W.,1989.Proteinreactionsduringextrusionprocessing,In:Mercier,C.,Linko,P.,Harper, L.M.(Eds.),ExtrusionCooking,Am.Assoc.CerealChem.,St.Paul,MN,USA,pp.321341. Stroucken,W.P.J.,vanderPoel,A.F.B.,Kappert,H.J.,Beynen,A.C.,1996.Extrudingvspelletingof afeedmixturelowersapparentnitrogendigestibilityindogs.J.Sci.FoodAgri.71,520522. Thomas, M., 1998. Physical quality of pelleted feed: A feed model study, Department of Animal Sciences,WageningenUniversity,Wageningen,TheNetherlands,p.263. Thomas, M., van der Poel, A.F.B., 1996. Physical quality of pelleted animal feeds. 1. Criteria for pelletquality.Anim.FeedSci.Technol.61,89112. Williams,B.A.,Hodgkinson,S.M.,Rutherfurd,S.M.,Hendriks,W.H.,2006.Lysinecontentincanine dietscanbeseverelyheatdamaged.J.Nutr.136,1998S2000S.

38

Chapter4 Effectsofextrusiononthenutritionalvalueofcaninedietsasassessed by invitro indicators C.Lankhorst a,Q.D.Tran a,R.Havenaar b,W.H.Hendriks aandA.F.B.vanderPoel a aAnimalNutritionGroup,DepartmentofAnimalSciences,WageningenUniversity,Marijkeweg40, 6709PGWageningen,theNetherlands. b TNONutritionandFoodResearch,P.O.Box360,3700AJZeist,theNetherlands AnimalFeedScienceandTechnology138(2007)285–297 Chapter4______ Abstract A3×2×2factorialtrialwasdesignedtoinvestigatetheeffectofdifferentextrusionconditions and product parameters on the nutritional quality as determined by a number of invitro measurements (e.g. reactive lysine, and starch gelatinization degree) as well as physical qualityofthekibble(durabilityandhardness)ofacaninediet.Theparametersinvestigated weremasstemperature(110,130or150°C),moisturecontent(200or300g/kg)ofthediets priortoextrusionandnumberoftimes(onceortwice)extruded.Totallysineandotheramino acidswereunaffectedbytheextrusionconditionsemployed.Extrusionconditionshadaclear effectonthereactivelysinecontentwiththeratioofreactivetototallysineincreasingfrom 0.71to0.80andhigherasaresultofextrusionandtemperature.Afterasecondextrusion,a decreasewasobservedfromaratioreaching1.0toabout0.9.Initialmoisturecontentaffected lysine reactivity. Protein digestibility as measured invitro was not affected by different extrudingconditions.Therewerenoobviousdifferencesinproteindispersibilityindex(PDI) ofalltheextrudates. Invitro glucosedigestibilitycoefficientsaswellasstarchgelatinization degree(SGD)showedatendencytoincreasewithanincreaseineachindividualparameter tested.Theincreaseintemperaturefrom110°Cto150°Caswellasextrusionforasecond time decreased kibble durability while increasing moisture content increased durability. Optimisationofextrusionconditionsduringcommercialpetfoodproductionshouldinclude measurementofthereactivetototallysineratio. Keywords: extrusion;proteinquality;reactivelysine;starchgelatinization;dog. Abbreviations: AAN, amino acid nitrogen; DM, dry matter; FIDO, functional gastro intrestinal dog model; OMIU, Omethylisourea; PDI, protein dispersibility index;SGD,starchgelatinisationdegree;SIDC,smallintestinaldigestibility coefficient; TIM, TNO gastrointestinal model; TNO, TNO Nutrition and FoodResearch.

40 ______Effectsofextrusionon invitro nutritionalvalueofcaninediets

4.1.Introduction Themajorityofcommerciallyavailabledrycanineandfelinefoodsaremanufactured usingextrusioncookingtechnology.Thiscomplexprocessallowsforaflexibleapproachto product manufacture compared to baking and pelleting. This approach is preferred for meetingthedemandofpetowners.Extrusioncookingtechnologyischaracterisedasahigh temperatureshorttimeprocess(Dziezak,1989)wherethefoodmixtureisexposedtoahigh pressure and temperature (80200 oC) for a relatively short period of time (10270 sec.). Beneficialcharacteristicsofathermaltreatmentsuchasextrusionincludeachievingadesired physical form, inactivation of antinutritional factors, increase of shelflife, increased digestibility of nutrients and enhanced palatability. In addition, the extrusion process gelatinizes the starch which becomes more digestible to digestive enzymes (Murray et al., 2001).Undesirableeffectswhenapplyingextrusioncookingmaybelossesofvitamins(e.g. vitamin A, E, thiamine), oxidation of lipids (Lin et al., 1997b), destruction (Björck et al., 1983;Eggumetal.,1986)andreductionintheavailabilityofaminoacids,inparticular,of lysinewhichisinvolvedintheMaillardreaction(Carpenter, 1960; Hurrell and Carpenter, 1981;Camireetal.,1990;MoughanandRutherfurd,1996).Optimalprocessingconditions must,therefore,bedeterminedinordertominimizetheundesirableandenhancethedesirable effectsofextrusioninpetfoodproduction. Infoodorfeedthatisundergoingprocessingorstorage, the free εamino group of lysinecanreactwiththecarbonylgroupofothercompoundspresentsuchasreducingsugars (theMaillardreaction).Theformedcomplexproductwhendigestedandabsorbedcannotbe utilizedbyhumansoranimals(HurrellandCarpenter,1981;RutherfurdandMoughan,1997; Larsenetal.,2002).Althoughthelatterwouldnot necessarily affect the estimation of the nutritive value of foods and feedstuffs, some of these Maillard compounds revert back to lysine under the acid hydrolysis conditions employed during invitro amino acid analysis. This leads to an overestimation of the lysine available for metabolic processes. Normal extrusionconditionspromoteMaillardreactions(BjörckandAsp,1983;Berset,1989).Itis generallybelievedthatMaillardreactionsinvolvinglysineoccurduringmanufacturingofpet foods(MorrisandRogers,1994;Larsenetal.,2002).Scientificdata,however,indicatethat lysine damage due to the thermal processing employed in the manufacture of pet foods

41 Chapter4______ appears to be minimal. Hendriks et al. (1999) showed that the heat sterilisation process employed in the production of a moist feline diet did not significantly damage lysine. In addition,RutherfurdandMoughan(1997)reportedonlya3percentdifferencebetweentotal and reactive lysine for a dry extruded feline diet indicating that 97 percent of the lysine containedafreeεaminogroupandassuchMaillardreactionsinvolvinglysinewereminimal duringprocessingandstorage. Thepresentstudywastoinvestigatetheinfluenceofanumberofextrusionparameters usedinmanufacturingofastandarddrydogfoodonthefoodquality.Thetotalaminoacid content,reactivelysinecontent,degreeofstarchgelatinizationandthe invitro digestibilityof proteinandcarbohydratewereexamined.Itwashypothesizedthattheextrusionprocesswill decreasetheproteinqualityincaninediets(bymeansofareductioninproteindigestibility andreactivelysinecontent)andincreasethecarbohydratequality(bymeansofanincrement incarbohydratedigestibilitycausedbythegelatinizationofstarch).Theprocessparameters investigated were mass temperature, moisture content of the diet and number of times extruded. 4.2.Materialandmethods 4.2.1Experimentaldiet The experimental dry dog foods were manufactured at the Wageningen Feed Processing Centre (WFPC), Wageningen, the Netherlands. the ingredient and analyzed nutrientcompositionoftheexperimentaldietareprovidedinTables4.1. Alldryingredientsweregroundinacommercially operated hammer mill (Condux LHM,Hanau,Germany)fittedwitha1mmsieveandmixedwiththemechanicallydeboned chickenmeatandporkbonefatinaF60paddlemixer(ForbergAG,Larvik,Norway).Before mixing, the pork bone fat was heated to 65°C using a water bath to enhance mixing properties.Priortoextrusionanappropriateamountofwaterwasaddedduringthemixing phasesothattheexperimental dietswouldcontaineither200or300g/kgmoisture.

42 ______Effectsofextrusionon invitro nutritionalvalueofcaninediets

Table4.1 Ingredientsandanalysednutrientcompositionoftheuntreatedexperimentaldiet Ingredient Inclusion Nutrient Amount (g/kgdiet) (g/kgDM) a Wheat 250.0 Starch 531.9 Maize 215.2 CrudeProtein 220.6 Rice(dehulled) 150.0 CrudeFat 112.2 Chickenmeat 100.0 Ash 59.0 Poultrymeal 53.6 CrudeFibre 23.4 Barley 50.0 Porkbonefat 43.3 Leucine 14.8 Fishmeal 35.0 Arginine 11.2 Sugarbeetpulp 30.0 Lysine 9.7 Wholeeggpowder 20.0 Valine 9.2 Dicalciumphosphate 16.6 Phenylalanine 8.1 Brewersyeast 15.0 Isoleucine 7.3 Linseed 10.0 Threonine 6.9 Salt 6.7 Histidine 5.7 Potassiumchloride 2.6 Methionine 3.8 Limestone 1.7 Inulin 0.3 aDrymattercontentwas853g/kg. 4.2.2.Extrusionprocessandexperimentaldesign Extrusionwasperformedonacorotatingtwinscrewextruder(APVBakerMPF50; length/diameter ratio 25; screw speed delivery 20%). All parameters, such as extruder throughput and feed rate (14.1 kg/h), were monitored and kept constant throughout the experiment. A low shear screw configuration was composed of forwarding screws and paddles; a die with 2 orifices (8 mm Ø) was used; a die face cutter was operated to cut extrudatesto0.81.0cm. A3×2×2factorialdesignwasused,withmasstemperature (110, 130 and 150°C), moisturecontent(200and300g/kg)ofthedietandnumberoftimes(onceortwice)extruded as variables. All diets were coded following this sequence[temperature/moisture/times of extrusion]e.g.110/200/1. Theunprocessedfoodwasdividedintosixequalbatcheswitheach batchextrudedaccordingtotheexperimentaldesign.Afterthefirstextrusion,eachbatchwas driedat40°Cfor15hoursandsubsamplesweretakenforanalysis.Remainingportionsof each batch were then extruded for a second time, similar to the conditions of the first

43 Chapter4______ extrusionforthatspecificbatch(includingadditionalwateraddedbeforeextrusion)priorto beingovendriedasspecifiedaboveandthensampled.Extrudedbatchesselectedfordrying werecollectedwhenextrusionconditionsreachedasteadystateasindicatedbyaconstant producttemperatureforatleastfiveminutes.Producttemperaturewasmeasuredjustafterthe die with a standard thermocouple. Dried samples were ground topass a 3mm (TinyTIM samples)or1mm sieve(otheranalyses)dependingonthechemicalanalysis.Subsequently, allsampleswerestoredinairtightplasticcontainersat4°Cpriortoanalysis. 4.2.3.Analyticalmethods ThenutrientcompositionofthedietswasdeterminedbyusingthestandardWeende analysis methodology (AOAC, 1990) with dry matter analyzed by drying samples to a constantweightat103˚C,ashbycombustionat550˚Candnitrogendeterminedbyusingthe

KjeldahltechniquewithCuSO 4 ascatalyst.Crudeproteinwascalculatedbymultiplyingthe nitrogen content by 6.25. Starch was determined by the NIKO method with the starch gelatinizationdegree(SGD)determinedinduplicatesamplesasdescribedbyThomasetal. (1999).Durabilityandhardnessofthedifferentlyextrudedkibblesweremeasuredusingthe Holmen and Kahl devices as described by Thomas and van der Poel (1996). Protein dispersibilityindex(PDI)wasdeterminedinaccordancewiththemethoddescribedbyAOCS (1980). Total and reactive lysine contents were determined in diets, individual animal ingredientsandinamixtureofallplantingredients.Allchemicalanalyseswereperformedin duplicate.TotallysinewasdeterminedconformingtothemethoddescribedbyHendriksetal. (2002) while reactive lysine was determined according to the procedure described by MoughanandRutherfurd(1997).Inthelattermethod, lysine with a free εamino group is convertedtohomoargininebytheuseof Omethylisourea(OMIU). Fourdiets(untreated,onemildandtwoextremetreatments110/200/1,150/200/1and 150/200/2)wereselectedfor invitro digestibilitymeasurementsusingtheTinyTIM(TNO gastrointestinal model) with the conditions of the FIDO (functional gastrointestinal dog model)protocolasvalidatedbySmeetsetal.(1999)tosimulate inviv ogastrointestinaltract proteinandcarbohydratedigestibilityinadultdogs.Alldietswereanalysedinduplicate.The smallintestinaldigestibilitycoefficients(SIDC,%)ofproteinandglucoseweredefinedasthe

44 ______Effectsofextrusionon invitro nutritionalvalueofcaninediets amountofproteinorglucoseabsorbedinthedialysisfluidfromboththejejunumandileum dividedbytheamountofproteinorglucoseaddedtotheTinyTIM.Totalamountofglucose unitswasmeasuredinduplicateusingamodifiedglucosetest(Mendosa,2004). 4.3.Results Themeanextrusiontemperaturesmeasuredatthediefaceforthedifferenttreatments were109,127and144°Cforthetargetedtemperaturesof110,130,150°C,respectively. The drymatter(DM)contentofthedifferentextrudatesafterdryingrangedfrom884to963g/kg withameanof938g/kg.TheaverageCVsoftheduplicateanalysesfortotalandreactive lysinewere0.04and0.03,respectively. Table4.2 Nitrogen(N)content,aminoacidnitrogen(AAN)contents,methionine(Met),arginine(Arg), total(TL)andreactive(RL)lysineperunitAANofsomesingledietingredients Sample N AAN Met/AAN Arg/AANTL/AANRL/AAN (g/100gDM) (g/g)(g/g) (g/g) (g/g) Chickenmeat 7.85 5.96 0.168 0.472 0.541 0.551 Poultrymeal 10.64 8.81 0.130 0.508 0.410 0.412 Fishmeal 12.76 8.68 0.209 0.405 0.577 0.565 Restmixture a 2.18 1.74 0.129 0.396 0.288 0.224 aMixtureofallingredientsexceptforchickenmeat,poultrymeal,fishmealandpigbonefat. The nitrogen , amino acid nitrogen (AAN), methionine, arginine, lysine, OMIU reactivelysinecontentsperunitAAN,SGD,PDI,durabilityandhardnessoftheexperimental diets and selected dietary ingredients are shown in Table 4.2 and 4.3, respectively. The nitrogencontentwasslightlyhigherintheunprocessedsamplecomparedtotheextrudates. The AAN content of the unprocessed sample was within the range of the AAN of the extrudates.TherewerenoapparentchangesinthecontentofaminoacidperunitAANasa result of extrusion temperature, moisture content or extrusion times (data only shown for methionine,arginineandlysine).

45

Table4.3 Effectofextrusionconditionsonthenitrogencontent,aminoacidnitrogencontent(AAN),methionine,arginine,totalandreactivelysine(perunit AAN),starchgelatinisationdegree(SGD),proteindispersibilityindex(PDI),durabilityandhardnessoftheuntreatedandextrudedproducts Untreated Firsttimeextrusion Secondtimeextrusion 200g/kgmoisture 300g/kgmoisture 200g/kgmoisture 300g/kgmoisture Unit 110°C 130°C 150°C 110°C 130°C 150°C 110°C 130°C 150°C 110°C130°C150°C Nitrogen g/100gDM 3.53 3.19 3.20 3.19 3.18 3.18 3.18 3.163.173.183.173.203.17 Aminoacidnitrogen g/100gDM 2.64 2.37 2.48 2.45 2.68 2.48 2.39 2.372.372.552.462.532.41 Methionine/AAN g/g 0.136 0.142 0.139 0.136 0.140 0.137 0.142 0.1400.1340.1460.1390.1440.138 Arginine/AAN g/g 0.422 0.400 0.433 0.408 0.410 0.422 0.419 0.4120.4180.4210.4080.4030.427 Totallysine/AAN g/g 0.368 0.365 0.364 0.369 0.369 0.374 0.361 0.3580.3590.3700.3560.3690.360 Reactivelysine/AAN g/g 0.260 0.330 0.363 0.372 0.293 0.380 0.345 0.3610.3520.3250.3130.3330.352 SGD % 13.2 49.7 61.4 71.5 66.7 74.1 77.0 52.264.276.568.579.285.4 PDI % 32.6 22.2 20.8 21.9 23.3 21.6 21.8 20.821.120.920.920.621.1 Kibbledurability % ND a 82.5 80.4 68.1 94.2 89.4 87.9 33.529.431.485.279.583.6 Kibblehardness kg ND 12 11 10 16 11 11 8 5 5 11 9 12 aNotdetermined

______Effectsofextrusionon invitro nutritionalvalueofcaninediets

TheOMIUreactivelysinecontentwasaffectedbytheextrusionparametersemployed in the present study. The OMIUreactive lysine content per unit AAN was low in the unprocessed diet. It increased due to the increase of extrusion temperature varied with moisture at each temperature. The ratio of OMIUreactive lysine to total lysine for the differenttreatmentsispresentedinFig.1.Theratioincreasedwithincreasingtemperatureand decreasingmoisturelevelforthesinglyextrudedsamples.Thesamplesextrudedforasecond timeshowedavariableresponseinreactivelysinedependingonthepreviousincreaseofthe ratio. When the ratio was first close to 1.0, the second extrusion generally resulted in a decreaseintheratio.Theratiowasincreasedduetothesecondextrusionwhentheratiowas below1.0afterthefirstextrusion.Thereactivelysinetototallysineratioofthethreeprotein meals(chicken,poultryandfish)usedinthedietwereallcloseto1.0(0.981.02)whilethe ratiofortheotheringredientsderivedfromplantmaterialhadaratioof0.78(Table4.2).

1.0 110°C 130°C 150°C

0.9

0.8 Reactive to total lysine ratio ratio lysine total to Reactive

0.7 0 1 2

Times extruded Fig.4.1. Omethylisoureareactivelysinetototallysineratiooftheexperimentdiets,(●)is 200and(○)is300g/kgmoisturecontent. Thepercentageofcrudeproteindispersibleinsolution was relatively low for the untreated sample and decreased further as a result of extrusion. There was no apparent decreaseinPDIasaresultofextrusiontemperature,moisturecontentorextrusiontimes.The SGD of the unprocessed sample was 13.2 g/100 g DM. Increases in mass temperature, moisturecontentortimesofextrusionallincreasedtheSGD.ThehighestSGDwasrecorded

47 Chapter4______ forthedietextrudedtwiceatatargetedtemperatureof150°Cwithamoisturecontentof300 g/kg.Ingeneral,thedurabilityofthekibblewasloweredwhenthemixturecontained200 comparedto300g/kgmoisturecontent.Extrudingdietsasecondtimeasawholedecreased thedurabilityofthekibbles.Thisdecreasewasmorepronouncedwhenthemoisturecontent oftheoriginalmixturewas200g/kg.Theincrease in temperature generally decreased the durabilityofthekibbleswhileanincreaseinmoisturecontentfrom200to300g/kgincreased hardnessandasecondextrusiondecreasedhardnessofthekibbles.Noapparentdifferences wereobservedinthekibblehardnesswhenextrudingatdifferenttemperatures.

8 Untreated 110/200/1 6 150/200/1 150/200/2 4

2

0 Glucose concentration (g/kg) 0 50 100 150 200 250 Time (min) Fig.4.2.Meanglucoseconcentrationsinthesmallintestinaldialysisflowatdifferenttimes aftertheintakeofdifferentlyextrudedcaninediets. The mean ± SE of SIDC for protein of the four diets analyzed using the FIDO parametersinthe invitro systemwere0.48±0.01,0.50±0.07,0.50±0.04and0.48±0.01 for the untreated, 110/200/1, 150/200/1 and 150/200/2 samples, respectively. Glucose absorption in the small intestinal dialysis flow of the invitro system showed differences between the four samples analyzed (Fig. 4.2). The glucose concentrations in the small intestinaldialysisfluidwererelativelylowintheuntreatedsamplereachingapeakof3.45 g/kgat60min.Extrusiontemperaturesat200g/kg moisture resulted in an increase in the concentrationofglucoseinthedialysisfluidofTinyTIM.Asecondextrusionofthedietat 150°Cresultedinfurtherincreaseintheglucoseconcentrationinthedialysisfluidto7.5g/kg. Theabsorptionofglucoseofthefourselectedsamplesasmeasuredwiththe invitro system

48 ______Effectsofextrusionon invitro nutritionalvalueofcaninediets increasedwithincreasingtemperatureandwithnumberoftimesthesampleswereextruded. Themean±SEabsorptionofglucosecalculatedfortheuntreated,110/200/1,150/200/1and 150/200/2sampleswere0.68±0.02,0.69±0.01,0.79±0.05and0.90±0.10,respectively. 4.4.Discussion Total lysine content in diets and ingredients was unaffected by the extrusion conditionsemployed(Table4.3).ThisisconsistentwithrecommendationsbyCheftel(1986) that temperatures shouldbe keptbelow 180°C to minimise lysine losses during extrusion. Lysinelosscan,however,occuratlowerextrusiontemperatures.Eggumetal.(1986)reported thattheextrusionofriceflourcontaining150g/kgmoistureat150°Cresultedinan11to13 percentreductionintotallysinecontent.Björcketal.(1983)reportedthat,inadditiontothe lossoftotallysine,adecreaseinthemethionine,cysteine,arginineandtryptophancontentas aresultoftheextrusionattemperaturesbetween170and210°Candamoisturecontentof 130g/kgoccurred.Inthepresentstudy,therewas noapparentdecreaseorincreaseinthe amountofanyoftheaminoacidsincludingmethionineandarginine(Table4.3,dataforother aminoacidnotshown).Althoughthetotallysinecontentwasunaffected,theOMIUreactive lysine content was changed by the extrusion conditions employed in the present study. ReactivelysinedeterminationbytheOMIU(MoughanandRutherfurd,1996)andthemore traditionalfluorodinitrobenzene(Carpenter,1960;Booth,1971)methodshavebeenfoundto agreeclosely(Rutherfurdetal.,1997;Hendriksetal.,1999;Torbatinejadetal.,2005).This providesconfidencethattheOMIUreactivelysineassayasemployedinthepresentstudyis accurate and specific for the measurement of lysine molecules containing a free εamino group.TheoriginaluntreateddiethadaratioofOMIUreactivetototallysineof0.71.This ratiowasincreasedtoapproximately1.0whenextrusiontemperaturesof130°Cand150°C wereemployedirrespectiveofmoisturecontent(Fig.4.1).Afterextrusionatatemperatureof 110°C,lysinebecamemorereactivebuttheratiodidnotreach1.0.TheincreaseinOMIU reactivelysineindicatesthattheblockedεaminogroupoflysinemoleculesmayhavebeen “freed”and“regained”theirreactivitytoOMIU.TheincreaseinOMIUreactivelysineinthe presentstudyisdifficulttoexplain.IfearlyMaillardproductswerepresentintheunprocessed

49 Chapter4______ diet, they would not have been in the form of the deoxyketosyl derivatives of lysine as hydrolysisofthesederivativeswouldhaveresultedinsomelossoflysine(Mauron,1981; MoughanandRutherfurd,1996).OMIUdoesonlyreactwiththeSchiff’sbaseformedduring early Maillard reactions and measures this as reactivelysine(Mauron,1981).Therefore,if Maillardcompoundswerepresentin theunprocessed diet,theymusthavebeeninaform betweentheSchiff’sbaseandthedeoxyketosylderivativeoflysine.Inaddition,theOMIU nonreactivelysinecomplexesappearedtorevertbacktolysineintheextrusionconditions employed. Itisunclearunderwhichconditionsblockedlysinecouldbecomethermallylabile,so thatthebondwithlysinebecomesreactiveagain.Proteinsmaycrosslinktoformastructural networkattheextruderdiewhereotherinteractionsmayoccursuchasproteinproteinand proteinlipid interactions. These interactions have major functional and nutritional consequencesinfoodsystemsincludingwheatdough,collagen,lysinoalanine,nonenzymatic browningandisopeptides(Stanley,1989).Althoughresearchhasbeenpublisheddescribing the extrusion conditions atwhich interactions will takeplace, e.g.proteinlipid interactions (IzzoandHo,1989;MitchellandArêas,1992),nostudieshavereportedobservationswhere theformedlysineproductsbecomereactiveagainafterextrusion.Furtherinvestigationinto thelowreactivelysinecontentoftheplantderivedingredientsiswarranted. MeasurementoftheOMIUreactivetototallysineratiointheindividualingredients usedtoformulatethecaninediet(Table4.2)showedaratioforthemechanicallydeboned chickenmeat,poultrymealandfishmealof1.02,1.00and0.98,respectively.Thecombined plantcomponentofthediet(dietminuschickenmeat,poultrymeal,fishmealandporkbone fat),however,hadanOMIUreactivetototallysineratioof0.78indicatingthattheεamino groupofsomeofthelysinemoleculeswereblocked.Theratioofthemixeduntreatedcanine dietwasslightlylower(0.71).Asimilarvalueof0.75wasfoundforanidenticaluntreated dietformulatedfromdifferentbatchesofingredients.Thisindicatesthatlysineappearedto havereactedwithothercompoundstobecomenonreactivetoOMIUpriortotheextrusionof thediet.Theingredientsmakinguptheplantcomponentofthedietwereallgroundovera1 mmsievebeforebeingincludedinthediet.Itispossiblethattheadditionaldamagetolysine observedintheuntreatedmixturecouldhavebeenduetothegrinding.Othershavealsofound lowreactivetototallysineratios.RutherfurdandMoughan(1997)reportedaratioof0.73and

50 ______Effectsofextrusionon invitro nutritionalvalueofcaninediets

0.79inafeedandfoodgradedriedmaizewhilethesameauthorsfoundaratioforamixed diet (consisting of meat and bone meal, blood meal, wheat, barley, maize meal, sorghum, soyabeanmealandlucerne)of0.85.Ratiosforbloodmeal,meatandbonemealandsoyabean mealof0.95ormorewerereportedbyRutherfurdandMoughan(1997)andRutherfurdetal. (1997).Thesevaluesaresimilarasfoundforthechickenmeat,poultrymealandfishmeal reported in the present study. Further investigations into both the cause of the reaction of lysine preextrusion and theworking mechanism of lysine interaction during extrusion are needed. When the ratio between OMIUreactive to total lysine was close to 1.0, a second extrusion resulted in a decrease of the ratio of up to 12 percent units while the second extrusionat110°CresultedinafurtherincreaseintheOMIUreactivetototallysineratio. Lowmoisturecontentsatthesameextrudertemperaturegavehigherreactivelysinecontent than high moisture contents. Loss of lysine reactivity has also been observed after the extrusionofotherdietsanddietaryingredients.Theextentofthelossdependsontypeofraw material, moisture, extrusion temperature, screw speed, die diameter, feed rate, screw compressionratio,energyinputandpH(Björcketal.,1983;AspandBjörck,1989;vander Poeletal.,1992;Hendriksetal.,1994;Iweetal.,2004).Nolossoftotallysineoccurredin the present study so no deoxyketosyl lysine derivatives were formed during processing. Extrudedpetfoodsareproducedattemperaturestypicallyrangingbetween90to165 °C,and moisturecontentsof150to350g/kg.Thepresentstudyshowsthatbothagainandalossin the reactivity of lysine for OMIU can occur during the extrusion of pet foods. Recently, Torbatinejad et al. (2005) have found that there is a large difference (20 to 54 percent) betweentotalandreactivelysineinbreakfastcerealsforhumans. Starch source and gelatinisation of starch are important in the ileal and faecal digestibilityofstarch.TheSGDoftheuntreateddietwasincreasedbythemasstemperature, moisturecontentandnumberoftimesextruded.Murrayetal.(2001)reportedanincreasein rapidlyfermentablestarchandadecreaseinslowlyfermentableandresistantstarchdueto extrusionofbarley,corn,rice,sorghumandwheatathigh(124to140°C)comparedtolow (79to93°C)temperatures.AnincreaseinSGDasaresultofincreasingmasstemperature, moisture content and times of extrusion is in line with the results reported by Lin et al . (1997a). In addition, fat content during extrusion have a prominent effect on SGD. An

51 Chapter4______ increaseinfatcontentresultsinadecreaseinSGDafterextrusion.Theauthorsexplainedthis effectbytheinsulatingabilityoffatpreventingwaterfrombeingabsorbed.Unlikethepresent study, Lin et al . (1997a) reported that an increase in the initial moisture content tended to decreaseSGDoftheextrudates. Inthepresentstudyanincreaseinthewatercontentfrom200 to 300 g/kg increased the SGD. There was also a tendency for an increased invitro carbohydratedigestibility(Fig.4.2)withmoreheat.Themostextensivelyheattreatedsample (150/200/2) had the highest invitro glucose absorption (5.5 g/kg higher compared to the untreated sample). These findings with TinyTIM indicate that postprandial glucose and insulin response in dogs may be affected by the extrusion conditions employed during manufacture.Wolteretal.(1998)showedthatthegelatinizationoftapiocastarchincreases the ileal starch digestibility (40 percent units). On the other hand, ileal wheat starch digestibility was unaffected by gelatinization. Bouchard and Sunvold (2001) evaluated differentsourcesofstarchesindietsfordogsandfoundthattheaveragepostprandialglucose responsecanbeaffectedbythestarchsourceusedinthediet.Ricehasahigherpostprandial glucoseandinsulinresponsecomparedtootherdietarystarchingredientssuchascorn,wheat, barleyandsorghum.Improvedglucosecontrolindogs,therefore,canbemodulatedbystarch sourceandbyextrusionconditionsemployed. Proteindenaturingisaccompaniedbyadecreaseinthesolubilityofprotein.ThePDI isgenerallyusedtodeterminetheproportionofthetotalproteinwhichcanbesolubilizedin water.Inorderforproteintodenature,waterandheatarerequired(Thomasetal.,1997). By comparingthePDIafterdifferentheattreatmentsonaproduct,anindicationcanbeobtained of the degree of heat treatment (Kanani, 1985; van der Poel et al., 1992; Hendriks et al., 1994).Inaddition,proteindigestibilityisrelatedtoPDI.Therefore,PDImaybeusedasa protein quality parameter (van der Poel et al., 1992;Marsmanetal.,1995).Inthepresent study,therewasnocleardifferenceinPDI(mean21.5)betweentreatments.AtlowPDI,this relationbetweenproteindigestibilityandPDImaynotwork.ThePDIofheattreatedbeans hasbeenfoundtobecorrelatedandusedasanindicatorforitsinherentproteindigestibility (vanderPoel,1990;Bataletal.,2000). Kibbledurabilityisanimportantparameterforthepackagingandsubsequenttransport ofdietswhilekibblehardnessisananimalrelatedparameterassociatedwiththedentalforce requiredtoconsumethekibble.Thevaluesforkibblehardnessanddurabilityrecordedinthe

52 ______Effectsofextrusionon invitro nutritionalvalueofcaninediets presentstudyareslightlylowercomparedtocommercialcaninedietswheremeanhardness valuesof17.7±5.3kg(range14.2to22.4kg)anddurabilityvaluesof87.3±9.7%(range 78.7 to 99.8%) have been recorded (van der Poel, 2005, unpublished). In general, the durabilitydecreasedwiththeincreaseintemperaturefrom110to150°Caswellasextrusion forasecondtime.Thereductioninkibbledurabilityismostpronouncedwhenextrudingfora secondtimewithamoisturecontentof200g/kg,suggestinganinterrelationbetweenthese parameters.SinceSGDandPDIvaluesforthesesamplesareinlinewiththedataoftheother samples,explainingthelowdurabilityandhardness data of these samples is difficult. The increase in moisture content increased kibble durability. No overall difference in kibble hardness was apparent as a result of differences in extrusion temperature. Instead, kibble hardnesswasmoreaffectedbythemoisturecontentandthesecondextrusioncomparedto extrusiontemperature. 4.5.Conclusion Extrusion conditions employed in the present study had a significant effect on the nutritionalandphysicalpropertiesofthefood.Althoughtotalaminoacidconcentrationsinthe studieddietsdidnotappeartobeaffectedbytheappliedextrusionconditions,reactivelysine concentrationaswellasthedegreeofstarchgelatinization can be increased. Optimisation of extrusionconditionsofcommercialpetfoodsshould include measurement of reactive to total lysine ratio. Ingredients used to manufacture pet foods may already contain damaged lysine. Furtherstudiesneedtoestablishwhethertheblocked lysine formed during extrusion and the blockedlysinepresentinuntreatedingredientsareavailableformetabolismbytheanimal. Acknowledgements MrS.Rutherfurd(MasseyUniversity,PalmerstonNorth,NewZealand)forconductingthe reactive lysine analyses. Mr E. Cruz (WFPC, Wageningen University, the Netherlands) for

53 Chapter4______ technical assistance in operating the extruder and Mrs C. van Vuure (Rendac, Son, the Netherlands)forkindlyprovidingthepoultrymealandpigbonefat. References AOAC, 1990. Official Methods of Analyses, Association of Official Analytical Chemists, 15th Edition.AOAC,Arlington,VA. AOCS, 1980. Protein dispersibility index (PDI), American Oil Chemists’ Society, AOCS Official MethodBa1065,ChampagneIII. Asp, N.G., Björck, I., 1989. Nutritional properties of extruded foods, In: Mercier, C., Linko, P., Harper,J.(Eds.),Extrusioncooking,AmericanAssociationofCerealChemistsInc.,St.Paul,MN, pp.399434. Batal,A.B.,Douglas,M.W.,Engram,A.E.,Parsons,C.M., 2000. Protein dispersibility index as an indicatorofadequatelyprocessedsoybeanmeal.Poult.Sci.79,15921596. Berset,C.,1989.Color,In:Mercier,C.,Linko,L.,Harper,J.M.(Eds.),ExtrusionCooking,American AssociationofCerealChemists,Minnestota,USA,pp.371385. Björck,I.,Asp,N.G.,1983.Theeffectsofextrusioncookingonnutritionalvalue,aliteraturereview. J.FoodEng.2,281308. Björck,I.,Noguchi,A.,Asp,N.G.,Cheftel,J.C.,Dahlqvist,A.,1983.Proteinnutritionalvalueofa biscuitprocessedbyextrusioncooking:effectsonavailablelysine.J.Agri.FoodChem.31,488 492. Booth,V.H.,1971.ProblemsinthedeterminationofFDNBavailablelysine.J.Sci.FoodAgri.22, 658666. Bouchard, G.F., Sunvold, G.D., 2001. Implications for starch in the management of glucose metabolism,CurrentPerspectivesinWeightManagement,pp.1620. Camire, M.E., Camire, A., Krumhar, K., 1990. Chemical and nutritional changes in foods during extrusion.Crit.Rev.FoodSci.Nutr.29,3557. Carpenter,K.J.,1960.Theestimationoftheavailablelysineinanimalproteinfoods.Biochem.J.77, 604610. Cheftel,J.C.,1986.Nutritionaleffectsofextrusioncooking.FoodChem.20,263283. Dziezak,D.J.,1989.Singleandtwinscrewextrudersinfoodprocessing.FoodTechnol.44,164174. Eggum, B.O., Juliano, B.O., Ibabao, M.G.B., Perez, C.M., 1986. Effect of extrusion cooking on nutritionalvalueofriceflour.FoodChem.19,235240.

54 ______Effectsofextrusionon invitro nutritionalvalueofcaninediets

Hendriks,W.H.,Butts,C.A.,Thomas,D.V.,James,K.A.C.,A.,M.P.C.,Verstegen,M.W.A.,2002. Nutritionalqualityandvariationofmeatandbonemeal.AsianAustralas.J.Anim.Sci.15,1507 1516. Hendriks,W.H.,Emmens,M.M.A.,Trass,B.,Pluske,J.R.,1999.Heatprocessingchangestheprotein qualityofcannedcatfoodasmeasuredwitharatbioassay.J.Anim.Sci.77,669676. Hendriks,W.H.,Moughan,P.J.,Boer,H.,vanderPoel,A.F.B.,1994.Effectsofextrusiononthedrye binding,fluorodinitrobezenereactiveandtotallysinecontentofsoybeanmealandpeas.Anim. FeedSci.Technol.48,99109. Hurrell,R.F.,Carpenter,K.J.,1981.TheestimationofavailablelysineinfoodstuffsafterMaillard reaction.Progr.FoodNutri.Sci.5,159175. Iwe,M.O.,Zuilichem,D.J.,Stolp,W.,Ngoddy,P.O.,2004.Effectofextrusioncookingofsoysweet potato mixtures on available lysine content and browning index of extrudates. J.Food Eng. 62, 143150. Izzo,M.T.,Ho,C.T.,1989.Proteinlipidinteractionduringsinglescrewextrusionofzeinandcornoil. CerealChem.66,4751. Kanani,K.M.,1985.Studiesonthelowtemperatureinfraredheatprocessingofsoyabeansandmaize, WageningenAgriculturalUniversity,Wageningen,theNetherlands. Larsen,J.A.,Calvert,C.C.,Rogers,Q.R.,2002.Processingofdietarycaseindecreasesbioavailability oflysineingrowingkittens.J.Nutr.132,17481750. Lin,S.,Hsieh,F.,Huff,H.E.,1997a.Effectsoflipidsandprocessingconditionsondegreeofstarch gelatinisationofextrudeddrypetfood.Lebensm.Wiss.u.Technol.30,754761. Lin,S.,Hsieh,F.,Huff,H.E.,1997b.Effectsoflipidsandprocessingconditionsonlipidoxidationof extrudeddrypetfoodduringstorage.Anim.FeedSci.Technol.71,283194. Marsman, G.J.P., Gruppen, H., Zuilichem, v., D.J., Resink, J.W., Voragen, A.G.J., 1995. The influenceofscrewconfigurationonthe invitro digestibilityandproteinsolubilityofsoybeanand rapeseedmeals.J.FoodEng.26,1328. Mauron,J.,1981.TheMaillardreactioninfoodacricticalreviewforthenutritionalstandpoint,In: Eriksson,C.(Ed.),ProgressinFoodandNutritionScienceMaillardreactionsinfood,Pergamon Press,pp.335. Mendosa,D.,2004.SoftwareforGlucoseControl,Part2,BoehringerMannheimManual,Boehringer Mannheimcorp. Mitchell,J.R.,Arêas,J.A.G.,1992.Structuralchangesinbiopolymersduringextrusion,In:Kokini, J.L.,Ho,C.T.,Karwe,M.V.(Eds.),FoodExtrusionScienceandTechnology,MarcelDekker,Inc, pp.345360.

55 Chapter4______

Morris,J.G.,Rogers,Q.R.,1994.Assessmentofthenutritionaladequacyofpetfoodsthroughthelife cycle.J.Nutr.124,S2520S2534. Moughan,P.J.,Rutherfurd,S.M.,1996.Anewmethodfordeterminingdigestiblereactivelysinein foods.J.Agri.FoodChem.44,22022209. Murray,S.M.,Flickinger,A.E.,Patil,A.R.,Merchen,N.R.,BrentJr,J.L.,FaheyJr,G.C.,2001. In vitro fermentationcharacteristicsofnativeandprocessedcerealgainsandpotatostarchusingileal chymefromdogs.J.Anim.Sci.79,435444. van der Poel, A.F.B., 1990. Effects of processing on bean ( Phaseolus vulgaris L.) protein quality, WageningenUniversity,theNetherlands,Wageningen. vanderPoel,A.F.B.,Stolp,A.,vanZuilichem,D.J.,1992.Twinscrewextrusionoftwopeavarieties: effects of temperature and moisture level on antinutritional factors and protein digestibility. J. Sci.FoodAgri.58,8387. Rutherfurd, S.M., Moughan, P.J., 1997. Application of a new method for determining digestible reactivelysinetovariablyheatedproteinsources.J.Agri.FoodChem.45,15821586. Rutherfurd, S.M., Moughan, P.J., Morel, P.C.H., 1997.Assessmentofthetrueilealdigestibilityof reactivelysineasapredictoroflysineuptakefromthesmallintestineofthegrowingpig.J.Agri. FoodChem.45,43784383. Smeets, M., Minekus, M., Havenaar, R., Schaafsma, G., Verstegen, M., 1999. Description of a dinamic invitro modelofthedoggastrointestinaltractanevaluationofvarioustransittimesfor proteinandcalcium.ATLAAltern.Lab.Anim.27,935949. Stanley,D.W.,1989.Proteinreactionsduringextrusionprocessing,In:Mercier,C.,Linko,P.,Harper, L.M.(Eds.),ExtrusionCooking,Am.Assoc.CerealChem.,Minnestota,USA,pp.321341. Thomas,M.,Huijnen,P.T.H.J.,Vliet,T.,vanZuilichem,D.J.,vanderPoel,A.F.B.,1999.Effectsof process conditions during expander processing and pelleting on starch modification and pellet qualityoftapioca.J.Sci.FoodAgri.79,14811494. Thomas,M.,Kol,v.,E.M.R.A.H.,Tamminga,S.,Verstegen,M.,vanderPoel,A.F.B.,1997.Effects ofwater,steamandshearconditionsonproteinqualityofsoygrits.J.Sci.FoodAgri.74,3438. Thomas, M., van der Poel, A.F.B., 1996. Physical quality of pelleted animal feeds. 1. Criteria for pelletquality.Anim.FeedSci.Technol.61,89112. Torbatinejad, N.M., Rutherfurd, S.M., Moughan, P.J., 2005. Total and reactive lysine contents in selectedcerealbasedfoodproducts.J.Agri.FoodChem.53,44544458. Wolter,R.,Socorro,E.P.,Houdre,C.,1998.Faecalandilealdigestibilityinthedogofdietsrichin wheatortapioca(inFrench).RescueildeMedecineVeterinaire174,4555.

56

Chapter5

Effectsofextrusiononthenutritionalqualityofsingleingredientsand ofacompletedrycaninediet Q.D.Tran a,b,M.Ras a,W.H.Hendriks aandA.F.B.vanderPoel a aAnimalNutritionGroup,DepartmentofAnimalSciences,WageningenUniversity,Marijkeweg40, 6709PGWageningen,theNetherlands bHumanandAnimalPhysiologyGroup,BiologyFaculty,VinhUniversity,182LeDuanstreet,Vinh,Vietnam JournalofAnimalPhysiologyandAnimalNutrition(tobesubmitted)

Chapter5______

Abstract Wheningredientsareextruded,thenutritionalandphysicalpropertieswillbechanged.The presentstudyinvestigatedpossibleeffectsofextrusiononthenutritionalvaluesofregularly usedsingleingredientsofacaninediet.Bothvegetableandanimalingredientswereextruded separatelyinacorotatingtwinscrewextruder.Theextrusiontemperatureusedwas120°C andthemoisturecontentwas300g/kg.Qualityindicatorssuchasstarchgelatinizationdegree (SGD),proteindispersibilityindex(PDI)andthecontentsoftotalandreactivelysinewere determinedbothinthewholedietandinitsingredients.Thesequalityindicatorsweretobe expectedtocontributetoqualitychangesofthecompletediet.Theresultsshowthatthesingle ingredientsdidnotrespondinthesamewayduringextrusionwithregardtocontentsoftotal andreactivelysine.Thereactivetototallysineratioinbarleywasdecreasedfrom0.84to0.57 during extrusion while that of rice was increased from 0.83 to 1.07. The reactive to total lysine ratio of a mixture of vegetable ingredientswasincreasedfrom0.60upto1.00.The reactivetototallysineratiosintheingredientsofanimaloriginaswellasinthewholediet (0.75)werenotaffectedbyextrusion. Keywords: Caninediet;Extrudate;Lysine;Dietingredients. Abbreviations: ADF, acid detergent fibre; DM, dry matter; NDF, neutral detergent fibre; OMIU, Omethylisourea; PDI, protein dispersibility index; SGD, starch gelatinizationdegree.

58 ______Extrusioneffectsonnutritionalqualityofsingleingredients

5.1.Introduction In pet food production, the nutritional quality recently gained more attention. In consequence, ther have been studies which report changes in the nutritional quality after extrusionandstorage(Williamsetal.,2006).Extrusionprocessinghasbeenwidelyusedfor themanufactureofdrypetfoodsandhasbeenindicatedtohavebothbeneficial(inactivation ofantinutritionalfactorsespeciallythoseofaproteinaceousorigin,improvementofnutrient accessibilityandgelatinizationofstarch)anddetrimental(reductionofproteinquality,lossof heatlabilevitamins)effectsonthenutritionalqualityoftheproducts(BjörckandAsp,1983; Williamsetal.,2006). Infoodandfeedresearch,extrusionofsingleingredientshasbeenapplied,especially theextrusionofvegetableingredientssuchaspeas(Alonsoetal.,2000b;AbdElHadyand Habiba, 2003), beans (van der Poel et al., 1992; Alonso et al., 2000a; Abd ElHady and Habiba,2003),wheat(Arrageetal.,1992),maize(Martínezetal.,1996)andbarley(Dustet al., 2004) have been reported in literature. These studies show that extrusion improves nutrientdigestibilityduetothereductionofnutritionallyactivefactorsandincreasedprotein denaturation and starch gelatinization. Literature on the effects of extrusion on separate ingredientsotherthanvegetableingredientsisscarce. Lysineisoftenthefirstlimitingaminoacidinpetfoodsanditsreactivitycanbeused asanindicatorofqualityafterextrusion(Hendriksetal.,1999;Williamsetal.,2006).Lysine reactivityinpetfoodsasaresultofingredientselectionandthethermalprocessingemployed duringmanufacture,appearstobehighlyvariable(Tranetal.,2007).Studieshavealsofound thatextrusioncanresultinincreasesinreactivelysineorincreasetheratioofreactivetototal lysinecontent(Lankhorstetal.,2007)dependingonextrusionconditions. Thepresentstudywasdesignedtoinvestigatethe effects of extrusion on invitro indicatorsofthenutritionalvalueofsingleingredientsfrombothvegetableandanimalorigin and on a complete canine diet. It was hypothesised that single ingredients would react differentlyduringextrusion.

59 Chapter5______

5.2.Materialsandmethods 5.2.1.Experimentalingredientsanddiet Anexperimentaldrycaninedietwasformulatedasdescribedpreviously(Lankhorstet al.,2007)anditsingredientandchemicalcompositionispresentedinTable5.1.Allvegetable ingredientsandfishmealweresuppliedbyResearchDietServices(WijkbijDuurstede,the Netherlands).Poultrymeal,eggpowderandporkbonefatwereobtainedfromSonacB.V., Vuren, the Netherlands. Chicken meat was obtained from Polskamp B.V., Harskamp, the Netherlands. Table5.1 Separateingredientsandanalysednutrientcompositionoftheexperimentaldiet Ingredient Inclusion Nutrient Amount (g/kgdiet) (g/kgDM) † Wheat 250.0 Starch 456.4 Maize 215.2 CrudeProtein 188.1 Rice(dehulled) 150.0 CrudeFat 110.5 Chickenmeat 100.0 Ash 77.5 Poultrymeal 53.6 ADF ‡ 38.5 Barley 50.0 NDF 80.9 Porkbonefat 43.3 Fishmeal 35.0 Leucine 14.4 Sugarbeetpulp 30.0 Arginine 13.8 Wholeeggpowder 20.0 Lysine 10.4 Dicalciumphosphate 16.6 Valine 9.4 Brewersyeast 15.0 Phenylalanine 8.3 Linseed 10.0 Isoleucine 8.3 Salt 6.7 Threonine 7.3 Potassiumchloride 2.6 Histidine 5.0 Limestone 1.7 Inulin 0.3 †Drymattercontentis947.5g/kg,determinedpriortofreezedrying ‡ADF,aciddetergentfibre;NDF,neutraldetergentfibre. TheingredientsfromResearchDietServiceshadallbeengroundovera1mmsievein ahammermill(ConduxLHM,Hanau,Germany).Ricewassuppliedaswholedehulledrice. Every single vegetable ingredient was extruded separately. Vegetable ingredients (barley,

60 ______Extrusioneffectsonnutritionalqualityofsingleingredients maize, rice, wheat, sugar beet pulp, linseed and brewer’s yeast) were mixed in a ratio of 50:215:150:250:30:10:15 in a F60 paddle mixer (Forberg AG, Larvik, Norway). Before mixing,thechickenmeatandporkbonefatwereheated(60°C)usingawaterbathtoenhance mixingproperties. 5.2.2.Experimentaldesign,extrusionprocessandsampling TheexperimentwascarriedoutattheWageningenFeedProcessingCentre(WFPC), WageningenUniversity,theNetherlands.Priortoextrusion,theingredient,mixtureandthe diet were moistened to 300 g/kg by adding water. Only fresh chicken meat was extruded withouttheadditionofwater.Extrusionofingredientsandthedietwasperformedusingaco rotating twinscrew extruder (APVBaker MPF 50, Peterborough, England; length/diameter ratio25;screwspeeddelivery15%).Allparameters,suchasextruderthroughputandfeed rate, were monitored and kept constant throughout the experiment. A low shear screw configurationwascomposedofforwardingscrewsandpaddles.Adiewith2orifices(each8

.mm Ø)wasused.Adiefacecutterwasoperatedtocuttheextrudatesto0ּ81ּ0cm Theexperimentaldietwasextrudedataproducttemperature of 120°C, which was measured with a standard thermocouple just after the die. The single vegetable ingredients and the mixture of all nonanimal ingredients were extruded under similar conditions. Extruded batches selected for drying were collected only when the extrusion conditions reachedasteadystateasindicatedbyaconstantproducttemperatureforatleastfiveminutes. Sampledbatchesweredriedat40°Cfor15hours. Dried samples were ground prior to chemical analysis in a Retsch ZM 100 mill (RetschBV,Ochten,theNetherlands)topassa1mmsieve;acyclonewasusedforcooling the sample during grinding to avoid excessive heat. Fresh (untreated) chicken meat was freezedrieduntilaconstantweightpriortostorage.Allsampleswerethenstoredinairtight plasticcontainersat4°Cpriortoanalysis.

61

Table5.2 Nutritionalparameterswithregardtostarch,proteinandlysineinsingleingredientsandthewholedietasaffectedbyextrusion Ingredients DrymatterCrudeprotein PDI †Starchcontent SGD Totallysine Reactivelysine Ratio ‡ Untr Ext Untr Ext Untr Ext Untr Ext Untr Ext UntrExt UntrExt UntrExt g/kg g/kgDM %g/kgDM % mg/gDM mg/gDM % Diet 948 929 188 189 22 16 456 478 9 79 10.43 9.37 7.846.990.750.75 Ingredients Barley 883 926 125 128 15 7 510503 19 89 4.18 4.36 3.522.480.840.57 Maize 876 924 92 92 17 9 6776621192 2.79 2.93 2.092.250.750.77 Rice (dehulled) 870 898 92 90 5 7 865877592 3.48 3.23 2.903.460.831.07 Wheat 871 895 108 109 24 12 6706711595 3.55 3.54 2.762.670.780.75 Mixture § 876 915 112 113 17 11 6466411289 4.38 4.16 2.734.320.621.04 Chickenmeat 442 924 481 476 14 6 26.6321.6120.6616.970.780.79 Poultrymeal 960 951 679 680 31 31 36.8535.8430.5631.930.830.89 Fishmeal 917 943 772 771 16 16 56.3456.7655.5752.120.990.92 †PDI,proteindispersibilityindex;SGD,starchgelatinizationdegree;DM,drymatter;Untr,untreated;Ext,extruded ‡Ratioofreactivetototallysine §Themixtureconsistedofbarley,maize,rice,wheat,sugarbeetpulp,linseedandbrewer’syeastinaratioof50:215:150:250:30:10:15

______Effectsofextrusiononnutritionalqualityofsingleingredients

5.2.3.Analyticalmethods Thenutrientcomposition(Table5.1)ofthedietwas determined by the proximate analysis (AOAC, 1990) with dry matter (DM) analyzed by drying samples to a constant weight at 103˚C, ash by combustion at 550˚C. Nitrogen content was determined by the Kjeldahl technique; crude protein was calculated from nitrogen content as N×6ּ25. Acid detergentfibre(ADF)andneutraldetergentfibre(NDF)weredeterminedwithaFibretec TM (Foss,Denmark)fibreanalyserusingagentsdescribedbyvanSoestetal(1991).Starchwas determinedbytheNIKOmethodwiththestarchgelatinizationdegree(SGD)determinedin duplicate as described by Thomas et al. (1999). Protein dispersibility index (PDI) was determinedinaccordancewiththemethoddescribedbytheAmericanOilChemists’Society (AOCS,1980).Totalandreactivelysinecontentsandotheraminoacidsweredeterminedat Massey University, Palmerston North, New Zealand. Total lysine was determined as describedbyHendriksetal.(2002)whilereactivelysinewasdeterminedaccordingtotheO methylisourea (OMIU)method as described by Moughan and Rutherfurd (1996). All chemicalanalyseswereconductedinduplicate. 5.3.Results TheDMcontent,crudeprotein,PDI,starchcontent, SGD, total lysine and reactive lysine of untreated and extruded ingredients and diets are shown in Table 5.2. The crude protein content of the diet was not altered during extrusion and its PDIvalue was slightly lowerthanthatoftheuntreateddiet.Extrusiondidnotalterthetotalstarchcontentofthediet, butstarchgelatinizationincreasedfrom9to79percent.Boththecontentoftotalandreactive lysineslightlydecreasedduringextrusionshowingasimilarratioofreactivetototallysine. For the single ingredients, the PDI was decreased during extrusion except for rice, poultry meal; the PDI of fish meal was not changed. Total starch contents of the untreated and extruded ingredients of vegetable origin were similar but extrusion greatly increased the starchgelatinizationtoaround90percent.

63 Chapter5______

The mixture of nonanimal ingredients had the highest contents in total lysine followedbybarley,wheat,riceandmaize.Inbarley, the reactive lysine content decreased from3.52to2.48mg/gDMafterextrusion.Theratioofreactivetototallysineratioofbarley wasalsodecreasedfrom0.84to0.57.Inmaize,however,therewasanincreaseinreactive lysinecontentfrom2.09to2.25mg/gDMcausedbyextrusion.Thereactivelysinecontentin riceincreaseddrasticallyfrom2.90to3.46mg/gDM.Thereactivetototallysineratioofrice, therefore,increasedfrom0.83to1.07.Thereactivelysinecontentinwheatontheotherhand seemednottobeclearlyaffectedbyextrusion.Themixtureofallnonanimalingredientsalso showedalargeincreaseinreactivelysinetoalevelofapproximately1.0. Total lysine content of the animal ingredients was much higher than that of the vegetableones.Extrusiondidnotmuchaffectthetotalandreactivelysinecontentsofthese ingredients:thetotallysinecontentofthepoultryandfishmealremainedunchangedwhile thatofchickenmeatwasslightlydecreased. Table5.3 Contributionofvegetableingredientstothedietlysinecontent:comparisonbetweenanalysed andcalculatedvalues. Ingredient Drymatter NinDM NindietLysineinNLysineindiet g/kg g/kg g/g g/g g/kg Analysed Barley 883.0 20.0 0.88 0.21 0.19 Maize 875.8 14.7 2.77 0.19 0.53 Rice(dehulled) 870.0 14.7 1.92 0.24 0.46 Wheat 871.2 17.3 3.76 0.21 0.79 Total 1.97 Calculated † Barley 870.0 16.5 0.82 0.23 0.19 Maize 860.0 13.1 2.82 0.18 0.51 Rice(dehulled) 870.0 12.1 1.82 0.26 0.48 Wheat 860.0 17.8 4.44 0.18 0.78 Total 1.96 †DatafromCVB(2004). Table5.3showedthattherewasnodifferencebetweenthelysinecontentingrainsas calculatedwithvalueslistedintheCVBTable(CVB,2004)orbasedonthegraininclusion

64 ______Effectsofextrusiononnutritionalqualityofsingleingredients levelsinthewholedietanditschemicallyanalyzedvalueforlysine.Slightdifferenceswere, however,observedbetweenthenitrogencontentindrymatterandthegrainlysinecontentper unitofnitrogen. 5.4.Discussion Intheliterature,severalstudieshaveinvestigatedtheeffectsoftheextrusionofsingle ingredientssuchascornmeal(Wenetal.,1990),beans(Alonsoetal.,2000b)andpeas(Abd ElHady and Habiba, 2003). These studies show that the digestibility of protein after extrusion is generally increased. In addition, the lysine content of maize was reported to decreaseduringextrusion(Martínezetal.,1996). Inthepresentstudy,acaninedietanditsseparate ingredients were extruded and chemicallyevaluatedtobeabletocomparetheeffectsofextrusionontheingredientsandon theentirediet.Thisresultspossiblyexplaintheeffectsfrompreviousresearch(Lankhorstet al.,2007).Intheexperiment,thetemperatureduringeachextrusionwasapproximately120°C andthemoisturecontentpriortoextrusionwasmoistenedto300g/kgforallingredients. LiteratureindicatesthatPDIprovidesagoodandconsistentindicatorfortheeffectsof heattreatmentonthenutritionalvalueofsoyaprotein(vanderPoeletal.,1992;Bataletal., 2000). A decrease in solubility of protein after extrusion has been reported for extruded corn/soyblends( Maga , 1978 )andnavybean/defattedsoyblends(AguileraandLusas,1986). Inthepresentstudy,extrusionoftheentiredietdecreasedthePDIfrom22downto16.Most vegetableingredients,exceptforriceshowedadecreaseinPDIafterextrusionwhichisin linewithGujskaandKhan(1991),whoreportedthathightemperaturesduringtheextrusion processcausedsolublebeanproteinstobecomeless soluble. Wen et al. (1990) reported a significant decrease in protein solubility after extrusion of corn meal using a twinscrew extruderattemperaturesof100,150,200ºCandat200,250,300g/kgmoisture. Thetotalstarchcontentoftheexperimentaldietwassimilarbeforeandafterextrusion. ExtrusionlargelyincreasedSGDwhichisinlinewiththedataofLinetal.(1997)andMurray etal.(2001).Asexpected,extrusionalsoincreasedtheSGDofthesinglegrainsinthepresent study. Separateingredientsappeartoreactdifferentlytotheextrusionprocesswhenthetotal

65 Chapter5______ and reactive lysine content are considered. There was a difference between the observed effectsbetweentheingredientofvegetableoranimaloriginsbutnocleartrendwithinthe differentgrainsinvestigated.Whenbarleywasextruded,totallysineslightlyincreaseby4.3 percent which is within the error of the assay while the OMIUreactive lysine content decreased by 29.5 percent. The reactive to total lysine ratio thus decreased (from 0.84 to 0.57). For maize, there was also a slight increase(5 percent) in total lysine content and in OMIUreactive lysine content (7.7 percent). The reactive to total lysine ratio of maize remainedsimilarafterextrusion(0.75vs.0.77).Thisratioofmaizewasinlinewithresults obtained by Rutherfurd and Moughan (1997). They reported ratios of 0.73 and 0.79 in extrudedfoodgradedriedmaize.However,according to Martinez et al. (1996), the lysine contentofmaizedecreasedsignificantlyduringextrusion(110ºC,200g/kgmoisture,single screwextruder).Thetotallysinecontentofriceslightlydecreased,whiletheOMIUreactive lysineincreased.Asaresult,thereactivetototallysineratioshowedamajorincrease(from 0.83to1.07).Thereductionofthetotallysinecontentinriceinthepresentstudyisinline withtheresultsofEggumetal.(1986).Theseauthorsreportedarelativedecreaseby11to 13%inthetotallysinecontentafterextrudingriceflourat150ºCand150g/kgmoisture.The increaseinOMIUreactivelysineinextrudedriceindicatesthattheblockedεaminogroupof lysinemoleculeswasfreedandrestoreditsreactivitytoOMIU.Thelysinecontentinwheat was not affected by extrusion to a large extent. Extrusion of a mixture of all nonanimal ingredients resulted in a decrease in total lysine content but an increase in reactive lysine content.Consequently,thereactivetototallysineratioofthemixtureincreasedfrom0.6to about1.0. Forthewholediet,theratioofreactivetototallysinewassimilar(ratioof0.75)before andafterextrusion.Thisindicatesthatlysinehadalreadybeendamagedpriortotheextrusion ofthediet.Thedecreaseintotalaswellasinreactivelysineafterextrusioncanbeexplained in that the lysine molecule is sensitive to destruction by high temperature where high temperatures also stimulate the hydrolyses of starch.Asaresult,morereducingsugarsare presentafterextrusionandthesemayreactwithlysine(Kim,1983;Björcketal.,1984).The overallresultisinlinewiththeresultsofvanBarneveld(1993)andofWilliamsetal.(2006). VanBarneveld(1993)foundatenpercentreductioninthereactivetototallysineratiowhen fieldpeaswereheatprocessedat150ºC.

66 ______Effectsofextrusiononnutritionalqualityofsingleingredients

Fortotallysine,wecompared(Table5.3)thelysinecontributionfrombarley,maize, riceandwheatonthebasisofitschemicalanalysisorcalculatedfromthemeanlysinevalues listedin the CVBtable (CVB, 2004). These values listed in the CVBtable for nitrogenor total lysine have been obtained from independent researches but may vary: not only the nitrogen content in the grains differ but also the lysine content as a constituent of crude protein differs between samples of the same grain. Since vegetable ingredients do contain sugars,onemightexpectthatespeciallygrains(whichmadeup65percentoftheexperimental diet)wouldbecausativefactorsforadecreaseor difference in the total or reactive lysine contentsinadiet.However,thecalculatedandanalyzedvaluebeingthecontributionofthe fourgrainstototallysineinthewholedietwasthesame.Itis,therefore,notclearwithout furtherresearch,whichspecialingredientorwhichconditionduringextrusionand/ordrying willmaketheboundlysinethermallylabile. Since proteins may crosslink to form a structural network during extrusion, other interactionsmayoccursuchasproteinproteinandproteinlipidinteraction.Thisisduetothe diversityintertiaryandquaternarystructureinproteinsandawiderangeofchemicalgroups which may react to polysaccharides (Mitchell and Arêas, 1992). This may explain why extrusioncanresultinarangeofdifferentreactionsinwhichproteinsareinvolved.Protein crosslinking(betweenaminoacidsorbetweenanaminoacidandlipids)hasmajorfunctional andnutritionalconsequencesinfoodsystems.Someexamplesofcrosslinkingstudieshave been done with wheat dough, collagen, lysinoalanine, nonenzymatic browning and isopeptides (Stanley, 1989). The transformation of protein molecules during extrusion is thought to take place in the reactor zone of the extruder (Arêas, 1992). The extreme conditionsintheextruderleadtocompleteunfolding(ofnativeproteins)ordisaggregation(of denaturedproteins)ofproteincomplexes(LedwardandMitchell,1988).Thehighshearmight beresponsibleforsomeorientationoftheaggregationoftheproteins.Itprobablyforcesthe proteins into a relatively extended chain conformation (Ledward and Mitchell, 1988). The proteinsthenalignthemselveswiththeflowofmaterialtowardsthedie(Camireetal.,1990).

67 Chapter5______

5.5.Conclusions Theextrusionconditionsemployedinthisstudyhadacleareffectonthestarchand proteinqualityofdogfoodingredients.Thedegreeofstarchgelatinizationofallvegetable ingredientslargelyincreasedduringextrusion.ThePDIofmostofexperimentalingredients decreased. The total lysine and reactive lysine contents of each single ingredient (both of vegetableandanimalorigin)didnotrespondinasimilarmannerduringextrusion.Reactive lysine content of most of the vegetable ingredients increased during extrusion except for wheat (unchanged) and barley (decreased). The reactive to total lysine ratio of barley was decreased; that of maize remained constant, while that of rice was drastically increased. Further research should aim to elucidate which ingredient(s) or which condition(s) during extrusion/dryingwillmaketheboundlysinebecomereactiveagainanditsmechanism. Acknowledgements The authors would like to thank Ms G. Post and Mrs. S. van Laar (Animal Nutrition Laboratory, Wageningen University, the Netherlands) for their help with the chemical analyses. References AbdElHady,E.A.,Habiba,R.A.,2003.Effectofsoakingandextrusionconditionsonantinutrients andproteindigestibilityoflegumeseeds.Lebensm.Wiss.u.Technol.36,285293. Aguilera,J.M.,Lusas,E.W.,1986.Laboratoryandpilotplantsolventextractionofextrudedhighoil corn.J.Am.OilChem.Soc.63,239. Alonso,R.,Aguirre,A.,Marzo,F.,2000a.Effectsofextrusionandtraditionalprocessingmethodson antinutrientsand invitro digestibilityofproteinandstarchinfabaandkidneybeans.Food Chem.68,159165. Alonso,R.,Grant,G.,Dewey,P.,Marzo,F.,2000b.Nutritionalassesment invitro and invivo ofraw andextrudedpeas( Pisumsativum L.).J.Agri.FoodChem.48,22862290.

68 ______Effectsofextrusiononnutritionalqualityofsingleingredients

AOAC,1990.OfficialMethodsofAnalyses.In:Association of Official Analytical Chemists. 15th Edition.AOAC,Arlington,VA. AOCS,1980.Proteindispersibilityindex(PDI).In:AmericanOilChemists’Society.AOCSOfficial MethodBa1065,ChampagneIII. Arêas,J.A.G.,1992.Extrusionoffoodproteins.Crit.Rev.FoodSci.32,365392. Arrage, J.M., Barbeau, W.E., Johnson, J.M., 1992. Protein quality of whole wheat as affected by drumdryingandsinglescrewextrusion.J.Agri.FoodChem.40,19431947. vanBarneveld,R.J.,1993.Effectofheatingproteinsonthedigestibility,availabilityandutilizationof lysinebygrowingpigs.PhDstudies,UniversityofQueensland,Australia. Batal,A.B.,Douglas,M.W.,Engram,A.E.,Parsons,C.M., 2000. Protein dispersibility index as an indicatorofadequatelyprocessedsoybeanmeal.PoultrySci.79,15921596. Björck,I.,Asp,N.G.,1983.Theeffectsofextrusioncookingonnutritionalvalue:aliteraturereview. J.FoodEng.2,281308. Björck,I.,Asp,N.G.,Dahlqvist,A.,1984.Proteinnutritionalvalueofextrusioncookedwheatflours. FoodChem.15,203214. Camire, M.E., Camire, A., Krumhar, K., 1990. Chemical and nutritional changes in foods during extrusion.Crit.Rev.FoodSci.29,3557. CVB, 2004. Veevoedertabel, gegevens over chemische samenstelling, verteerbaarheid en voederwaarde van voedermiddelen (Nutrition tables, data on chemical composition, digestibilityandnutritionalvalueoffeedingredients).CentraalVeevoederBureau,Lelystad, theNetherlands. Dust,J.M.,Gajda,M.A.,Flickinger,A.E.,Burkhalter, T.M., Merchen, N.R., Fahey Jr, G.C., 2004. Extrusion conditions affect chemical composition and invitro digestion of selected food ingredients.J.Agri.FoodChem.52,29892996. Eggum, B.O., Juliano, B.O., Ibabao, M.G.B., Perez, C.M., 1986. Effect of extrusion cooking on nutritionalvalueofriceflour.FoodChem.19,235240. Gujska,E.,Khan,K.,1991.Hightemperatureextrusioneffectsonproteinsolubilityanddistributionin navyandpintobeans.J.FoodSci.56,10131016. Hendriks,W.H.,Butts,C.A.,Thomas,D.V.,James,K.A.C.,Morel,P.C.A.,Verstegen,M.W.A.,2002. Nutritionalqualityandvariationofmeatandbonemeal.AsianAus.J.Anim.Sci.15,1507 1516. Hendriks,W.H.,Emmens,M.M.A.,Trass,B.,Pluske,J.R.,1999.Heatprocessingchangestheprotein qualityofcannedcatfoodasmeasuredwitharatbioassay.J.Anim.Sci.77,669676.

69 Chapter5______

Kim,J.C.,1983.Effectsofsomeextrusionparametersonthesolubilityandviscogramsofextruded wheatflour.ThermalProcessingandqualityoffoods. Lankhorst,C.,Tran,Q.D.,Havenaar,R.,Hendriks,W.H.,vanderPoel,A.F.B.,2007.Theeffectof extrusion on the nutritional value of canine diets as assessed by invitro indicators. Anim. FeedSci.Technol.138,285–297. Ledward,D.A.,Mitchell,J.R.,1988.Proteinextrusionmorequestionsthananswers.In:[Blanshard, J.M.V.,Mitchell, J.A., editors], Food Structure Its Creation and Evaluation. Butterworths, London,pp.219229. Lin,S.,Hsieh,F.,Huff,H.E.,1997.Effectsoflipidsandprocessingconditionsondegreeofstarch gelatinisationofextrudeddrypetfood.Lebensm.Wiss.u.Technol.30,754761. Maga, J.A., 1978. Cistrans fattyacidratioasinfluencedbyproductandtemperature of extrusion cooking.Lebensm.Wiss.u.Technol.11,183184. Martínez,B.F.,Figueroa,J.D.C.,Larios,S.A.,1996.Highlysineextrudedproductsofqualityprotein maize.J.Sci.FoodAgri.71,151155. Mitchell,J.R.,Arêas,J.A.G.,1992.Structuralchangesinbiopolymersduringextrusion.In:[Kokini, J.L., Ho, C.T.,Karwe, M.V., editors], Food Extrusion Science and Technology. Marcel Dekker,Inc,pp.345360. Moughan,P.J.,Rutherfurd,S.M.,1996.Anewmethodfordeterminingdigestiblereactivelysinein foods.J.Agri.FoodChem.44,22022209. Murray,S.M.,Flickinger,A.E.,Patil,A.R.,Merchen,N.R.,BrentJr,J.L.,FaheyJr,G.C.,2001. In vitro fermentationcharacteristicsofnativeandprocessedcerealgainsandpotatostarchusing ilealchymefromdogs.J.Anim.Sci.79,435444. vanderPoel,A.F.B.,Stolp,W.,vanZuilichem,D.J.,1992.Twinscrewextrusionoftwopeavarieties: effectsoftemperatureandmoisturelevelonantinutritionalfactorsandproteindigestibility.J. Sci.FoodAgri.58,8387. Rutherfurd, S.M., Moughan, P.J., 1997. Application of a new method for determining digestible reactivelysinetovariablyheatedproteinsources.J.Agri.FoodChem.45,15821586. vanSoest,P.J.,Robertson,J.B.,Lewis,B.A.,1991.Methodsfordietaryfibre,neutraldetergentfibre andnonstarchpolysaccharidesinrelationtoanimalnutrition.J.DairySci.74,35833597. Stanley, D.W., 1989. Protein reactions during extrusion processing. In: [Mercier, C., Linko, P., Harper, L.M., editors], Extrusion Cooking. American Association of Cereal Chemists, St. Paul,Minnestota,USA,pp.321341.

70 ______Effectsofextrusiononnutritionalqualityofsingleingredients

Thomas,M.,Huijnen,P.T.H.J.,Vliet,T.,vanZuilichem,D.J.,vanderPoel,A.F.B.,1999.Effectsof processconditionsduringexpanderprocessingandpelletingonstarchmodificationandpellet qualityoftapioca.J.Sci.FoodAgri.79,14811494. Tran,Q.D.,van Lin,C.G.J.M., Hendriks,W.H., van der Poel, A.F.B., 2007. Lysine reactivity and starchgelatinizationinextrudedandpelletedcaninediets.Anim.FeedSci.Technol.138,162 168. Wen,L.F.,Rodis,P.,Wasserman,B.P.,1990.Starchfragmentationandproteininsolubilizationduring twinscrewextrusionofcornmeal.CerealChem.63,268275. Williams,B.A.,Hodgkinson,S.M.,Rutherfurd,S.M.,Hendriks,W.H.,2006.Lysinecontentincanine dietscanbeseverelyheatdamaged.J.Nutr.136,1998S2000S.

71

72

Chapter6

Effectsofdryingofacaninedietextrudedata4or8mmdiesizeon physicalandnutritionalqualityindicators Q.D.Tran a,b,W.H.Hendriks aandA.F.B.vanderPoel a aAnimalNutritionGroup,DepartmentofAnimalSciences,WageningenUniversity,Marijkeweg40, 6709PGWageningen,theNetherlands bHumanandAnimalPhysiologyGroup,BiologyFaculty,VinhUniversity,182LeDuanstreet,Vinh,Vietnam AnimalFeedScienceandTechnology(submitted) Chapter6______

Abstract Twofactorialexperiments(4temperatures×2durations)werecarriedouttotesttheeffectof drying variables on nutritional and physical quality indicators of extruded canine diets producedusinga4and8mmdie(kibblesize).Thedietwasextrudedusingasinglescrew extruderat130ºCand300g/kgmoisture.Thedryingtemperaturesusedwere80,120,160 and200ºCandeachdietwasdriedto90or60g/kgmoisture(dryingduration).Dryingofthe dietswasconductedindraughtforcedovensandeachsamplewasanalysedfordrymatter, nitrogen,aminoacids(includingreactivelysine)andfattyacidcontent.Hardness,durability andspecificdensityofkibbleswerealsodetermined.Hardnessandspecificdensityofthe testeddietswerenotaffectedbydryingtemperatureortime.Kibbledurabilitywasaffected (P<0.05) by drying temperature. The highest temperature (200ºC) resulted in a decreased durabilitycomparedto80ºC.Thedryingtimehadnoeffectsonthelevelofaminoacidsas well as total or reactive lysine content. Drying temperature affected only prolin (of 4 mm kibbles),totallysine(of4mmkibbles)andreactivelysine(ofboth4and8mmkibbles)at 200ºC.Thereactivetototallysineratioof4mmkibblesdriedat120ºCwashigherthanthat driedat200ºC.Thisratioof8mmkibblesdriedat160ºCwashigherthanthatdriedatthe othertemperatures.Thedryingtemperatureaffectedcontentsofsomefattyacids:fattyacids C18:3andC18:2weredecreasedwhileC18:0wasincreased.Thisisanindicationforlipid oxidationduringdrying. Keywords : Extrusion; Drying; Pet Food; Canine diet; Amino acids; Reactive lysine; Fatty acids.

74 ______Effectsofdryingtemperatureonqualityofextrudedcainediets

6.1.Introduction Thepetfoodproductionprocessincludesanumberofstageswhereheattreatmentsare employed such as preconditioning, extrusion cooking, sterilisation and drying. Pet food companiesmainlyuseextrusioncookingtechnologytoproducedrypetfoodsbecauseofa combination of benefits including better pasteurisation, maintenance of nutritional value, flexibilityanddensitycontrol.Dryextrudeddietsforcatsanddogsarecommonlyproducedat amoisturelevelbetween200300g/kg(Lankhorstetal.,2007)andmustbedriedafterwards tocontainamoisturecontentbetween60to90g/kg(Tranetal.,2008)inordertoincrease shelflifeofthefinalproduct.Dryingtimedependsamongothersonthedryingtemperature employed, dryer design, dryer air speed, kibble size and bulk density. Two recent studies (Lankhorst et al., 2007; Tran et al., 2007) have investigated the effects of the extrusion cookingprocessonthenutritionalqualityofpetfoods.Thelatterisnotonlyaffectedbythe agglomeration process itself but also by the downstream drying process. Drying at high temperaturesisknowntocausephysicalandchemical changes in extrudates (Davenel and Marchal,1995). Dryingitselfimprovesstabilityorproductshelflife,reducesstickiness(i.e.improves handling)andreducestheweightoftheproductforshipping.Ifextrudatesarenotdriedor inappropriately stored, the moisture can stimulate microbial growth which may result in spoilageand/orintoxinproduction.Drying,however,mayalsocausechemicalchangesinthe product:excessiveheating,forinstance,destabilizesfatwhichcanleadtoastickymassand causeevaporationoffineflavourvolatiles(Acquistucci,2000).Theextrusionprocessresults inahighdegreeofboundmoisturewhichismoredifficulttoremovecomparedthemoisture in pellets which is present as free moisture (Dexter et al., 1981). Moderate drying temperaturesofapproximately75°Cfor50or90minutescanresultinheatdamageinpasta as indicated by an increase in furosine concentration (Acquistucci, 2000). Research into commercialcanineandfelinedietshasshownalargedifferencebetweenthecontentofO methylisoureareactiveandtotallysine(Williamsetal.,2006;Tranetal.,2007;Rutherfurdet al.,2007)whichisanindicatorofheatdamagetolysine.Recently,Lankhorstetal.(2007) determinedtheeffectoftheextrusionprocessonlysinereactivity,therebyexplainingsomeof thevariationwhichwasobservedincommercialpetfoods.Thereisalackofinformationin

75 Chapter6______ the literature on the contribution of the drying process in explaining the large variation observedinlysinereactivityofcommercialpetfoods. Thepresentstudyinvestigatedtheeffectofbothdryingtemperatureanddryingtime on a number of nutritional and physical quality parameters of a canine diet. Since drying efficacydependsonthesurfaceareaofakibble,a4and8mmextruderdieopeningduring extrusionwereexamined.Thehypothesistestedwasthatmilddryingtemperatures(120°C) willcauseminorandacceptablelysinedamageinextrudedcaninediets. 6.2.Materialandmethods 6.2.1.Experimentalingredientsanddiets Theingredientsandnutrientcompositionoftheexperimental formulation used to producetheextrudatesfordryingispresentedinTable6.1.Allvegetableingredientswere supplied by Research Diet Services (Wijk bij Duurstede, the Netherlands). Poultry meal, chicken meat, whole egg powder, fish meal and pork bone fat were obtained from International Quality Ingredients, Ermelo, the Netherlands. All intact vegetable ingredients weregroundovera1.5mmsieveinahammermill(ConduxLHM,Hanau,Germany).The dietingredientsweremixedfor180secondsinaF60 paddle mixer (Forberg AG, Larvik, Norway).Priortomixing,thechickenmeatandporkbone fat were heated (60°C) usinga waterbathtoenhancemixingproperties.Aftermixing,themealmixture(density,0.65g/cm 3; initialmoisturelevel,115g/kg)wastransportedtothestoragebinabovetheextruder. 6.2.2.Experimentaldesign,extrusioncookingandsampling Two4×2factorialexperimentswerecarriedoutusingdryingtemperatureanddrying timeasvariables.Thetemperaturesusedwere80,120,160and200°Candthedryingtimes (usedtodrythesamplestoatargetmoisturecontentof60or90g/kg,respectively)were referredtoast60andt90.Thetwoexperiments(4and8mmdiesize)werecarriedoutat consecutive days at the Wageningen Feed Processing Centre, Wageningen University, the

76 ______Effectsofdryingtemperatureonqualityofextrudedcainediets

Netherlands. Diets were extruded at 130ºC in a single screw extruder (AL150; Almex, Zutphen,theNetherlands;length/diameterratio8)withmoderateshearscrewconfiguration usingforwardingscrewsandpaddles.Attheconditionerphase,waterwasaddedtoobtaina watercontentof300g/kg.Twodiesizesof4and8mm,eachwith4orifices,wereused.A diefacecutterwasoperatedtocuttheextrudatestoapproximately12mmlength(longitudinal expansion)forthe4mmdieand7mmlengthforthe8mmdie.Allparameters,suchas extruderthroughputtemperatureandfeedrate,werecontrolledbyaprogramlogiccontroller, monitoredandkeptconstantperdiesizethroughouttheexperiment. Table6.1 Ingredientandnutrientcompositionoftheuntreatedexperimentaldiet. Ingredient Inclusion Nutrient Amount (g/kgdiet) (g/kgDM a) Wheat 245.0 Drymatter 932.4 Maize 215.2 Crudeprotein 188.1 Rice(dehulled) 150.0 Crudefat 109.1 Chickenmeat(MDM) b 100.0 Poultrymeal 53.6 Leucine 13.6 Barley 50.0 Arginine 9.5 Porkbonefat 43.3 Lysine 9.1 Fishmeal 35.0 Valine 9.0 Sugarbeetpulp 30.0 Phenylalanine 7.9 Wholeeggpowder 20.0 Isoleucine 7.2 Dicalciumphosphate 16.6 Threonine 6.5 Brewersyeast 15.0 Histidine 3.6 Linseed 10.0 Methionine 3.2 Salt 6.7 Potassiumchloride 2.6 Stearicacid(C18:0) 5.5 Premix c 5.0 Oleicacid(C18:1n9cis) 34.6 Limestone 1.7 Linoleicacid(C18:2n6cis)25.0 Inulin 0.3 Linolenicacid(C18:3n3cis)4.6 a Drymatter. b Mechanicallydebonedmeat. c Compositionofpremix(g/kgfeedformineralsandmg/kgforvitamins,unlessotherwisestated):Ca:0.22;P: 0.03;Mg:0.02;K:0.04;Cl:0.08;Fe:73mg/kg;Mn:35mg/kg;Cu:5.0mg/kg;Zn:75mg/kg;I:1.8mg/kg;Co: 2.0mg/kg;Se:0.20mg/kg;VitaminA:17500IE/kg;VitaminD3:2000IE/kg;VitaminE:1000;VitaminK3: 2.0;VitaminB1:10.0;VitaminB2:10.0;Niacin:50.0;Pantothenicacid:25.0;VitaminB6:7.5;VitaminB12: 50.0g/kg;Biotin:300g/kg;Cholinechloride:475;Folicacid:1.25;VitaminC:100. Afterextrusion,eachcollectedbatch(4and8mm) was sealed in plastic bags and directly transported to the laboratory. There, each batch was divided into 16 identical

77 Chapter6______ subsamplesanddriedinduplicateusingeightidenticaldraughtforcedovens(WTBBinder, Germany) at temperatures of 80, 120, 160 and 200°C. The actual temperatures were electronicallydisplayedontheovenscreen.Thedryingtimerequiredtoobtain90and60g/kg (end)moisturecontentwasrecordedforeachsampleasfollows:thesamplemoisturecontent beforedryingwasusedtocalculatetheexpectedsampleweightafterdryingforeachtarget endmoisture. During drying, samples were weighed approximately every 15 or 30 min. dependingontemperatureuntilthesamplereachedtheexpectedweight.Twocontrolsamples (fromdiesizesof4or8mm)weredriedat40ºCfor15hours.Afterdrying,eachofthe32 samples were divided into two parts. One part was used for physical analysis (durability, hardnessandspecificdensity)ofwholekibblesasdescribedbyLankhorstetal.(2007).The otherpartwasgroundinalaboratorymill(ZM100,RetschBV,Ochten,theNetherlands), fittedwithacycloneforcoolingtoavoidexcessiveheatgeneration,overa1mmsieveand thenstoredinairtightplasticcontainersat4°Cpriortochemicalanalysis. 6.2.3.Analyticalmethods Thenutrientcompositionoftheexperimentaldietswasdeterminedbytheproximate analysis methods (AOAC, 1990) with dry matter (DM) analyzed by drying samples to a constantweightat103˚C.Longchainfattyacidswereanalysedbylipidextractionaccording toFolchetal.(1957)followedbymethylation(sodiummethanolateinabsolutemethanol)of thefattyacids.Methylatedfattyacidsampleswereseparatedbygaschromatographyusinga CarloErbaInstrumentsHRGCMega2,Milan,Italy.Aminoacidsweredeterminedon5mg samplesbyhydrolyzingwith1mlof6mol/lglassdistilledHClfor24hoursat110±2°Cin glasstubes,sealedundervacuum.Thetubeswereopenedand200 µlof2.5 µmolnorleucine wasaddedtoeachtubeasaninternalstandard,thereafterthetubesweredriedundervacuum (SavantSpeedVacConcentratorSC210A,SavantInstrumentsInc.,Farmingdale,NY,USA). Reactive lysine was determined according to the Omethylisourea (OMIU)method as describedbyMoughanandRutherfurd(1996).Aminoacidswereloaded onto a water ion exchange HPLC system (Biochrom 20 Plus, Amersham Pharmacia Biotech, Staffanstorp, Sweden) employing postcolumn derivatisation with ninhydrin and detection at 570 nm. Prolinewasdetectedat440nm.Thechromatogramswereintegratedusingspecificsoftware

78 ______Effectsofdryingtemperatureonqualityofextrudedcainediets

(ChromCard version 2.3.3, Thermo Scientific, Waltham, MA, USA) with amino acids identified and quantified by retention time against a standard amino acid mixture. All chemical analyses were conducted in duplicate at the laboratory of the Animal Nutrition Group,WageningenUniversity. 6.2.4.Statisticalanalysis The effects of drying (temperature and time) parameters on the nutritional and physicalqualityindicatorsforeachdiesizewerestatisticallyanalysedbyanalysisofvariance (SPSS,2007)usingthefollowingmodel.

Yij =+T i+t j+(T*t) ij +e ij whereY ij =qualityindicator,=overallmean,T i=dryingtemperature(i=80,120,160or

200°C),t j=dryingduration(j=t60ort90),(T*t) ij =interactionbetweendryingtemperature ianddryingdurationj,e ij =residualerrorterm. Homogeneityofvariancewascheckedwithα=0.05. The Tukey test was used to comparethedifferencesbetweentemperaturesandtheStudent’sttestwasusedtocompare differencesbetweenthedryingtimes. 6.3.Results Thedurationofdryingtimerecordedrangedbetween43(200°C/t90)and539minutes (80°C/t60)dependingonthedryingtemperature,kibblesizeandthedesiredmoisture(60or 90g/kg)oftheendproduct.Asexpected,thetime requiredtodrythekibblesto60g/kg moisture was longer compared to drying to 90 g/kg moisture for all samples. The 4mm kibblesrequiredalongerdryingtime(497and139min.)comparedtothe8mmkibbles(260 and107min.),especiallyatthetwolower(80and120ºC,respectively,fort9)temperatures. The mean ± SEM values for hardness, durability and specific density of the experimentaldietsarepresentedinTable6.2.Thehardnessofthekibbleswasnumerically (notsignificantly)affectedbythedryingtemperaturebutnotbytheresidencetime.Kibble durability was affected by drying temperature: extrudates produced with a 8mm die size,

79 Chapter6______ driedat80ºChadahigher(P<0.05)durabilitythanthosedriedat200ºC.Specificdensityof kibbleswasnotsignificantlyinfluencedbydryingtemperature.Dryingtimehadnoeffectson thephysicalcharacteristicsofthekibbleinvestigated. Table6.2 Effectsofdryingtemperatureanddryingtimeonphysicalcharacteristics(mean±SEM)of theexperimentaldietsextrudedwitha4or8mmdiesize. Hardness(kg) Durability(%) Specificdensity(g/cm 3) 4mm 8mm 4mm 8mm 4mm 8mm Dryingtemperature(ºC) 804.9±0.37.9±0.587.7±1.195.8 a ±0.40.46±0.010.46±0.01 1204.1±0.36.3±0.588.3±1.194.4 ab ±0.40.46±0.010.44±0.01 1604.3±0.36.7±0.586.1±1.194.1 ab ±0.40.45±0.010.44±0.01 2004.0±0.36.6±0.583.6±1.193.1 b ±0.40.46±0.010.44±0.01 Dryingtime ‡(min) t60 4.3±0.26.8±0.386.8±0.894.2±0.40.45±0.000.44±0.01 t904.3±0.27.0±0.486.1±1.194.5±0.50.46±0.010.45±0.01 a,b Differentsuperscriptsdenotesignificantdifferences(P<0.05)betweenmeanswithinacolumn. ‡ Dryingtimeupto60(t60)or90(t90)g/kgmoistureintheendproduct. Table6.3showstheeffectsofthedryingtemperatureonlongchainfattyacids.Drying time had no effects on the content of longchain fatty acids in the diets. The contents of C18:0,C18:2andC18:3fattyacidswereaffectedbydryingtemperatureespeciallyat200ºC in the 4 mm kibbles. C16:0 and C20:0 were also significant influenced by the drying temperature,althoughthenumericaldifferencesweresmall. Table6.4showsthemean±SEMcontentofaminoacids including OMIUreactive lysineofthedietsperdryingtemperature.Statisticalanalysisshowedthatthedryingtimehad nosignificanteffectsonanyoftheaminoacidsincludingreactivelysineandassuchthedata werepooledperdryingtemperature.Thetotallysinecontentofthecontrolsample(driedat 40ºC;4mmdiesize)was8.61g/kgDM;thereactivelysinecontent,7.79g/kgDMandthe reactive to total lysine ratio, 0.90. The total lysine content of the control sample (dried at 40ºC;8mmdiesize)was9.06g/kgDM;thereactivelysinecontent,7.77g/kgDMandthe reactive to total lysine ratio, 0.86. Drying temperature significantly affected (P<0.05) the contentofprolineinthe4mmkibbleshowinganincreaseat200ºC,butnotinthe8mm

80 ______Effectsofdryingtemperatureonqualityofextrudedcainediets kibble.Fordietsproducedusingthe4mmdie,bothtotalandreactivelysinewereaffected (P<0.05) by drying temperature. Extrudates dried at 200ºC had a lower total and reactive lysinecontentcomparedtoextrudatesdriedattheothertemperatures.Thereactivetototal lysineratioinextrudatesdriedat200ºCwassignificantlylowerthanthatinextrudatesdried at120ºC.Fordietsproducedwiththe8mmdie,onlyreactivelysinewasaffectedbydrying temperature.Extrudatesdriedat200ºChadalower(P<0.05)reactivelysinecontentcompared to extrudates dried at the other temperatures. However, the reactive to total lysine ratio of extrudatesdriedat160ºCwashigherthanthatofextrudatesdriedatallothertemperatures. Table6.3 Effectsofdryingtemperatureonlongchainfattyacids(g/kgfeedDM †)of4and8mmdie sizeextrudates. Fattyacid Diesize 4mm 8mm Temperature(ºC) Pooled Temperature(ºC) Pooled 80120160200SEM 80 120 160 200 SEM C12:0 0.50.60.60.60.04 0.4 0.5 0.7 0.5 0.12 C14:0 0.80.80.70.80.04 1.1 0.8 0.7 0.8 0.12 C14:1n5cis 0.00.10.10.00.03 0.1 0.1 0.0 0.0 0.05 C16:0 21.6 b22.0 a,b 22.3 a22.4 a0.12 21.7 b 21.8 a,b22.1 a 22.0a,b 0.10 C16:1n7cis 3.53.53.53.50.06 3.5 3.5 3.5 3.5 0.08 C18:0 5.4 b5.3 b5.4 b5.8 a0.07 5.4 5.4 5.5 5.6 0.09 C18:1n9trans0.10.00.10.30.07 0.0 0.1 0.0 0.1 0.05 C18:1n9cis 34.634.134.934.40.26 34.3 34.2 34.4 34.3 0.19 C18:1n7cis 2.02.02.02.00.05 1.9 2.0 2.0 2.0 0.07 C18:2n6cis 25.4 a25.4 a25.4 a24.2 b0.19 25.4 25.3 25.6 24.8 0.20 C18:3n3cis 4.5 a4.5 a4.5 a4.2 b0.06 4.7 a 4.6 a,b 4.5 b 4.5 b 0.05 C20:0 0.10.10.10.20.05 0.0 b 0.1 a,b 0.0 b 0.2 a 0.03 C20:1 n9cis0.50.30.40.50.08 0.4 0.5 0.2 0.4 0.06 C20:5n3 0.30.30.30.20.05 0.3 0.3 0.1 0.3 0.05 C22:6n3 0.20.30.30.30.05 0.3 0.3 0.2 0.3 0.09 † Drymatter a,b Differentsuperscriptsdenotesignificantdifferences(P<0.05)betweenmeanswithinacolumn. No interactions were found between drying temperature and drying time on the various quality indicators with the exception between the drying temperature and time and reactive lysine (P<0.001) and the ratio of reactive to total lysine (P<0.01) for the kibbles producedwithadiesizeof8mm.Dryingtemperatureof200ºCaswellasalongertimeof

81 Chapter6______ dryingcausedincreaseddamagetoreactivelysineand,asaresult,producedlowerratiosof reactivetototallysine. Table6.4 Effects of drying temperature on amino acids (g/kg feed DM †) of 4 and 8mm die size extrudates. Aminoacid Diesize 4mm 8mm Temperature(ºC)Pooled Temperature(ºC)Pooled 80120160200SEM 80 120 160 200 SEM Asparticacid 13.913.714.113.90.3 13.1 13.4 13.311.11.0 Threonine 6.46.36.46.40.1 6.5 6.2 6.25.10.6 Serine 7.77.57.67.40.1 8.7 7.4 7.56.00.9 Glutamicacid27.427.427.728.10.4 29.4 27.3 26.921.43.0 Proline 12.0 b14.5 a14.6 a14.0 a,b 0.5 13.9 13.4 14.011.70.6 Glycine 10.810.510.710.80.2 10.4 10.2 10.19.11.3 Alanine 10.09.89.69.90.2 9.7 9.7 9.28.50.4 Valine 9.18.78.78.90.2 8.9 8.6 8.47.60.5 Methionine 3.23.13.13.20.1 3.5 3.0 2.92.70.3 Isoleucine 7.06.97.07.00.1 6.8 6.8 6.75.90.4 Leucine 13.313.013.113.40.2 13.0 12.9 12.710.91.0 Tyrosine 5.65.55.55.50.1 5.4 5.5 5.44.40.5 Phenylalanine7.6 7.57.58.10.1 7.4 7.4 7.66.40.7 Histidine 3.53.53.73.40.1 3.4 3.5 3.42.80.3 Arginine 8.98.88.98.40.3 8.7 8.3 8.67.40.6 Lysine 9.1 a 8.9 a 9.0 a 7.5 b0.3 8.9 8.9 8.68.40.1 Reactivelysine7.8 a8.4 a 8.3 a 6.1 b0.2 8.0 a8.3 a8.3 a7.5 b 0.1 † Drymatter a,b Differentsuperscriptsdenotesignificantdifferences(P<0.05)betweenmeanswithincolumn. 6.4.Discussion Mostpetfoodrecipesincludeamixtureofcereal products, vegetable and animal proteins and additional lipids. These recipes are commonly extruded at moisture levels between200300g/kg.Excessiveproductmoistureafterextrusioncookingisremovedtoa levelof90oreven60g/kg(Tranetal.,2008)forfinalpackagingandsale.Theremovalof thisexcessmoistureisanaimofthedryingprocesssothataftercoolingthekibblecanbe sprayedorvacuumcoatedwithapalatabilityenhancingsolution.Ahightemperaturedrying

82 ______Effectsofdryingtemperatureonqualityofextrudedcainediets processinpetfoodtechnologypermitscontrolofthegrowthofmicroorganismsandallowsa shorteningofdryingtime.Thishaseconomicbenefits(Casiraghietal.,1992)butitmayalso positively affects lysine content of the product (Arrage et al., 1992). The latter authors reportedasignificantincreasein(dyebinding)reactivelysinecontentafterdrumdryingof wholewheatat152ºC(untreatedwholewheat,3.01;extruded,2.54anddrumdried,3.17g lysine/100gprotein).However,thisincreaseinreactivelysinehastobeviewedwithcaution duetopotentialinaccuracieswiththedyebindinglysinemethodology(Hendriksetal.1994). Duringdrying,thesurfacemoistureoftheproductisabsorbedbythedryprocessair andcarriedaway.Thesurfacemoistureevaporatesfirst,thereafterthemoistureatthecoreof thekibbleisdriventothesurfacewhereitevaporates.Freemoistureisthefirsttoevaporate, followedbyinternallyboundmoistureuponfurtherheating.Therangeofthedryingtimes foundinthepresentstudy(43to539min.for200and80ºC,respectively)issimilartodrying timeusedbyAcquistucci(2000)inpastaof40,65or75ºCfor30to600min.Thedryingtime forkibblesproducedwitha8mmdiewaslessthanforsmallkibbles(4mm).Thisseems logicalsinceinstaplesorlayers,thereismorespacebetweenlargerkibblesandthisresultsin an increased ventilation during drying compared to small kibbles (4 mm). In spite of their largerdiameter,thedryingtimeforthelargerkibbleswasless. Physical quality of extrudates has been traditionally associated with durability and hardness.Akibbledurabilityindexof90%ormoreisgenerallyusedtodayasatargetinthe feedindustry(Mavromichalis,2006).Adurablekibbleislesslikelytobreakduringhandling andtransportation;asaresult,finesareproduced.Theresultsofthepresentstudyshowedthat thedurabilityofthedietsproducedwitha4mmdie(nonsignificant)orwith a8mmdie (P<0.05)driedatlowertemperatureswashigherthanthoseobtainedathighertemperatures. This may be because of the retrogradation of starch during drying and/or cooling. At low dryingtemperatures,dryingtimeislonger,causingmorestarchretrogradation(Svihusetal., 2005).Afterdryingtothedesiredmoisturecontent,thedietsinthisstudywereallowedto cooldowntotheroomtemperaturebeforesampling.Thehardnessofkibblesinthepresent study was not affected by drying temperature and residence time. Kibble hardness after leaving the extruder through a die of 4mm was comparable to the 8mm die size. The hardnessofthe4and8mmkibblesinthepresentstudywaslowercomparedtokibblesin

83 Chapter6______ commercialcaninediets(Tranetal.,2007),possiblyduetotheadditionalsprayorvacuum coatingemployedintheproductionofthelatter. 10.0 1.00 Ratio Total lysine 9.5 Reactive lysine 0.95 9.0

8.5 0.90 8.0 0.85 7.5

7.0 Lysinecontent (g/kg DM) 0.80 Reactiveto totallysine ratio 6.5

6.0 0.75 80 120 160 200 Temperature (°C) Fig.6.1.Effectofdryingtemperatureontotalandreactivelysinecontentinadietextruded usingadieopeningof4mm.

10.0 Ratio 1.00 Total lysine 9.5 Reactive lysine 0.95 9.0

8.5 0.90 8.0

7.5 0.85

7.0 Lysine content (g/kg DM) 0.80 Reactive toReactive total lysine ratio 6.5

6.0 0.75 80 120 160 200 Temperature (°C) Fig.6.2.Effectofdryingtemperatureontotalandreactivelysinecontentinadietextruded usingadieopeningof8mm.

84 ______Effectsofdryingtemperatureonqualityofextrudedcainediets

Lipidoxidationisthemajorchemicalchallengefor preservation of pet food. This oxidationcanreducethenutritivequalitybydecreasing the content of essential fatty acids (Aldrich,2004)suchaslinolenic(C18:3)andlinoleic(C18:2),whichareessentialfattyacids fordogsandcats.Theselongchain,unsaturatedfattyacidsarehighlysusceptibletooxidation (Deffenbaugh,2007).Hightemperatureofextrusioncanincreasetheprooxidanttransition metal concentration, particularly iron, due to the metal wear on extruder parts (Lin et al., 1998).Neutral,inorganicformofminerals,e.g.iron,hasbeenreportedtopromoteoxidation (O’keefe and Steward, 1999). In the present study, fatty acids were only affected at high dryingtemperaturesleadingtotheiroxidation.Inparticular,theC18fattyacids(especially C18:3n3,anunsaturatedfattyacid)weremostaffected(P<0.05)bythedryingtemperatures (Table6.3).OtherfattyacidssuchasC16:0andC20:0werealsoaffected(P<0.05)although thenumericaldifferencesweresmall.Itishighlylikely,thattheincreaseinthelevelofC18:0 isanindicationforoxidationoftheC18:3fattyacidsandthusfordamage(Aldrich,2004)to thefattyacids.Incontrast,anincreaseintheC16:0fattyacidcontentwasobservedwithouta decreaseintheC16:1content. Forextrudatesproducedusinga8mmdiesize,thetotallysinecontentwasunaffected bybothdryingtemperatureandresidencetime.Forextrudatesproducedusinga4mmdie size,thetotallysinecontentofextrudatesdriedatthehighesttemperature(200ºC)waslower (P<0.05)thanextrudatesdriedatothertemperatures(Fig.6.1).Thisisinlinewiththestudy ofHåkanssonetal.(1987)wheretheeffectsofthermalprocessesonwholegrainwheatand itsderivedflourwerereported.Thereduction(15%) in total lysine content in the product whendriedat200ºCiscausedbydestructionoflysineunderthesethermaltreatments.Ithas been reported by several authors that lysine, arginine in particular as well as tryptophan, cysteine, methionine and histidine are the amino acids that are most affected by reactions takingplaceduringheatinge.g.duringextrusionanddrying(vanBarneveld,1993;Arrageet al.,1992;Iweetal,2001).However,itistheaminoacidlysinethatisroutinelyusedasan indicatorfortheevaluationofproteinqualitydeteriorationbytheMaillardreaction(Moughan andRutherfurd,1996;Hendriksetal.,1999;Mavromichalis,2002). Inthepresentstudy,thecontentsofaminoacids lysine and proline in the 4 mm kibbles were significantly affected by the drying temperature (Table 6.4). No other amino acidswereaffectedalthoughthereweresomenumericaldifferencesformethionine,histidine

85 Chapter6______ andarginine;thesedryingeffectsonthelevelofmethionine,histidineandarginineweremore pronouncedinthe8mmsamples(P<0.05). Asforlysineavailability,Mavromichalis(2006)reportedareductioninthequalityof pigdietsduringmanufacturing,duetoexcessiveheatingduringdryingasaresultofMaillard reactions. These reactions involve binding of free amino groups to the carbonyl group of reducing sugars. Free amino groups exist in all crystalline amino acids and at the end of protein molecules. Amino acids that are bound to protein are not reactive because they contributetheiraminogrouptothepeptidebond;lysineisthereforeauniqueaminoacidsince ithastwoaminogroupsmakingproteinboundlysinealsoreactive. Thereactivelysinecontentinsamplesdriedat200ºCinthecurrentstudywasshown tobesignificantlylower(6%for8mmkibbles;20%for4mmkibbles)comparedtosamples dried at lower temperatures (Fig. 6.1 and 6.2). The reactive lysine content after drying at temperaturesof120and160ºCwasnumericallyhigherthanafterdryingat80ºC.Thisisin line with results of Arrage et al. (1992) who reported that reactive lysine of whole wheat increasedwhendriedat152ºCcomparedto79and93ºC. According to these authors, the moisturecontentoftheextrudedproductsisrapidlyreducedfrom300to150g/kgbyoven drying.Thismeansthattheextrudedproductwasheldonlyafewsecondsattheoptimum wateractivitylevelrequiredforMaillardbrowning.InastudyintotheMaillardreactionand its influence on protein modification at different drying temperatures. Acquistucci (2000) reportedthatmajorchangeswereobservedwhensamplemoisturerangedbetween180150 g/kgaftertheextrusionprocess. 6.5.Conclusions Hardnessandspecificdensityofkibbleswerenot affected by drying temperature. Durability of diets produced with a die size of 4 mm was decreased (not significant) by increasing drying temperature, while that of diets produced with a die size of 8 mm was significantlydecreasedwiththeincreaseindryingtemperature.Dryingtimehadnoeffectson orphysicalqualityoftheproduct.

86 ______Effectsofdryingtemperatureonqualityofextrudedcainediets

Mostunsaturatedlongchainfattyacidswereobservedtobedecreasedinthekibbles driedat200ºC.ItismostlikelythatoxidationoftheC18fattyacidsoccurredduetotheeffect ofdryingtemperatureatboth4and8mmkibbles.Thiseffectwasmorepronouncedforthe4 mmkibblesthanfor8mmkibbles. Total lysine decreased following the drying temperature being significant in 4 mm kibbles(P<0.05)butdecreasedonlynumericallyin8mmkibbles.Asforlysineavailability, dietsdriedattemperaturesbetween120and160ºCshowedhigherlysinereactivityin8mm kibbles.Dietsdriedat160ºChadthehighest(0.97)ratioofreactivetototallysine.Foradie size of 4 mm, diets dried at temperatures in the range of 120160ºC showedhigher lysine reactivitythanthosedriedat200ºCand80ºC(notsignificant).Dietsdriedat120ºCshowed the highest (0.94) ratio of reactive to total lysine. No other amino acids were affected by drying temperature in the present study except for prolineinthe4mmkibble,whichwas increasedbydryingtemperatureof200ºC.. Acknowledgements TheauthorsthankMr.T.ZandstraandMr.S.Alferinkforassistanceinoperatingthe extruderandMissM.Domenisforassistanceduringthedryingexperiment. References Acquistucci,R.,2000.InfluenceofMaillardreactiononproteinmodificationandcolourdevelopment inpasta:comparisonofdifferentdryingconditions.Lebensm.Wiss.u.Technol.33,4852. Aldrich,C.G.,2004.USAPoultryMeal:QualityIssues andConcerns inPet Foods. In: Nutritional Biotechnology in the Feed and Food Industries. Proceedings of Alltech's 20th Annual Symposium. Eds T.P. Lyons and K.A. Jacques. Nottingham University Press, Nottingham, UK. AOAC,1990.OfficialMethodsofAnalyses.In:Association of Official Analytical Chemists. 15th Edition.AOAC,Arlington,VA,USA.

87 Chapter6______

Arrage, J.M., Barbeau, W.E., Johnson, J.M., 1992. Protein quality of whole wheat as affected by drumdryingandsinglescrewextrusion.J.Agri.FoodChem.40,19431947. vanBarneveld,R.J.,(1993.Effectofheatingproteinsonthedigestibility,availabilityandutilizationof lysinebygrowingpigs.PhDthesis,WageningenUniversityandResearchCentre. Casiraghi, M.C., Brighenti, F., Testolin, G., 1992. Lack of effect of high temperature drying on digestibilityofstarchin.J.CerealSci.15,165174. Davenel,A.,Marchal,P.,1995.RapidmoistureandfatdeterminationbypulsedNMRformonitoring dryingandcoatingprocessesofextrudates.Int.J.FoodSci.Technol.30,655662. Deffenbaugh, L., 2007. Optimizing pet food, aquatic and livestock feed quality. In: [Riaz, M.N., editor],Extrudersandexpandersinpetfood,aquaticandlivestockfeeds.AgrimediaGmbH, Clenze,Germany,pp.327342. Dexter, J.E., Matsuo, R.R., Morgan, B.C., 1981. High temperature drying: effect on spaghetti properties.J.FoodSci.46,17411746. Folch,J.,Lees,M.,SloaneStanley,G.H.,1957.Asimplemethodfortheisolationandpurificationof totallipidsfromanimaltissue.J.Biol.Chem.226,497509. Håkansson,B.,Jägerstad,M.,Öste,R.,Åkesson,B.,Jonsson,L.,1987.Theeffectsofvariousthermal processesonproteinquality,vitaminsandseleniumcontentinwholegrainwheatandwhite flour.J.CerealSci.6,269282. Hendriks,W.H.,Moughan,P.J.,Boer,H.andvanderPoel,A.F.B.(1994)Effectsofextrusionon thedyebinding,fluorodinitrobenzenereactiveandtotallysinecontentofsoyabeanmealand peas.Anim.FeedSci.Technol.48:99109. Hendriks,W.H.,Emmens,M.M.A.,Trass,B.,Pluske,J.R.,1999.Heatprocessingchangestheprotein qualityofcannedcatfoodasmeasuredwitharatbioassay.J.Anim.Sci.77,669676. Iwe, M.O., van Zuilichem, D.J., Ngoddy, P.O., Lammers, W., 2001. Amino acid and protein digestibilityindexofmixturesofextrudedsoyandsweetpotatoflours.Lebensm.Wiss.u. Technol.34,7175. Lankhorst,C.,Tran,Q.D.,Havenaar,R.,Hendriks,W.H.,vanderPoel,A.F.B.,2007.Theeffectof extrusiononthenutritionalvalueofcaninedietsasassessedbyinvitroindicators.Anim.Feed Sci.Technol.138,285–297. Lin,S.,Hsieh,F.,Huff,H.E.,1998.Effectsoflipidsandprocessingconditionsonlipidoxidationof extrudeddrypetfoodduringstorage.Anim.FeedSci.Technol.71,283194. Mavromichalis,I.,2002.Internalandexternaldietqualityforyoungpigs.FeedTech.6,2023. Mavromichalis,I.,2006.TheMaillardreactioninfeedmanufacturing.FeedTech.5,1314.

88 ______Effectsofdryingtemperatureonqualityofextrudedcainediets

Moughan,P.J.,Rutherfurd,S.M.,1996.Anewmethodfordeterminingdigestiblereactivelysinein foods.J.Agri.FoodChem.44,22022209. O’keefe,S.F.,Steward,F.A.,1999.Effectsoflipidsandprocessingconditionsonlipidoxidationof extrudeddriedpetfoodduringstorage.Amin.FeedSci.Technol.71,283294. Rutherfurd,S.M.,RutherfurdMarkwick,K.J.andMoughan,P.J.2007.Available(iliealdigestible reactive)lysineinselectedpetfoods.J.Agric.FoodChem.55,35173522. SPSS,2007.SPSS15.0.1.1forWindows,SPSSInc.,19892006,Chicago,USA. Svihus, B., Uhlen, A.K., Harstad, O.M., 2005. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: a review. Anim. Feed Sci. Technol.122,303320. Tran,Q.D.,van Lin,C.G.J.M., Hendriks,W.H., van der Poel, A.F.B., 2007. Lysine reactivity and starchgelatinizationinextrudedandpelletedcaninediets.Anim.FeedSci.Technol.138,162 168. Tran, Q.D., Hendriks, W.H., and van der Poel, A.F.B., 2008. Effects of extrusion processing on nutrientsindrypetfood.J.Sci.FoodAgric.(inpress). Williams,P.A.,Hodgkinson,S.M.,Rutherfurd,S.M.,Hendriks,W.H.,2006.Lysinecontentincanine dietscanbeseverelyheatdamaged.J.Nutr.136,1998S2000S.

89

.

90

Chapter7

GeneralDiscussion

Chapter7______

Extrusionisaprocesswhereafeedstufforadietissubjectedtomixing,shearingand heatingunderhighpressureandthen,theproductisfinallyforcedthroughadieandiscalled ‘extrudate’.Extrusionisacomplexprocessandtheprocessvariablessuchasheat,moisture and shear can cause physical and chemical reactions in the extrudate. The extent of these reactions depends onprocess parameters and properties of the initial diet ingredients. It is clearthattheseparameterscanaffectnutrientsintheextrudateandtheycanalsoaffectthe physicalpropertiesoftheproduct. Thefoodconstituentsundergotransformationduringextrusionprocessing.Thiscanbe beneficialifthenutritionalvalueand/ordigestiveprocessesareimproved,butdetrimentalif nutrientsaredestroyedorwhenproteins,lipidsorcarbohydratesbecomeresistanttodigestion (Chapter 2). Dog food quality should be as high as possible to ensure a good use of the nutrientsbythedog.Itisalsogoodforfeedingeconomy.Inthiscontext,theavailabilityof thenutrients(nutritionofthedog)andthephysicalquality(nutritionofthedog;consumer’s convenience)ofthefoodarebothofgreatimportance. Recentstudieshavefocusedontheeffectsofextrusiononpetfoodnutrientssuchas starch(Linetal.,1997),proteins(Hendriksetal.,2002;Williamsetal.,2006)andlipids(Lin etal.,1998;Singhetal.,2007).However,littleisknownabouttheeffectsoftheextrusion processvariablesandthedownstreamprocessessuchasdrying,ontheproteinqualityofdog diets. Among the effects of extrusion on dog foods are starch gelatinization, protein denaturation, vitamin loss and inactivation of nutritionally active factors. Investigation of physical (i.e. hardness, durability) and nutritional (e.g. lysine reactivity) quality of commercialdrycaninefoodshasshownunveiledvariationinquality(Tranetal.,2007).Part of that variation can be due to ingredients specifics and/or due to processing conditions. Variation in pretreatment or posttreatment may also have an effect.Extrusion processing causes several chemical reactions such as Maillard reactions, cross linking reactions (i.e. proteinprotein, lipidprotein and carbohydrateprotein complexes), racemization of amino acids(BjörckandAsp,1983),interandextrapeptidelinkagesbetweenpeptides(Chapter2). Thesereactionsmaycauseareductioninthedigestibilityofproteinbecauseaminoacidsare lesshydrolyzedthanpureaminoacidsorpeptides.Asaresult,therecanbeareductionin availabilityofaminoacids(Sørensen,2007).

92 ______Generaldiscussion

Dog food quality is thus affected by several process variables (e.g. such as temperature,residencetime,moistureandpHvalues),amongwhichdogfoodformulationand extruderparametersarerecognizedashavinggreatinfluence(Ljøkjeletal.,2004).Notonly differences in chemical composition, but also the preprocessing history of the ingredients affectthequalityofdogfood,eitherdirectlyorindirectlythroughinteractionswithextrusion parameters.Thestudiesinthepresentprojecthavefocussedontotallysineandonreactive lysinecontentindietsfordogfoods.Itwasaimed to investigate to what extent extrusion (followed by drying) of an ingredient or a diet influences reactive lysine, total lysine and starch gelatinization along with some other parameters. We also aimed to evaluate interactionsbetweenextrusionprocessingparametersonphysicalqualityofdrycaninediets. 7.1.Highextrusiontemperatureisnotharmfulfordrydogfood The food mash undergoes significant changes during processing as it is heated, kneadedandundergoneshear,soextrusionisnotneutraltothefood.Asaresult,chemical changes can occur and thus the nutritive value of the extrudate may be changed. A temperature above 100 oC under the concomitant presence of starch is needed in order to achieveexpansionoftheproductasitleavesthedie(Sørensen,2007).Extrusiontemperature is usually a target value. This is obtained through steam added in the preconditioner, dissipationofmechanicalenergyfromheatedsurfacessuchasbarrelandscrewsurface,or generatedbyshearforcesbetweenwallandmaterialand/orscrewandmaterial(Mottazand Bruyas, 2001). Heat generation is thus affected both by the choice of hardware and by processingconditionsduringproductionofdogfoods.Temperatureupto9095 oC(Sørensen, 2007)mayoccurinthepreconditionerassteamandwaterareaddedinordertowarmupand softentheingredients.Asthefoodmashenterstheextruder,furtherheatingintheextruder depends on mechanical dissipation of energy from heated surfaces, or on steam injected directly into the barrel. The time during which food mash is exposed to heating during processing (preconditioning and extrusion) is normally less than five minutes (Sørensen, 2007).

93 Chapter7______

Temperature during extrusion has an impact on the gelatinization of starch and denaturation of proteins, and increasing barrel temperature results in increased expansion (Plattner and Rokey, 2007). When the food mash is exposed to heat and moisture, starch undergoesgelatinization,whichaidsinkibblebinding.Starchgelatinizationorstarchmeltis a homogeneous phase formed under heat treatment. Proper gelatinization of starch causes expansionoffoodafteritisforcedthroughthedie.Expansionalsoenableshighfatabsorption duringvacuumcoatingfortheproductionofhighenergy diets. In this way, good physical qualityofthefoodisreached. An invivo studyrequiresanimalstomeasuredigestibility.Useofdogswouldbemost appropriatebutthishasethicalimplications.Therefore,onehaslookedforalternativesand theuseoftheFIDOmodelhasbeenadvocated(Smeetsetal.,1999).Thismodelfacilitated the comparison of meal mixtures with extruded diets. This study has unveiled high correlationsinproteindigestibilitybetweentheFIDOmodelandthedog,thus invitro studies are highly valuable as a model to predict protein digestibility in dogs. Thus our invitro digestibility and glucose absorption value may, at least, mean that the invitro product digestibilitywillhavesimilaritieswithregardto invivo ranking. Effectsofextrusiontemperatureon invitro digestibilityandutilizationofproteinand starchofacaninedietwasexaminedinanexperimentbytheFIDOmodel(Chapter4).Inthis experiment,thedietwasextrudedwithatwinscrewextruderatthreetemperaturesof110, 130 and 150 oC (Lankhorst et al., 2007). Our study showed that glucose absorption in the smallintestinaldialysisflowofthe invitro systemwasdifferentbetweenthesamplestaken fromfoodsextrudedindifferentconditions.Theglucoseconcentrationsinthesmallintestinal dialysisfluidwererelativelylowintheuntreatedsampleandreachedapeakof3.45g/kgat 60 min. With increase in extrusion temperatures at 200 g/kg moisture, an increase in the concentration of glucose in the dialysis fluid of TinyTIM was found. This means a more rapidabsorption.Asecondextrusionofthedietat150°Cresultedinfurtherincreaseinthe glucoseconcentrationinthedialysisfluidto7.5g/kg.Theabsorptionofglucoseofthefour selectedsamplesasmeasuredwiththe invitro systemincreasedwithincreasingtemperature andwiththenumberoftimesthesampleshadbeenextruded.Therewasalsoatendencyfor an increase in the invitro carbohydrate digestibility with more heat during extrusion. The mostextensivelyheattreatedsample(150/200/2)hadthehighest invitro glucoseabsorption

94 ______Generaldiscussion

(5.5 g/kg). This invitro model mimics invivo . These findings indicate that postprandial glucose and insulin response in dogs after a meal can also be affected by the extrusion conditionsemployedduringmanufacturingofthediets.Theaveragepostprandialglucoseas amountandpeaklevelcanalsobeaffectedbythestarchsourceusedinthediet(Bouchard and Sunvold, 2001). Extruded rice has a higher postprandial glucose and insulin response comparedtosomeotherextrudeddietarystarchingredientssuchascorn,wheat,barleyand sorghum.Glucoseresponseindogsafteramealcan,therefore,bemodulatedbystarchsource andbyextrusionconditionsemployedduringprocessing.Itshouldbepointedoutthatdogs candigestuncookedstarchtoalimitedextentonly. When formulating and processing foods by extrusion cooking, it is important to understandthatcerealgrainsalonecannotprovidetherequiredaminoacidbalanceforproper growthandbodymaintenanceofdogs.Therefore,proteinaceousingredientsneedtobeadded to ensure nutritionally complete diets. Proteinaceous ingredients often comprise 25 to 70 percentoftheamountusedforformulationfordogfood(PlattnerandRokey,2007).Proteins sourcescanbedividedintovegetableandanimalcategories.Mostvegetableproteininclude soybeanmeal,wheatgluten,andcornglutenmeal.Thesevegetableproteinscontributegreatly toboththestructuralandnutritionalaspectsofdogfoods.Withstructuralaspectswemean durabilityandhardness.Duetoheattreatmentthey have good “functional” properties and assist with expansion and binding during extrusion. Vegetable protein sources can not be exclusivelyusedindogfoodsastheydonotprovide all of the essential amino acids to a sufficientamount.Animalproteinsgenerallydonotcontributestructurallytoextrudeddog foods.Duringpreparation,theyareoftensubjectedtoahighdegreeofthermalprocessing whichrendersthem“nonfunctional"(PlattnerandRokey,2007)withregardtochemicaland physicalpropertiesneededforbindingandexpansion. Insomecases,however,productsareusedintheirfreshform.Theadditionofanimal proteinsourcesinaformulationallowsacompleteaminoacidprofiletobeprovidedforthe dog.Themostcommonsourcesofanimalproteinsinclude fresh meat, poultry byproduct meal,fishmeal,meatandbonemeal,bloodmealandgelatin.Aftergrinding,theproductis oftenheatedinasteamjacketedkettletoapproximately60°C.Thistemperatureservesthree purposes.Firstly,aconstanttargetproducttemperatureisachievedtowhichalltheanimal productsareheatedsothatanyprocesstemperaturevariationsareeliminated.Secondly,any

95 Chapter7______ salmonellaorothermicroorganismswhichmaybegrowingintheproductareeliminatedif heldat60ºCforaminimumof120seconds.Atthe60°Ctemperature,theproteinsbeginto denature so it is advisable not to exceed this temperature (Plattner and Rokey, 2007; Sørensen, 2007). Thirdly, fat is partially emulsified or melted at this temperature and the viscosityofarawwasteisreducedmakingfateasytohandlewithpumps.Generally,these animalproductscontain600to850g/kgmoistureandvariouslevelsoffat,proteinandfibre (PlattnerandRokey,2007).Viscosityreductionisalsoachievedthroughtheactionofnatural enzymesfoundinthevisceraorbytheadditionofcommerciallyavailableproteases. For invitro studies, several chemical methods have been developed to measure available lysine, indicated by chemically determined reactive lysine in this dissertation. Orthomethylisourea (OMIU), introduced by Bujard and Mauron (1964), transforms lysine units with a free εamino group into homoarginine units. These are released during acid hydrolysisandmeasuredbyionexchangechromatographyorbygaschromatography(Nairet al.,1978).ThisapproachisreferredtoasthehomoarginineorOMIUmethod(Rutherfurd and Moughan, 1997). The OMIUreactive lysine content is affected by the extrusion parametersemployedinthisstudy(Chapter4).TheOMIUreactivelysinecontentperamino acidnitrogen(AAN)unitwaslowintheunprocesseddiet.TheOMIUreactivelysineofthe dietwasincreasedduetotheincreaseinextrusiontemperaturevariedwithmoistureateach temperature. Increase in reactive lysine suggests thatthebondbetweenlysineandsugaris releasedandnutritionalvalueisincreased.Theratioofreactivetototallysineincreasedwith increasing temperatureand with decreasing moisture level for the singly extruded samples. Samplesextrudedforasecondtimeshowedavariableresponseinreactivelysinedepending on the previous increase of the ratio. When the ratio was first close to 1.0, the second extrusiongenerallyresultedinadecreaseintheratio.Hightemperature,shorttimeextrusion can thus increase lysine reactivity. When the residence (extrusion) time increases (i.e. a secondextrusion),itreduceslysinereactivity.However,whentheratiowasbelow1.0after thefirstextrusion,itwasincreasedduringthesecondextrusion. Thetotallysineandreactivelysinecontentsofeachsingleingredient(bothvegetable andanimal)didnotrespondinasimilarwayduringextrusion(Chapter5).Reactivelysineis considered a better measurement of lysine availability than total lysine. Reactive lysine content of most vegetable ingredients increased during extrusion except for that of wheat

96 ______Generaldiscussion

(unchanged) and of barley (decreased). The reactive to total lysine ratio of barley was decreased; that of maize and wheat remained constant, while that of rice was increased considerably.Asaconsequence,thereactivetototallysineratioofamixtureofallvegetable ingredientsdidundergoahugeincrease.Undercarefully selected extrusion conditions and ingredientformulation,highqualityproductscanbeobtainedwithvegetableproducts. Thestudyshowsthatreactivetototallysineratioinextrudateswas5to10percent higherthaninpellets(Chapter3).Thisstudyimpliesthatboththeinteractionbetweenfood ingredientproperties(i.e.animal versus vegetableingredients)andprocessvariablesduring pelleting and extrusion, including die expansion phenomena should be further studied to predict their effects on lysine reactivity and starch gelatinization in the agglomerating and dryingprocesses,aswellastheirinteraction. Rawingredientsstronglyinfluencephysicalqualityofextrudedfeedeitherdirectlyor indirectly through changes in processing parameters (Plattner and Rokey, 2007). Hence physicochemical properties within different groups of ingredients seem to affect extrusion processingparametersandherebykibblequality.Thus,thecontributionofaningredientto extrudatequalitydoesnotonlydependonitsgross chemical composition, but also on the physicochemicalcharacteristicsofeachrawmaterialusedinthemixture. Maillardreactionsmostlyoccurduringthepreliminarysteps,thismaycauseaslight reductionindigestibility,butnochangesintheoverallaminoacidcompositionofthefoods. With a subsequent increase in temperature, the formation of secondary crosslinks or iso peptide bonds may reduce the rate of protein digestion due to prevention of enzyme penetration or by blocking the sites of enzyme attack (Papadopoulos, 1989). One type of secondarycrosslinksthatmayoccurunderthesecircumstancesistheformationofdisulphide bridges(Opsvedtetal.,1984)whichreducedigestibilityofproteinbecausethesebridgesare noteasilyhydrolysed. Free fatty acids and polar lipids are especially reactive in low moisture, high temperatureextrusionconditions.Ifextrusioniscarriedoutatlowmoistures(<20percent) andhightemperatures(>150°C),itisquitelikelythatlipidstarchandlipidproteincomplexes will be formed (Plattner and Rokey, 2007). In our studies, the experimental diets were extrudedwithamoisturecontentof200or300g/kgattemperaturesof150ºCorlowerinthe

97 Chapter7______ firstexperiment.Intheotherexperiments,themoisturecontentappliedwas300g/kgandthe temperaturewas130ºC.Thiswasdoneonthebasisofresultsinthefirstexperiment. Fatanalysisofextrudedproductsmustincludeacid hydrolysis and not the Soxhlet methodonly,sincetheSoxhletmethodisnotcapableofbreakingdownthesecomplexes.The lipidbindingoccurringduringextrusiondoesnotimpairdigestionwhenconsumed(Plattner andRokey,2007).Heatingfatsourcesto40to60°Cpriortoblendingwiththebalanceofthe formulationwillminimizetemperaturedependentviscositychanges,assistinthecookingof thetotalproduct. Inconclusion,caninedietsaresafewhenextrudedattemperaturesintherangeof110 150ºCandwiththemoisturecontentofabout300g/kg.Extremelyhightemperature(165ºC) extrusionshouldbeavoided(BhattacharyaandHanna,1985).Inordertopreventlossesof essentialnutrients,amoisturecontentof250to300g/kgduringwetextrusionofdietsforfish anddogshasbeenrecommended(RokeyandPlattner,1995). 7.2.Highextrusiontemperatureimprovesstarchgelatinizationandphysicalproperties Starchistheprimarycarbohydratefoundindogfoods. Many studies have shown, however,thatdogsonlycandigestraw(native)starchtoacertainextent.Starchlevelscan varyfromaslittleasfivepercenttoasmuchas60percentoftheformulation(Plattnerand Rokey,2007).Whengelatinizationoccursduringextrusioncooking,starchbecomessoluble andabsorbslargequantitiesofwater.Hence,thehigheramountoffreewateraddedduring conditioning, in addition to a lower water absorption capability, could explain the smaller differenceingelatinizationandgenerallyhighdegreeofgelatinizationforthecaninediets.In additiontoenergy,starchcontributestobothexpansionandbinding(ofvariouscomponents inthefinalproduct).Theamylosefractionofstarchhasgreaterbindingpropertiesthanthe amylopectinfraction.Tuberstarchessuchaspotatoandtapioca,whicharehighinamylase, are the best choices for binders to improve cohesion of the final product. A high starch content (e.g. 3040 percent) can aid in decreasing the bulk density of extruded products (PlattnerandRokey,2007).Starchlevelsof30percentincatandpuppyfoodsand40percent indryexpandeddogfoodsaretypical(PlattnerandRokey,2007).

98 ______Generaldiscussion

Gelatinization improves faecal and ileal digestibility of tapioca starch but has no effectsonwheatstarchfordogs(Wolteretal.,1998).Inaddition,digestiblestarchinbarley andcornincreasedbutwasnotchangedinoatbranafterextrusion(Dustetal.,2004).High moistureandhightemperatureextrusionresultsincompletegelatinizationandinasignificant increasein invitro (Murrayetal.,2001;Dustetal.,2004)and invivo (Svihusetal.,2005) starchavailability. Highphysicalquality(i.e.highdurability)oftheextrudateisnecessaryforstabilityof kibbles.Thiswillminimizefoodwastageduringpackaging and transportation and thereby optimizing food intake and food conversion. During transport the product is subjected to differentstressors.Thatmayinducefines(smallparticlesdisintegratingfrompellets)during thetransportintheprocessinglineduringmanufacturingaswellasduringtransporttothe dogfoodshopandfinallytothedogowner.Caninediets,inonehand,mustbedurableand remaininpieces/kibblesuntileatenbythedog,sincedustandsmallfracturesofthefoodare notingestedandwill,therefore,resultinpoorfoodconversionratio.Ontheotherhand,ifthe foodistoohard,thedogwillnotlikethedietand food intake will be reduced. Effect of extrusiontemperatureonphysicalqualitywasinvestigatedbyLankhorstetal.(2007).Inthis study (Chapter 4), the hardnessand durability of the experimental diets are slightly lower comparedtocommercialcaninedietswheremeanhardnessvaluesof17.7±5.3kg(range 14.2to22.4kg)anddurabilityvaluesof87.3±9.7percent(range78.7to99.8percent)have beenrecorded(Chapter3).Thedurabilitydecreased with the increase in temperature from 110to150°Caswellaswithextrusionforasecondtime(Chapter4).Nooveralldifferencein kibble hardness was apparent as a result of differences in extrusion temperature. Instead, kibble hardness was more affected by the moisture content and the second extrusion comparedtoextrusiontemperature. Inconclusion,extrusionofdogdietsat130ºCand300g/kgmoisturegavekibbleswith agooddurabilityincomparisonwithothertreatments(i.e.at110ºCor200g/kgmoisture)and withcommercialdiets.Physicalqualityofthefoodisaffectedbyproteinsource,starchlevel and preprocessing history of the ingredients. More research is needed to understand the correlationbetweenphysicalandnutritionalqualityofdogfood.

99 Chapter7______

7.3.Highextrusiontemperatureimproveslysinereactivityandproteindigestibility Damage to proteins during heat processing is a function of temperature, time residence, moisture and the presence of reducing substances (Papadopoulos, 1989). High moisturecontentcombinedwithshortdurationofexposureimpliesthatextrusionmaynotbe detrimentaltothenutritionalvalue(Lankhorstetal.,2007;Sørensen,2007)probablybecause water serves as a good conductor of heat and the time is too short to have considerable negativechemicalreaction.Proteindigestibilityofextrudateswasincreasedcomparedtonon extrudedsamples(Perietal.,1983;BhattacharyaandHanna,1985;Fapojuwoetal.,1987). These studies were, however, conducted on feeds composed from vegetable sources only. Extrusionalsoproducedahigherincreasein invitro proteindigestibilitycomparedtoother processingmethod,e.g.dehullingorsoaking( Alonso etal., 2000 ). Mild heat treatment during feed processing may increase the nutritional value of proteincontainingingredientsfortworeasons.Firstly,denaturation,whichstartsat6070 oC, exposessitesforenzymetoattackandmaythusmaketheproteinmoredigestible.Secondly, heat labile proteinaceous nutritionally active factors (NAF) such as trypsin inhibitors and lectins can be destroyed (Björck and Asp, 1983; Purushotham et al., 2007). Companion animaldietsmaycontainupto50percentstarchwhichisderivedmainlyfromcerealgrains (SpearsandFaheyJr,2004).Oneofthechallengeswhenusingcerealsincaninedietsisthe presenceofantinutritionalfactorsthatareharmfulfordogs.StudyonNAFincaninediets show that extrusion cooking inactivates NAF activity especially those of a proteinaceous structure(Purushothametal.,2007).Extrusioncookingisthemosteffectivemethodtoreduce theactivityoftrypsininhibitors,ofchymotrypsininhibitorsandofalphaamylaseinhibitorsin dogfoods.Anextruderbarreltemperatureintherangeof133139°Cissufficienttoinactivate 95 percent or more of the trypsin inhibitors (Björck and Asp, 1983). At a constant temperature, the inactivation of these factors increased when residence time increased and with a higher moisture content. Extrusion processing efficiently reduced trypsin inhibitor activityandotherNAF,withoutnegativeeffectson nutrient digestibility (Björck and Asp, 1983). Extrusionofcaninedietsattemperaturesof110,130and150ºCcausednoreduction indigestibilitiesofcrudeproteinandaminoacids,butitincreasedthedigestibilityofstarch

100 ______Generaldiscussion

(Chapter4).Theresultsindicatethatextrusionisamildandsuitableprocessingmethodfor productionofcaninedietsevenattemperatureashigh as 150ºC. The nutritional effects of extrusiondependonprocessingvariablessuchasmoisture,feedingrateanddurationofthe treatment,inadditiontodietemperature(Ljøkjeletal.,2004).Withlongdurationofheating up to 180 minutes negative effects of the length of treatment on meat meal quality was observed(Pivaetal.,2001).Butatshortertimesofdurationonlymodesteffectsonnutrient digestibility in ileal cannulated dogs were found for various vegetable and animal protein sourcestested.Alltestsprovidedgoodqualityproteinssuitableforuseincompletedogfoods (Bednaretal.,2000)bothforvegetableoranimalbyproducts. Lysine availability of soybeanproteins wasnot affectedwhenheatedbelow149ºC (140g/kgmoisture,20secondresidencetime)duringextrusion(PongorandMatrai,1976). Theaminoacidcompositioninthewholegrainwheatflourproductswasalmostunaffected byextrusionprocessing,exceptatthemostsevereconditions(above180°Cand/orbelow150 g/kgmoisture)used,whereninepercentofthelysinewaslost(Björcketal.,1984). Fortheskimmilkpowder,bothtotalileallysinedigestibilityandtrueO'methylisourea (OMIU)reactive ileal lysine digestibility decreased with increased temperature, after 10 minutes of extrusion. Often the true digestibility is used. This is digestibility corrected for endogenouslysine(lysinesecretedbythebodyduringthedigestiveprocess)inchymeatthe endoftheileumasoppositetoapparentilealdigestibility.Trueilealtotallysinedigestibility was significantly lower than true ileal reactive lysine digestibility for all heated products (RutherfurdandMoughan,1997).However,estimatesoftotallysinecontentmayincludenot only the lysine present in the protein but also the reverted lysine from the Maillard compounds(probablylactulosyllysine).Asaresult,theestimatesoftotallysineestimatesfor suchdietaryproteinsourcesmaybeoverestimated. Forthefieldpeas,bothtrueilealtotallysinedigestibilityandtrueilealreactivelysine digestibility initially increased with the increase of heating temperatures up to 135ºC (BhattacharyaandHanna,1985).Heatingtohighertemperaturesdecreasedtotalandreactive lysinedigestibility.Thiswasobservedafterheatingat165ºCfor15minutes.Itwouldappear that with increasing heat treatment, more of the lysine underwent Maillard type reactions. Thisissupportedbytheproportionallymuchsmallerdecreaseintotallysineobservedafter

101 Chapter7______ heating compared to the untreated diet. This difference is likely caused by Maillard compoundsthatrevertbacktolysineduringtheacidhydrolysisstepofaminoacidanalysis. Inconclusion,extrusionconditionsinourstudy(130150ºC and 300 g/kg moisture priortoextrusion)aresafeforthemanufactureofdogfoods.Singleingredientsofacanine diet respond differently during extrusion. Vegetable ingredients have a lower reactive and totallysinecontentthananimalones.Animalingredientsthushaveahigherratioofreactive tototallysinethanvegetableingredients. 7.4.Dryingtemperatureanddurationofdryingtimedonotnegativelyaffectthequality oftheextrudedproduct Theextrusionprocessphasesincludepreconditioning,extrusioncookinganddrying. Petdietsarecommonlyproducedatmoisturelevelsof200300g/kg(Lankhorstetal.,2007). Thetaskofthedryingprocessistoremovethisexcessmoistureafterextrusioncookingtoa levelof9oreven6percent(Tranetal.,2007)beforefinalpackagingandresale.Afterdrying, coatingandcoolingcantakeplace.Hightemperaturedryingshortensdryingtime(Chapter6) and this has economical benefits (Casiraghi et al., 1992). Literature shows that drying improvesstabilityorproductshelflife,reducestackiness(i.e.improveshandling)andreduces theweightoftheproductforshipping(Douglas,2006).Inaddition,hightemperaturedrying processinpetfoodtechnologypermitscontrolofmicroorganismgrowth.Thisalsopositively affectsdyebindingreactivelysinecontentoftheproduct(Arrageetal.,1992). Highdryingtemperatureintherangeof120160ºCreducesdryingtimefrom539min atadryingtemperatureof80ºC/t60to13960min.Hardnessanddensityofthetesteddiets werenotaffectedbydryingtemperatureorresidencetime(Chapter6).Thedryingtimehad noeffectseitheronthetotalorreactivelysinecontent.Asaresult,dryingtimedidnotaffect theratioofreactivetototallysine Durability as well as total and reactive lysine were different between extrudates producedwith4or8mmdiesizes.Forthediesizeof8mm,extrudatesdriedat200ºC(93 percent)hadalowerdurabilitythanat80ºC(96percent). Reactive lysine was affected by drying temperature, but not total lysine. Extrudates dried at 200ºC (7.5 g/kg DM) have a

102 ______Generaldiscussion lowerreactivelysinecontentthanattheothertemperatures(80ºC,8.0g/kg;120ºC,8.3g/kg and160ºC,8.3g/kgDM).However,thereactivetototallysineratioofextrudatesdriedat 120ºC(97.5percent)washigherthanthatofextrudatesdriedatallothertemperatures(about 90percent).Forthediesizeof4mm,bothtotalandreactivelysinewereaffectedbydrying temperature.Extrudatesdriedat200ºChaslowertotal(7.5g/kgDM)andreactive(6.1g/kg DM) lysine contents than those dried at the other temperatures (9.1 and 8.1 g/kg DM, respectively. However, the reactive to total lysine ratio of extrudates dried at 200ºC (94 percent)waslowerthanthatofextrudatesdriedat120ºC(81percent).Inthisstudy,fatty acidswereonlyaffectedathighdryingtemperaturesleadingtotheiroxidation.Inparticular, the C18 fatty acids (especially C18:3 n3, an unsaturated fatty acid) were most affected (P<0.05)bythedryingtemperatures.OtherfattyacidssuchasC16:0andC20:0werealso affected(P<0.05)althoughthenumericaldifferencesweresmall.Itislikelythattheincrease in the level of C18:0 is an indication for oxidation of the C18:3 fatty acids and thus for damage(Aldrich,2004)tothefattyacids.Incontrast,anincreasewasobservedfortheC16:0 fattyacidcontentwithoutadecreaseintheC16:1content. Inconclusion,thedryingtimehadnoeffectsonthelevelofaminoacidsaswellas totalorreactivelysinecontent.Dryingtemperatureaffectedonlyprolin(of4mmkibbles), totallysine(of4mmkibbles)andreactivelysine(ofboth4and8mmkibbles)at200ºC.The reactive to total lysine ratio of 4 mm kibbles driedat120ºCwashigherthanthatdriedat 200ºC.Thisratioof8mmkibblesdriedat160ºCwas higher than that dried at the other temperatures.Thedryingtemperatureaffectedaminorityoffattyacids:fattyacidsC18:3and C18:2 were decreased while C18:0 was increased, being an indication for lipid oxidation duringdrying. 7.5.Conclusionsandimplications 7.5.1.Conclusions

103 Chapter7______

1. Extrusionisamildheattreatmentofdogfoodandthedigestibilityofproteinandstarch was not negatively affected at temperatures in the range of 110 to 150 oC and at the moisturecontentof300g/kg. 2. Processing parameters such as temperature and moisture content should be carefully selectedinordertocontroltheextrudatequality.Thepresentstudyshowsthattheratioof reactivetototallysinereachthehighestpeak(about1.0)whenthemoisturecontentis300 g/kgpriortoextrusion.andwhenthedietisextrudedatatemperatureintherangeof130 150ºC.So,theseextrusionconditionsareadvisedduringpetfoodproduction. 3. The processing conditions as well as ingredient composition affect physical quality of caninediets.Physicochemicalpropertiesofdifferentingredientsseemtoaffectextrusion processingparameters,andtherebydogfoodquality.Ahigherporosityofextrudateswas associated with a less durable product; however the kibbles were not coated in this experiment. 4. Single ingredients respond differently during extrusion at temperatures in the range of 100150ºC and moisture content of 300 g/kg. Extrusion does not change the lysine reactivityoftheingredientsofanimalorigin.Theseshouldbeextrudedforthebenefitof proteindenaturationandtoobtainnicekibbles.Vegetableingredientsdonotactthesame asanimalingredients.Becauseofthedifferenceinnutrientcomposition,lysinereactivity of vegetable ingredients may increase (rice) or decrease (barley) after extrusion. In general, extrusion increases the nutritional quality of vegetable ingredients because of inactivationofNAF,denaturationofprotein,gelatinizationofstarch. 5. Vegetable ingredients have a lower lysine content (both reactive and total lysine) than animalingredients.Animalingredientshaveahigherratioofreactivetototallysinethan vegetableingredients. 6. Extrusion at temperatures in the range of 130150ºC and 300 g/kg moisture content increasestheratioofreactivetototallysineofcaninediets. 7. Manufacturingofcaninedietsshouldbeaccompaniedwiththemeasurementsofreactive lysine,totallysineandtheratiobetweenthesetwo. 8. Drying temperature and drying time after extrusion are not harmful for the extrudate quality(aminoacids,fattyacids)intherangeof120160ºCwhileitshortensdryingtime fromhourstominutes.

104 ______Generaldiscussion

7.5.2Implications 1. Ourstudiesindicatetheoptimalextrusionconditionsoftemperatureandmoisturecontent prior to extrusion. Further study should focus on other process parameters such as pH levelsorshearforce. 2. Our studies also indicated that the extrusion conditions(130ºCand300g/kgmoisture) have positive effects on protein (lysine reactivity) and starch. Future studies should investigateothernutrientssuchasfat,vitaminsandmineralsandtheirinteractionswith proteinsandcarbohydratesinrelationwith invivo nutrientutilization. References Alonso,R.,Aguirre,A.,Marzo,F.,2000.Effectsofextrusionandtraditionalprocessingmethodson antinutrientsand invitro digestibilityofproteinandstarchinfabaandkidneybeans.Food Chem.68,159165. Aldrich,C.G.,2004.USAPoultryMeal:QualityIssues andConcerns inPet Foods. In: Nutritional Biotechnology in the Feed and Food Industries. Proceedings of Alltech's 20th Annual Symposium. Eds T.P. Lyons and K.A. Jacques. Nottingham University Press, Nottingham, UK. Arrage, J.M., Barbeau, W.E., Johnson, J.M., 1992. Protein quality of whole wheat as affected by drumdryingandsinglescrewextrusion.J.Agri.FoodChem.40,19431947. Bednar, G.E., Murray, S.M., Patil, A.R., Flickinger, A.E., Merchen, N.R., Fahey Jr, G.C., 2000. Selectedanimalandplantproteinsourcesaffectnutrientdigestibilityandfecalcharacteristics ofileallycannulateddogs.Arch.Anim.Nutr.53,127140. Bhattacharya,M.,Hanna,M.A.,1985.Extrusionprocessingofwetcornglutenmeal.J.FoodSci.50, 15081509. Björck,I.,Asp,N.G.,1983.Theeffectsofextrusioncookingonnutritionalvalue,aliteraturereview. J.FoodEng.2,281308. Björck,I.,Asp,N.G.,Dahlqvist,A.,1984.Proteinnutritionalvalueofextrusioncookedwheatflours. FoodChem.15,203214. Bouchard, G.F., Sunvold, G.D., 2001. Implications for starch in the management of glucose metabolism.In,CurrentPerspectivesinWeightManagement,pp.1620.

105 Chapter7______

Bujard,E.,Mauron,J.,1964.Guanidation,analternativeapproachtothedeterminationofavailable lysineinfoods.The6thInternationalCongressofNutrition,Edinburgh,Scotland,469. Casiraghi, M.C., Brighenti, F., Testolin, G., 1992. Lack of effect of high temperature drying on digestibilityofstarchinspaghetti.J.CerealSci.15,165174. Douglas,P.,2006.Changingmarketsrequireflexibledryerdesign.FeedTech.10,2426. Dust,J.M.,Gajda,M.A.,Flickinger,A.E.,Burkhalter, T.M., Merchen, N.R., Fahey Jr, G.C., 2004. Extrusion conditions affect chemical composition and invitro digestion of selected food ingredients.J.Agri.FoodChem.52,29892996. Fapojuwo, O.O., Maga, J.A., Jansen, G.R., 1987. Effect of extrusion cooking on invitro protein digestibilityofsorgum.J.FoodSci.52,218219. Hendriks,W.H.,Butts,C.A.,Thomas,D.V.,James,K.A.C.,Morel,P.C.A.,Verstegen,M.W.A.,2002. Nutritionalqualityandvariationofmeatandbonemeal.AsianAus.J.Anim.Sci.15,1507 1516. Lankhorst,C.,Tran,Q.D.,Havenaar,R.,Hendriks,W.H.,vanderPoel,A.F.B.,2007.Theeffectof extrusion on the nutritional value of canine diets as assessed by invitro indicators. Anim. FeedSci.Technol.138,285–297. Lin,S.,Hsieh,F.,Huff,H.E.,1997.Effectsoflipidsandprocessingconditionsondegreeofstarch gelatinisationofextrudeddrypetfood.Lebensm.Wiss.u.Technol.30,754761. Lin,S.,Hsieh,F.,Huff,H.E.,1998.Effectsoflipidsandprocessingconditionsonlipidoxidationof extrudeddrypetfoodduringstorage.Anim.FeedSci.Technol.71,283194. Ljøkjel,K.,Sørensen,M.,Storebakken,T.,Skrede,A.,2004.Digestibilityofprotein,aminoacidsand starchinmink( Mustelavison )feddietsprocessedbydifferentextrusionconditions.Can.J. Anim.Sci.84,673680. Mottaz, J., Bruyas, L., 2001. Optimised thermal performance in extrusion. In: [Guy, R., editor], Extrusion cooking technologies and application. Woodhead publishing limited, Cambridge, England,pp.5182. Murray,S.M.,Flickinger,A.E.,Patil,A.R.,Merchen,N.R.,BrentJr,J.L.,FaheyJr,G.C.,2001. In vitro fermentationcharacteristicsofnativeandprocessedcerealgainsandpotatostarchusing ilealchymefromdogs.J.Anim.Sci.79,435444. Nair,B.M.,Laser,A.,Burvall,A.,Asp,N.G.,1978.Gaschromatographicdeterminationofavailable lysine.FoodChem.3,283. Opsvedt,J.,Miller,R.,Hardy,R.W.,Spinelli,J.,1984.Heatinducedchangesinsulfhydrylgroupsand disulphidebondsinfishproteinandtheireffecton protein and amino acid digestibility in rainbowtrout( Salmogairdberi ).J.Agri.FoodChem.32,929935.

106 ______Generaldiscussion

Papadopoulos,M.C.,1989.Effectofprocessingonhighproteinfeedstuffs:areview.Biol.Wastes.29, 123138. Peri,C.,Barbieri,R.,Casiraghi,E.M.,1983.Physical, chemical and nutritionalquality of extruded corngermflourandmilkproteinblends.J.FoodTechnol.18,4352. Piva,G.,Moschini,M.,Fiorentini,L.,Masoero,F.,2001.Effectoftemperature,pressureandalkaline treatmentsonmeatmealquality.Anim.FeedSci.Technol.89,5968. Plattner,B.,Rokey,G.,2007.Rawmaterialcharacteristicsandselection.FeedTechnologyUpdate.2, 410. Pongor,S.,Matrai,T.,1976.Determinationofavailablemethionineandlysineinheattreatedsoybean samples.ActaAliment.Hung.5,4955. Purushotham, B., Radhakrishna, P.M., Sherigara, B.S., 2007. Effects of steam conditioning and extrusiontemperatureonsomeantinutritionalfactorsofsoyabean( Glycinemax )forpetfood applications.Am.J.Anim.Vet.Sci.2,15. Rokey, G., Plattner, B., 1995. Process description. In, Pet Food Production. Wenger Mfg, Inc., Sabetha,KSUSA66534,pp.118. Rutherfurd, S.M., Moughan, P.J., 1997. Application of a new method for determining digestible reactivelysinetovariablyheatedproteinsources.J.Agri.FoodChem.45,15821586. Singh,S.,Gamlath,S.,Wakeling,L.,2007.Nutritionalaspectsoffoodextrusion:areview.Int.J. FoodSci.Technol.42,916929. Smeets,M.,Minekus,M.,Havenaar,R.,Schaafsma,G.,Verstegen,M.W.A.,1999.Descriptionofa dynamicinvitromodelofthedoggastrointestinaltract:anevaluationofvarioustransittimes forproteinandcalcium.Altern.Lab.Anim.27,935949. Sørensen, M., 2007. Ingredient formulation and extrusion processing parameters interferes with nutritionalandphysicalqualityofaquafeeds.FeedTechnologyUpdate.2,1720. Spears,J.K.,FaheyJr,G.C.,2004.Resistantstarchasrelatedtocompanionanimalnutrition.J.Assoc. Off.Anal.Chem.Int.87,787791. Svihus, B., Uhlen, A.K., Harstad, O.M., 2005. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: a review. Anim. Feed Sci. Technol.122,303320. Tran,Q.D.,van Lin,C.G.J.M., Hendriks,W.H., van der Poel, A.F.B., 2007. Lysine reactivity and starchgelatinizationinextrudedandpelletedcaninediets.Anim.FeedSci.Technol.138,162 168. Williams,B.A.,Hodgkinson,S.M.,Rutherfurd,S.M.,Hendriks,W.H.,2006.Lysinecontentincanine dietscanbeseverelyheatdamaged.J.Nutr.136,1998S2000S.

107 Chapter7______

Wolter,R.,Socorro,E.P.,Houdre,C.,1998.Faecalandilealdigestibilityinthedogofdietsrichin wheatortapioca(inFrench).Resc.Med.Vet.174,4555.

108

Summary

Englishsummary______

Extrusion,aprocessusedinanimalfeedproduction,hasbeenappliedinthepetfood industrysince1950's.Anextruderisamachinethatmanufacturesextrudates,acommonform indrycaninediets.Whenextruded,amixtureofthe ingredients is forced through a spiral screw and then through the die of the extruder. During extrusion, the particle size of the ingredientsisreducedandtheingredientsaremixedandheattreated.Asaresult,aribbon like product (the extrudate) is produced, cut by a knife and dried afterwards. Extrusion providesaveryusefulandeconomicaltoolforprocessingcaninediets;about95percentof petdietsareextruded. This hightemperature (up to 200ºC), shorttime (less than 270 sec.) process causes continuouschemicalandphysicalchanges.Thesechangesmayincreasethenutritionaland physical quality characteristics of the extrudate. The chemical reactions create disulphate bridgesinproteins.Extrusionalsoinactivatesnutritionallyactivefactors,texturisesproteins, denatures proteins and gelatinizes starch. However, no general rules are available from literature about what temperatures are required to improve each specific physical and nutritionalcharacteristic. Ourstudieshavefocussedonlysinereactivityandstarchgelatinizationincaninediets. Weinvestigatedtowhatextentextrusion(followedbydrying)ofaningredientoracomplete canine diet influences reactive lysine, total lysine and starch along with some physical parameters.Ourhypothesistobetestedwasthatoptimalextrusionconditionscanmaintainor furtherimprovequalityof(extruded)caninediets. This dissertation includes seven chapters. Chapter 1 introduces the aims of the project, research questions and the outline of the thesis. This chapter also describes the extrusionprocesssystemanditsparametersappliedintheproductionofcaninediets. Chapter2 isaliteraturereview.Thecorepointofthischapteristodiscusstheeffects of extrusion parameters on the quality of canine diets in literature. From the study of literature,thefollowingresearchquestionsareraised: • Towhatextentdoesextrusioncookingaffectthenutritionalandphysicalqualityincanine diets?

ii ______Englishsummary

• To what extent does extrusion at defined conditions effect protein quality, i.e. lysine reactivity in canine diets? Because of the popularity of extruded canine diets, it is important to know what is the lysine reactivity and starch gelatinization degree in commercialdrydogfood? • Towhatextentdoesextrusionatdefinedconditionsinfluencethenutrientdigestibilityand itsavailabilityindogs? • Isthereadifferenceineffectsofextrusiononvegetableandanimalproteins? • Doesthedryingprocessaffectthephysicalandnutritionalqualityofextrudeddogfood? Thesequestionsarenotonlygapsinliteratureabouteffectsofextrusiononthequality ofcaninedietsbutalsotheobjectivesofourstudies. Chapter3 describesthephysicalandnutritionalqualityofcommercialcaninediets availableintheNetherlands.Thishelpstocreateageneralpictureaboutthequalityofdog foodsinreality,i.e.theeffectofprocessingondrycaninediets.Theresultsofthissurveyhas shownvariationinqualityofcommercialdrycaninediets.Partofthatvariationcanbecaused by ingredient specifics and/or by processing conditions. In this study we focussed on the influenceofextrusiononlysineavailabilityandreactivelysinewasasaparameterforthis availability. Chapter 4 is a study on the effect of extrusion variables on the physical and nutritionalvalueofcaninedietswithregardtoreactivelysineandstarchgelatinization.This study shows that total lysine and other amino acids were not affected by the extrusion conditionsapplied.Theseextrusionconditions(temperatureintherangeof110to150ºC,300 g/kg moisture) increased the ratio of reactive to total lysine from 0.7 to 0.8 or higher. However,afterasecondextrusionrun,thoseratiosreaching1.0weredecreasedtoabout0.9. Proteindigestibilityasmeasured invitro wasnotaffectedbydifferentextrusionconditions; no differences in protein dispersibility were observed in this study. Meanwhile, invitro carbohydratedigestibilitycoefficientsaswellasstarchgelatinizationdegreeincreasedwithan increase in temperature or moisture applied during extrusion. The increase in temperature (110to150ºC)andasecondextrusiondecreasedthekibbledurability.Thisstudyconcludes

iii Englishsummary______ thatoptimisationofextrusionconditionsduringproductionofcommercialcaninedietsshould includethemeasurementofthereactivetototallysineratio. Inordertogetmoreinsightinthemechanismsoftheeffectsofextrusiononacanine diet,afurtherstudy( chapter5 )wascarriedouttoinvestigatetheeffectofextrusiononsingle ingredientsofthesamecompletecaninedietasthepreviousstudy.Theextrusionconditions inthisstudyarethesameasusedintheprevioustrial(chapter4).Thisstudy(chapter5)has unveiledthatdifferentsingleingredientsdidnotrespondsimilarlyduringextrusion.Animal ingredients have higher lysine contents and higher ratios of reactive to total lysine than vegetableingredients.Extrusionhadnoeffectsonanimalingredientswhilethereactivelysine contentofvegetableingredientscoulddecrease(inbarley)orincrease(inrice)afterextrusion. Interestingly,bothreactivelysineandratiosofreactivetototallysineofthemixtureofall vegetableingredientswerehugelyincreasedduringextrusion. Anadditionalstudy( chapter6 )wasthencarriedouttoexaminetheeffectofdrying temperature,dryingtimeandofthediesize(8mmor4mm)duringextrusiononthequality ofcaninediets.Afterextrusion,theextrudatesweredriedatdifferenttemperatures(80,120, 160and200ºC)indraughtforcedovens.Thisstudyshowsthathighdryingtemperatureinthe rangeof120160ºCreduceddryingtimefrom539min(at80ºC/t60)to13960min,toatarget endmoisture,i.e.90g/kgfeed.Aminoacids(includingreactivelysine)aswellashardness and density of the tested diets were not affected by drying temperature and drying time applied.Dryingtemperatureonlyaffected(P<0.05)aminorityofthefattyacidsexamined. TheC18fattyacidswereaffectedmostbydryingtemperatureespeciallyat200ºCatboth4 mmand8mmdiesize.C16:0andC20:0werealsosignificantly influenced by the drying temperature,althoughthenumericaldifferenceswereverysmall. Ageneraldiscussion( chapter 7 ) gives our explanation or interpretation of all the results as well as the implication for the optimisation of the extrusion process for the manufacture of dog foods. This chapter also discusses the limitations of the study and proposesfurtherresearch.Afterdiscussion,thegeneralconclusionsaredrawnasfollows:

iv ______Englishsummary

• Extrusionatproducttemperaturesintherangeof110to150 oCandatamoisturecontent of300g/kgprovedtobeamildheattreatmentwithregardtoproteinqualityfordogfood manufacture. • Extrusionattheabovementionedconditionsincreasedtheratioofreactivetototallysine incaninediets.Thisratioreachedthehighestpeak(about1.0)whenthedietwasextruded attemperatureintherangeof130150ºC. • Notonlyprocessingconditionsbutalsoingredientcomposition affect quality of canine diets. Complex reactions taking place during extrusion make it difficult to quantify the influenceofindividualextrusionparameters. • Vegetable ingredients (low lysine content) respond differently during extrusion from animalingredients(highlysinecontent).Extrusiondidnotchangethelysinereactivityin animal ingredients. Vegetable ingredients did not act the same as animal ingredients. Becauseofdifferenceinnutrientcomposition,lysinereactivityofvegetableingredients mayincrease(inrice)ordecrease(inbarley)afterextrusion. • Bothreactivelysineandratiosofreactivetototallysineofthemixtureofallvegetable ingredientswerehugelyincreasedduringextrusion. • Optimisationofextrusionconditionsduringproductionofcommercialcaninedietsshould includethemeasurementofthereactivetototallysineratio. • Drying temperature in the range of 120160ºC after extrusion was not harmful for the extrudatequalitywhileitshorteneddryingtimefromhourstominutes.Dryingtimehad noeffectsontheproductqualityasfarasaminoacidsandfattyacidswereconcerned. Withrespecttothesubjectsdealtwithinthisdissertation,furtherstudiesshouldfocus ontheeffectsofotherproductandprocessparameterssuchaspHlevelsorshearforce.Our studies indicate that the extrusion conditions (130ºC and 300 g/kg moisture) have positive effects onprotein (lysine reactivity higher) and starch (moredigestible). Additional studies should investigate the effects of extrusion on other nutrients such as fat, vitamins and mineralsandinteractionsbetweenthem.

v

vi

Samenvatting

Dutchsummary______

Extrusieiseenprocesdatwordtgebruiktbijdeproductievandiervoederssinds1950.Met een extruder worden extrudaten gemaakt: dit is een veelgebruikte vorm van droge hondenvoeders.Tijdensextrusiewordteenmengselvangrondstoffendooreenschroefineen nauwhuisnaareenmatrijsgetransporteerd.Grondstoffenwordentijdensditprocesverkleind, gemengd en behandeld met warmte. Het resultaat na de matrijs is een propstroom (het extrudaat)datwordtafgesnedentotkleinerebrokjes,diedaarnawordengedroogd.Extrusieis een nuttig en economisch proces voor het produceren van hondenvoeders. Ongeveer 95 procentvandedrogehuisdiervoederszijnextrudaten. Hetextrusieproceswordtgekenmerktdooreenhoge temperatuur (tot ca. 200°C) en korteprocestijd(minderdan270seconden)enkentchemischeenfysischeomzettingen.Deze omzettingenkunnendenutritioneleenfysischekwaliteitvanhetextrudaatbeïnvloeden.De chemische veranderingen veroorzaken bijvoorbeeld disulfide bruggen in eiwitten en veroorzaken Maillard producten. Extrusie kan ook nutritioneel actieve stoffen inactiveren, eiwitten denatureren en zetmeel verstijfselen. Er zijn echter geen algemene richtlijnen beschikbaarindeliteratuurdieaangevenwelketemperaturenbijvoorbeeldgebruiktmoeten wordenombepaaldeproducteigenschappenteverbeteren. Deinhetproefschriftbeschrevenstudieshebbeneen focus gehad op de reactiviteit vanlysineinhondenvoeders.Wehebbenonderzochtinwelkemateextrusie(gevolgddoorhet droogproces)vaneengrondstofofvolledigvoedereffectenheeftopdereactiviteitvanlysine, optotaallysine,opzetmeelofopfysischeeigenschappen.Onzehypotheseisdatoptimale omstandighedentijdensextrusiedekwaliteitvanhethondenvoederhandhavenofverbeteren. Dit proefschrift omvat zeven hoofdstukken. Hoofdstuk 1 is een inleiding over de doelstellingen van het project, van de onderzoeksvragen en geeft een indeling van het proefschrift. Dit hoofdstuk beschrijft eveneens het proces van extrusie en de bijbehorende procesvariabelendiegebruiktwordenbijdeproductievanhondenvoeders. Hoofdstuk 2 is een literatuurstudie waarin de kwaliteit van geëxtrudeerde honden voederswordtbediscussieerdinafhankelijkheidvanprocesconditiestijdenshetextruderen.In deliteratuurwerdgezochtnaarantwoordenopvragenals: viii ______Dutchsummary

• Op welke wijze beïnvloedt extrusie de nutritionele of fysische kwaliteit van hondenvoeders? • Hoe heeft extrusie onder gecontroleerde omstandigheden effect op de eiwitkwaliteit of reactiviteitvanlysine? • Vanwege de grote populariteit van extrudaten als droge hondenvoeders is het evenzeer belangrijktewetenwatdereactiviteitvanlysineendeontsluitingsgraadvanzetmeelisin commerciëlevoeders? • In welke mate draagt het extrusieproces bij aan de verteerbaarheid en benutting van nutrientenbijhonden? • Iserverschilindeeffectenvanextrusietussenplantaardigeendierlijkeeiwitten? • Heeft ook het droogproces invloed op de fysische en nutritionele kwaliteit van geëxtrudeerdehondenvoeders? Dezevragenwordenindeliteratuurnietgeheelbeantwoordenzijndaarmeetevensde vrageninditonderzoek. Hoofdstuk3 beschrijftdefysischeennutritionelekwaliteitvanenkelecommerciële hondenvoedersdieinNederlandbeschikbaarzijn.Dezegegevensgeveneenalgemeenbeeld van de kwaliteit van hondenvoeders in de praktijk en van het effect van technologische behandelingenhierop.Deresultatenvanditonderzoekgevenonmiskenbaareenvariatieaan in de kwaliteit. Een deel van deze variatie zal zijn veroorzaakt door kenmerken van grondstoffeneneendeeldoortechnologischebehandelingen.Inditonderzoekhebbenwemet namedeinvloedonderzochtopdelysinebeschikbaarheidmetdereactiviteitvanlysinealsde temetenvariabele. Hoofdstuk 4 beschrijft een studie naar de invloed van extrusie variabelen op de fysischekwaliteitendevoedingskwaliteitvanhondenvoedersmetbetrekkingtotreactiviteit vanlysineenontsluitingvanzetmeel.Hetblijktdathettotaallysinegehalteendatvanandere aminozuren niet door de gebruikte omstandigheden tijdens extrusie wordt beïnvloed. Deze extrusieomstandigheden(temperaturenvan110150°C;300g/kgvocht)doendeverhouding tussenreactiefentotaallysinetoenemenvan0.71tot0.80ofhoger.

ix Dutchsummary______

Wanneer het extrudaat echter nogmaals werd geëxtrudeerd, bleek de verhouding tussenreactiefentotaallysineinextrudatenvan1.0totongeveer0.90verlaagdteworden.Er werden geen verschillen geconstateerd in eiwit dispergeerbaarheid tussen de verschillend geëxtrudeerde voeders. De in vitro verteerbaarheid van koolhydraten en de zetmeel ontsluitingsgraad namen toe als temperatuur of vochtghalte toenamen. De toename in temperatuur (van 110150°C) en een tweede of derde maal extruderen lieten een lagere slijtvastheid van de extrudaten zien. Uit deze resultaten concluderen we, dat voor het optimaliserenvandeconditiestijdensextrusievancommerciëlehondenvoedershetmetenvan deverhoudingtussenreactiefentotaallysinenoodzakelijkis. Ommeerinzichttekrijgenindeachterliggenderedenenvoordegevondeneffecten vanextrusiezijnenkelvoudigegrondstoffengeëxtrudeerd( Hoofdstuk5 ).Dezegrondstoffen werdeneerderverwerktinhetvolledigehondenvoederenzijnookgeëxtrudeerdonderzoveel mogelijk dezelfde condities zoals beschreven in Hoofdstuk 4. De resultaten lieten onmiskenbaar zien dat enkelvoudige grondstoffen verschillend reageren op een extrusiebehandeling. Dierlijke producten hebben een hoger lysine gehalte en een hogere verhouding tussen reactief en totaal lysine in vergelijking met plantaardige producten. Extrusieblijktbijnageeneffectentehebbenopdierlijkeproductenterwijlhetreactieflysine gehaltevanplantaardigeproductenisverlaagd(gerst)ofverhoogd(rijst)naextruderen.Voor eenmengselvanalleplantaardigegrondstoffentezamenbleekdatnaextrusieditmengseleen groteverhoudingtussenreactiefentotaallysinehad. In Hoofdstuk 6 zijn de resultaten beschreven van onderzoek naar het effect van matrijsgrootte(8en4mm)endroogtemperatuurendroogtijdnaextrusieopdekwaliteitvan hondenvoeders.Naextrusiewerdendeextrudatengedroogdondertemperaturenvan80,120, 160en200°Cinovens.Doorhogeredroogtemperaturen(van120160°C)werddedroogtijd om 90 g vocht/kg voer te verkrijgen verkort van 549 minuten (bij 80°C/t90) tot 13960 minuten.Hardheidenstortgewichtvandeextrudaten werd door de droogtemperaturen niet beïnvloed.Dedroogtijdbleekgeeneffecttehebbenopnutritionele(totaalenreactieflysine) danwelfysischekenmerken(hardheid;slijtvastheid)vandeextrudaten.Dedroogtemperatuur hadgeeneffectopaminozuurgehaltenvangeëxtrudeerdevoeders.C18vetzurenwerdenmet x ______Dutchsummary namedoordedroogtemperatuurvan200°Cbeinvloedbijgebruikvanzoweleen4mmals8 mmmatrijs.Bijdematrijsvan8mmwerdenookdevetzurenC16:0andC20:0significant doorhetdroogprocesbeïnvloed. Eenalgehelediscussie( Hoofdstuk7 )geeftonzeverklaringeninterpretatievoorde gevondeneffectenenbeschrijftdegevolgenvoordeoptimaliseringvanhetextrusieproces voorhetfabricerenvanhondenvoeders.Dithoofdstukbediscussieertookdebeperkingenvan hetonderzoekendoetvoorstellenvoorvervolgonderzoek. Nadiscussiewerdendevolgendeconclusiesgetrokken: • Extrusie bij producttemperaturen van 110150°C en bij een vochtgehalte van 300 g/kg bleek een milde warmtebehandeling te zijn voor de eiwitkwaliteit bij het maken van hondenvoeders. • Door extrusie onder deze omstandigheden nam de verhouding tussen reactief en totaal lysine in hondenvoeders toe. Deze verhouding kende een waarde rond de 1.0 als het voederwordtgeëxtrudeerdtussen130en150°C • Nietalleenprocesconditiesmaarookdegrondstofsamenstellingbeïnvloeddedekwaliteit vanhondenvoeders.Complexereactiesdietijdenshetextrusieprocesplaatsvindenmaken hetmoeilijkomvooralsnogdeinvloedvanindividueleprocesvariabelentekwantificeren. • Plantaardige grondstoffen (laag gehalte aan lysine) reageerden verschillend op een extrusie behandeling in vergelijking met dierlijke producten (hoog gehalte aan lysine). Extrusie veranderde het reactief lysine gehalte in dierlijke producten niet; voor plantaardigeproductengoldditniet.Verschillenindechemischesamenstellingleidden ertoedathetreactieflysinegehaltenaextrusiesteeg(gerst)ofdaalde(rijst). • Zowelhetreactieflysinegehaltealsdeverhoudingtussenreactiefentotaallysinevaneen mengselvanalleplantaardigegrondstoffenwerdenverhoogdtijdensextrusie. • Voorhetoptimaliserenvandeconditiestijdensextrusievancommerciëlehondenvoeders ishetmetenvandeverhoudingtussenreactiefentotaallysinenoodzakelijk. • Eendroogtemperatuurinderangevan120160°Cnaextrusiebleeknietnadeligvoorde kwaliteitvanhethondenvoederenbeperktdedroogtijd. Droogtijdbleekgeeneffectte hebbenopdeaminozuurkwaliteitendekwaliteitvanvetzuren.

xi Dutchsummary______

Metbetrekkingtotdeonderwerpenbeschrevenindit proefschrift, worden verdere studies aanbevolen naar de invloed van andere product en proceskenmerken zoals pH en afschuifkrachten. Ons onderzoek laat zien dat extrusie omstandigheden (130°C en een vochtgehaltevan300g/kg)eenpositiefeffectheeftopheteiwit(eenhogerreactieflysine gehalte)enhetzetmeel(beterverteerbaar)inhetvoeder.Verderestudiesmoetenzichrichten opdeeffectenvanextrusieopnutrientenzoalsvetten,vitaminen/mineralenmaarookophun interacties.

xii

Tómtt

Vietnamesesummary______

Épñùn(extrusion),mtcôngnghchbinthcăngiasúc,ñãñưcngdngtrong côngnghipchbinthcănviên,dngthcănphbinchothúvtcnh(chó,mèocnh), tnhngnăm50cathktrưc.Trongquátrìnhchbin,hnhpcácthànhphnthcăn, saukhiñưcnghin,trnñuvàxlínhit,sbép(nén)ñiquamttrchìnhxoncvà cui cùng qua l khuôn ca máy ép ñùn ñ to thành mt sn phm hình di ruybăng (extrudate).Sauñó,snphmnàyñưcctthànhviênvàsykhôtrưckhictgi.Nhñó, côngnghépñùnlàmtcôngnghchbinthcănchothúvtcnhrtkinhtvàhudng: khong95%thcănkhôcachó,mèocnhhinnayñưcchbinbngépñùn. Épñùncònñưcgilàcôngnghchbinthcăn"nhitñcao,thigianngn".Do vy,quátrìnhchbinnàygâyracácthayñivtlývàhoáhctronghnhpnguyênliu. Cácthayñinàycóthlàmtăngchtlưngcasnphmnhưkhhottínhcacacácyu tcóhottínhchngdinhdưng(NAF)trongcáchthñu,làmthayñicutrúcvàbin tínhprotein,vàgelatinhoátinhbt.Tuynhiên,hintichưacómtktlunchungnàov nhitñcnthitñtiưuhoáchtlưngsnphmépñùn. Vigithuyt:victiưuhoácácñiukinchbinépñùnscóthduytrìhoc thmchílàmtăngchtlưngcathcănchochócnh,ñtàitptrungnghiêncumcñ nhhưngcaépñùn(vàsykhô)lênhottínhcalysine(mtaxítaminkhôngthayth quantrngtrongthcăncachócnh),lêntinhbtvàlêncácñctínhvtlýkhácnhưñbn vàñcngcasnphm. Nidunglunánñưctrìnhbàytrong7chương. Chương 1 gii thiu mc ñích nghiêncucañtài,cáccâuhinghiêncuvàcutrúccalunán.ðngthi,chươngnày cònmôththngchbinépñùncùngcácthôngscanóápdngtrongchbinthcăn chochócnh. Chương2 tholunktqucacácnghiêncusncótrongcáctàiliuthamkhov tácñngcaépñùnlênchtlưngthcăncachócnh.Quatngquantàiliu,mctiêu nghiêncuñưcxácñnhtnhngkinthcvàthôngtincònthiuhttrongcácnghiêncu nóitrênvàñưccthhóabngcáccâuhinghiêncusau: • Chbinépñùnnhhưngnhưthnàoñivichtlưngdinhdưngvàchtlưngvt lýcathcănchócnh? xiv ______Vietnamesesummary

• Trongtngñiukinchbincth,épñùncónhhưngnhưthnàoñivichtlưng protein,e.g.hottínhcalysine,trongthcănchócnh? • Hottínhlysinevàmcñgelatinhoácatinhbtnhưthnàotrongthcăncachótrên thtrưngHàLan? • Trongtngñiukinchbincth,épñùnnhhưngnhưthnàoñntltiêuhoávà hiuqusdngcácdưngchtnhưproteinvàtinhbt? • nhhưngcaépñùncókhácnhauñiviproteincóngungcñngvtvàproteincó ngungcthcvtkhông? • Nhitñdùngtrongsykhôsnphmchbincónhhưnggìñnchtlưngsnphm không? Chương3 cungcpbctranhchungvchtlưngthcăncachócnhtrongthc tinquamôtcácñctínhdinhdưngvàvtlýcathcănchochócnhtrênthtrưngHà Lan.KtquchothychtlưngthcăncachócnhtrênthtrưngHàLanrtdaoñng. Sdaoñngnàycóthmtphndoskhácbitcacácthànhphn(ingredient)thcănkhi phihpkhuphn(diet)và/hocdocácñiukinchbin.Trongnghiêncunày,chúngtôi tptrungvàophântíchlysinehudng(availablelysine)quachscanólàlysinehottính (reactivelysine). Chương4 nghiêncunhhưngcacácñiukin(bins,variables)épñùnlêncác giátrdinhdưngvàcácñctínhvtlýcathcănchóchocnh,trongñó,ñcbitchúý ñnlysinehottínhvàsgelatinhoácatinhbt.Nghiêncunàychothy,lysinetngs cũngnhưcácaxítaminkháckhôngbnhhưngbi cácñiukinchbinñãsdng. Trongkhiñó,cácñiukinchbintrongnghiêncunày(nhitñt110ñn150ºCvàñ m300g/kg)ñãlàmtăngtlgialysinehottínhvàlysinetngst0.71lên0.80hoccao hơn.Tuynhiên,tlnày,khiñãtănglênñnhocgn1,0lnépthnht,ñãgimxung khong0.9saulnépthhai.ðngthi,nghiêncunàycònchothyrngtltiêuhoá protein invitro cũngnhưchsphântáncaprotein(PDI)khôngbnhhưngbicácñiu kinchbinñãsdng.Trongkhiñó,hstiêuhoá invitro cũngnhưtlgelatinhoátinh bttăngtheochiutăngcanhitñhocñmñã s dng. S tăng ca nhit ñ trong nghiêncunàycũngnhưlnépthhaiñãlàmgimñbncasnphm.Chúngtôiñiñn

xv Vietnamesesummary______ ktlunrng,victiưuhoácácñiukinépñùntrongquátrìnhchbinthcănchochó cnchúýñntlgialysinehottínhvàlysinetngs,vìñâylàtlñưcdùngñưctính lưnglysinemàconvtthctsdngñưc. Chương5 xemxétnhhưngcaépñùnlêntngthànhphnriênglcakhuphn ănvicácñiukinchbintươngtnghiêncutrưc,nhmgiithíchktqutăngcatl lysinehottính/lysinetngsnóitrên.Nghiêncunàychothycácthànhphnthcănriêng lcóphnngkhácnhautrongquátrìnhchbin.Cácthànhphnthcăncóngungc ñngvtcóhàmlưnglysinecũngnhưtllysinehottính/lysinetngscaohơncácthành phnthcăncóngungcthcvt.Épñùnkhônggâynhhưnggìñncácthànhphnthc ăncóngungcñngvtnhưngcónhhưngñncácthànhphnthcăncóngungcthc vtnhưlàmtăng(ñivigo)hocgim(ñivilúamch)lysinehottính.ðiuthúvlà, chàmlưnglysine,ctllysinehottính/lysinetngsñutăngcaotronghnhpthc ănchbaogmcácthànhphncóngungcthcvt. Chương6 nghiêncuvnhhưngcanhitñvàthigiansykhôlênchtlưng cathcăncachóñưcchbinbngphươngphápépñùn.Saukhiépñùn,snphmñưc sykhôcólpliticácnhitñ80,120,160và200ºCbnglòsycóqutgió.Ktqu nghiêncuchothy,nhitñsykhôcao(trongkhong120ñn160ºC)ñãgimrtnhiu thigiansykhô,ctht539phútnhitñ80ºCxungcòn60phútnhitñ160ºCvà 43phútnhitñ200ºCviñmmongñitrongsnphmcuicùnglà9%.Trongquá trìnhsykhô,axítamin(baogmclysinehottính)cũngnhưñcngvàttrngcasn phmkhôngbtácñngbinhitñvàthigiansykhôñãsdng.Trongkhiñó,mts axítbéobnhhưngbinhitñsykhô.Chnghn, axít béo C18:3 n3 cis ñã gim (P<0,05)nhitñsykhô200ºC.MtsaxítbéokhácnhưC16:0,C18:2n6vàC20:0 cũngbnhhưng(cóýnghĩathngkê)mcduskhácnhauvshclàrtnh. Chương7 tholunchungvttccácktqunghiêncucalunánvànêulên cácktlunvtiưuhoácácñiukinépñùnsdngtrongquátrìnhchbinthcăncho chócnh.Chươngnàycũngchranhngmthnchcalunánvàñxutcácnghiêncu tiptheo.Ttholunnày,chúngtôinêuracácktlunchungsauñây: xvi ______Vietnamesesummary

• Vicôngnghépñùn,chtlưngproteintrongthcănchochócnhkhôngbnhhưng trongkhongnhitñchbint110ñn150ºCvàñmtrưckhiéplà300g/kghn hpthcăn. • Nhitñchbinnóitrênñãtăngtllysinehottính/lysinetngstrongsnphm.T lnàyñthocxpx1,0khongnhitñ130ñn150ºC. • Khôngchñiukinchbinmàñctínhcacácthànhphnthcăncũngnhhưngñn chtlưngchungcasnphm.Cácphnngrtphctpxyratrongquátrìnhchbin gâykhókhăntrongvicñnhlưngnhhưngcatngyutriêngl. • Cácthànhphnthcăncóngungcthcvt(hàmlưnglysinethp)cóphnngkhác vicácthànhphncóngungcñngvt(hàmlưnglysinecao)trongquátrìnhch bin.Épñùnkhôngnhhưngñnhottínhcalysinetrongcácthànhphnthcăncó ngungcñngvtnhưnglicótácñngñncácthànhphnthcăncóngungcthc vt,cthlàhottínhcalysinetănggohocgimlúamchtrongquátrìnhch bin. • Tronghnhpchgmcácthànhphnthcăncóngungcthcvt,chàmlưng lysinehottínhvàtllysinehottính/lysinetngstăngmnhtrongquátrìnhchbin. • Vic ti ưu hoá quá trình sn xut thc ăn cho chó cn chú ý ñn t l lysine hot tính/lysinetngs. • Nhitñvàthigiansykhôkhôngnhhưnghocnhhưngkhôngñángkñncht lưngsnphm.Nhitñsykhôcao(t120ñn160ºC)làmgimthigiansykhôt hàngchcgixungcònhàngchcphút.Nhitñsykhô200ºCchlàmgimmtsít cácaxítaminvàaxítbéonhưlysinecácaxítbéoC18. Trongkhuônkhcalunán,chúngtôimichkhosátcácñiukinchbinnhư nhitñvàñm.Nghiêncucachúngtôichrarng,cácñiukinnhitñvàñmñã ápdngcótácdngdươngtính,cóliñiviprotein(hottínhcalysinecaohơn)vàtinh bt(dtiêuhoáhơn).Doñó,cntinhànhthêmcácnghiêncuvnhhưngcacácyut chbinkhácnhưñpH,ápsutnénlêncácthànhphndinhdưngnóitrêncũngnhưlên cácthànhphndinhdưngkhácnhưchtbéo,vitamin,chtkhoángvàstươngtácgiacác thànhphndinhdưngtrongquátrìnhchbin.

xvii

Publications

Peerreviewedarticles: Tran, Q.D., van Lin, C.G.J.M., Hendriks, W.H. and Van der Poel, A.F.B., 2007. Lysine reactivityandstarchgelatinizationinextrudedandpelletedcaninediets.Animal FeedScienceandTechnology.138,162168. Lankhorst,C.,Tran,Q.D.,Havenaar,R.,Hendriks,W.H.andvanderPoel,A.F.B.,2007.The effectofextrusiononthenutritionalvalueofcaninedietsasassessedby invitro indicators.AnimalFeedScienceandTechnology.138,285297. Tran,Q.D.,Hendriks,W.H.,andvanderPoel,A.F.B.,2008.Effectsofextrusionprocessing onnutrientsindrypetfood.JournaloftheScienceofFoodandAgriculture.(in press). Tran,Q.D.,Hendriks,W.H.,andvanderPoel,A.F.B.,2008.Effectsofdryingofacaninediet extrudedata4or8mmdiesizeonphysicalandnutritional quality indicators. AnimalFeedScienceandTechnology.(submitted).

xix

Proceedings: Tran,Q.D.,Lankhorst,C.,Hendriks,W.H.,Havenaar,R.andvanderPoel,A.F.B.,2005. Effectsofextrusiononthenutritionalvalueofcaninediets. 30 th MeetingoftheDutch speakingNutritionresearchers (NVO2005),GhentUniversity,Ghent,Belgium.30, 3738. Lankhorst,C.,Tran,Q.D.,Havenaar,R.,Hendriks,W.H.andvanderPoel,A.F.B.,2006. Effectsofextrusionofcaninedietsontotalandreactivelysinecontent. Compendium oncontinuingeducationforthepracticingveterinarian. 28(4A),p.78. Tran,Q.D.,Ras,M.andVanderPoel,A.F.B.2007.Effectsofmilltypeandextrusionon the nutritional quality of rice. 32nd Meeting of the Dutch speaking Nutrition researchers (NVO2007),GhentUniversity,Ghent,Belgium.32,6061. Tran,Q.D.,Ras,M.,Verstegen,M.W.A.,Hendriks,W.H.andVanderPoel,A.F.B.2007. Effectsofextrusiononnutritionalqualityofsingleingredientsofacaninediet.11th CongressofEuropeanSocietyofVeterinaryandComparativeNutrition (ESVCN), LeipzigUniversity,Leipzig,Germany.11,p.99.

xx

Acknowledgements

Thecompletionofthepresentdissertationhasbeenmadepossibleinsupportofmany organisationsandpeople.Withoutthesesupports,thethesiswouldnothavebeenfinished.On thisoccasion,theauthorwouldliketoexpressedhisdeepgratefulnesstothoseinvolved. First acknowledgement is to the Animal Nutrition Group, Department of Animal Sciences,WageningenUniversity,theNetherlands,wherethestudyhasbeencarriedout,for herprovisionoffacilitiesaswellastheenthusiasmandhelpfulnessofherstaff.Thestudy couldnothavebeenfulfilledwithoutthefinancialsupportfromtheVietnameseGovernment via the Vietnamese Overseas Scholarship Program (VOSP), the socalled Project 322 MinistryofEducationandTraining,Vietnam.Thescholarshiphascoveredallexpensesfor thestudy,includingtravelingcost,healthinsurance,etc...Theauthorwouldalsoliketothank (i)theHumanandAnimalPhysiologyGroup,BiologyFaculty,VinhUniversity,Vietnam,for hersupportbefore,duringandafterhisPhDstudyoverseas;(ii)totheWageningenInstitute ofAnimalSciences(WIAS);(iii)totheFeedCompaniesinNgheAnandHaTinhprovinces, Vietnam, for their help and cooperation during the author's internship, and (iv) to other organisationsfromoverseasandintheNetherlandsnotmentionedhere. Specialgratitudeistothedailysupervisor/copromoter,Dr.Ir.A.F.B.vanderPoelfor his understanding, patience, scientific guidance, help and enthusiasm. The author has not enoughwordstoexpresshissincerethankstothedailysupervisorbecausewithouthim,the authorwouldprobablynothavemanagedtofinishthestudyintimeattheAnimalNutrition Group,WageningenUniversity. Specialthankfulnessistothefirstpromoter,Prof.Dr.Ir.M.W.A.Verstegenforhis acceptance, enthusiasm, guidance and encouragement, in particular, for his help/guidance beforetheauthorcouldcometoWageningenUniversity.Theauthorwouldalsoliketobe gratefulofthepromoterforhisunderstandingandcaretotheauthor'sdailylifeandfamily. Special gratefulness is to the second promoter, Prof. Dr. Ir. W.H. Hendriks for his encouragementandscientificsupport.Withouthiscontribution,thepeerreviewedpublication as well as the completion of the dissertation would have been much more difficult. His guidanceandencouragementhashelpedtheauthortoovercomedifficultiesduringthestudy.

xxi

Theauthorwouldliketoexpresshisdeepappreciationtoallfriends,relativesbothin Vietnam and overseas, esp. in the Netherlands for their besidebeing, understanding and supportallthetime,notonlyforhisstayandstudyaboardbutalsoforhisfamilyathome. Therearetoomanyofthemthattheauthorisnotabletomentionallhere.Somemosthelpers aresuchasBetty(thesecretary),Duong(VinhUniversity),Tamme(ANUtechnician),Mariet (first promoter's wife), Phong (Crop Science Group, Can Tho University), Yen (Soils and FertilizersInstiture,Hanoi)andANUPhDssuchasSander,Arash,Mila,Guido,… HonestthankfulnesstoTruusPostandSaskiavanLaar for their kind assistance as "paranimfen"atthedefenceandfortheirprerapationofthereception. Mostsinceregratefulnesstomybelovedmumanddad. Kind appreciation to the relatives'contribution. Lastbutnotleast,profoundthanksandlovetothe author's beloved wife Mrs Lan NguyenanddaughtersTramAnhTranandKhanhChiTranfortheirsacrifice,livingwithout help/contribution/companion of a husband and a dad for four years. The capacity and responsibilityoftheauthor'swifehaseasedtheauthor'slifeandstudyhereinWageningen. No words can express the author's deep appreciation for their sacrifice during his study abroad. Wageningen,25February2008 QuangD.Tran

xxii

Licámơn

Lunánnàyñưchoànthànhvisgiúpñ,hptáccanhiucơquan,tchcvà ñngnghip,bnbè,giañìnhvàanhemgnxa.Nhândpnày,tácgicalunánxinñưc gilicmơnsâuscnhtñncáctchc,cơquanvànhngngưiñãñónggópchos thànhcôngcalunán. ðutiêntácgixintlòngbitơnsâuscñnbmônDinhdưngVtnuôi,khoa KhoahcvVtnuôi,trưngðihcWageningen,HàLanvìñãcungcpcácñiukin, phươngtinthitbchonghiêncucũngnhưsnhittìnhgiúpñ,hưngdncacáccánb caBmôn.Lunánnàyñãkhôngththchinñưcnukhôngcóstàitrvtàichính caChínhphVitNamthôngquaChươngtrìnhhcbngVitNam(VOSP),cơquanph tráchlàðán322,BGiáodcvàðàotoVitNam.Hcbng322ñãñàithmichiphí chonghiêncunày,baogmchcphí,sinhhotphí,vémáybay,bohimyt,phílàm thcưtrú,v.v...TácgicũngxincámơnbmônSinhlýNgưivàðngvt(tðngvt Sinhlý)thuckhoaSinhhc,trưngðihcVinh,VitNam,ñãtoñiukinthunlicho tácgitrưc,trongvàsaukhihcnghiêncusinhnưcngoài.Tácgixincámơnkhoa SauñihcchuyênngànhKhoahcVtnuôiWageningen(WIAS),cáccôngtythcăngia súchaitnhNghAnvàHàTĩnhcaVitNamñãgiúpñvàhptáctrongthigiantácgi ñnthctp,vàcáccơquan,tchckhácmàtácgikhôngthkhtrañây. TácgiñcbitgilicámơnñnHiñnghưngdncalunvăntibmônDinh dưngVtnuôithuckhoaKhoahcvVtnuôi,trưngðihcWageningen.Sthuhiu, sthôngcm,sdìudtvàhưngdncaHiñngñãgiúptácgitìmñúnghưngñivà vưtquakhókhăntrongquátrìnhthchinlunán.Tácgiñcbitcámơntigiáosư hưngdnchínhMartinVerstegenvsquantâmcagiáosưkhôngchtrongkhoahcmà ctrongcucsngthưngngàycũngnhưgiañìnhcatácgi.Tácgikhôngcóñtngñ dinthtcônglaodìudtcacácthyhưngdn. Tácgicũngxingilicámơnchânthànhñnttcáccácñngnghip,bnbè,c VitNamvàcnưcngoài,ñcbitlàbnbèthànhphWageningen,vìñãluônluônsát cánh,ñngviênñtácgivưtquakhókhăntrongnghiêncucũngnhưtrongcucsng.Vì giihncalunvăn,tácgikhôngthktênhtsñónggópcabnbè,ñngnghipmình rañâyñưc.Nhngngưiñãgiúpñtácginhiutrongquátrìnhhoànthànhlunvănchng

xxiii hnnhưcôBetty(thưkýbmôn),thyðưng(khoaNôngLâmNgư,trưngðihcVinh), anh Tamme (k thut viên), bà Mariet (v ca giáo sư hưng dn chính), anh Lê Thanh Phong(bmônKhoahcCâytrng,ðihcCnThơ,VitNam),bnBùiTânYên(Vin ThnhưngNônghoáHàNi)vàcácbncùngnghiêncusinhbmônDinhdưngVt nuôitiðihcWageningennhưSander(HàLan),Arash(Iran),Mila(Italia)vàGuido(Hà Lan)... Tácgichânthànhcmơnhai"trv"(paranymphs),chTruusPostvàchSaskia vanLaarñãgiúpñtrongbuibovvàbuichiêuñãi. Cóñưcsthànhcônghômnay,conkhôngthkhôngnhñncônglaosinhthành tribincacha,m.Cunlunánnàyconxinñưckínhdânglênlinhhnchavàkínhtng chomyêuquí,ñãsutñihysinhvìsnghipcaconcái. Cuicùngnhưngkhôngkémphnquantrnglàshysinhvôtncav(NguynTh PhươngLan)vàhaicongái(TrnTrâmAnhvàTrnKhánhChi)catácgi,cũngnhưs quantâm,giúpñcaanhemni,ngoitrongthigiantácgiñihcxanhà.Sñmñang vàhysinhcavñãgiúpchotácgiyêntâm,vàlàngunñngviênñtácgicóthvưt quascôñơn,svtvvànhngkhókhăntrongquátrìnhhctpnưcngoàixaxôi. Wageningen,ngày25tháng2năm2008 Tr nðìnhQuang

xxiv

Abouttheauthor

QuangTran(TrnðìnhQuangasinthepassport)wasborninthevillageofðngLào,Nghĩa Lccommune,Nghĩaðàndistrict,NghAnprovince,Vietnam,on9thAugust1966.Hewent touniversityinSeptember1984andgothisbachelor'sdegreeinbiologyinJune1988atVinh University,locatedinVinhcity(thecapitalofNgheAnprovince,about300kmsouthofHa Noi, the capital of Vietnam). With his excellent results of study, he was employed as an assistant university lecturer right after university graduation in 1988 in the Human and AnimalPhysiologyGroup,BiologyFaculty,VinhUniversity.Twoyearslater,hestudiedhis master's course at the same university in 1990 and got his master's degree in Animal Physiologyin1992.BecauseofthechangeoftheeducationsysteminVietnam,hegothis official master's degree in 1997 at Vinh University. After the master study, he went on workingasalectureratVinhUniversityuntilMarch2004,whenhegotpermissiontocarry out his PhD study in the Animal Nutrition Group, Department of Animal Sciences, WageningenUniversity,theNetherlands. AfterhisPhDpromotion(February2008),theauthorwillgobacktohisjobasalecturerin theHumanandAnimalPhysiologyGroup,BiologyFaculty,VinhUniversity,Vietnam. Correspondenceaddress: Mr.QuangD.Tran,PhD. LecturerinHumanandAnimalPhysiologyGroup BiologyFaculty,VinhUniversity 182LeDuanstreet,Vinhcity,Vietnam Email:[email protected]

xxv WIASTrainingandSupervisionAchievements

TrainingandSupervisionAchievements GraduateSchoolWIAS NameofPhDstudent QuangD.Tran Projecttitle Extrusionprocessing:effectsondrycaninediets Group AnimalNutrition Dailysupervisor Dr.Ir.AFBvanderPoel Promoter1 Prof.Dr.Ir.MWAVerstegen Promoter2 Prof.Dr.Ir.WHHendriks Projectterm from1stMarch2004 until25thFebruary2008 Submitted 20Dec07 Certificate EDUCATIONANDTRAINING

TheBasicPackage year credits* WIASIntroductionCourse(mandatory,1.5credits) 2005 1.5 Courseonphilosophyofscienceand/orethics(mandatory,1.5credits) 2004 1.5 SubtotalBasicPackage 3.0 ScientificExposure year credits International conferences EuropeanPetfoodForum 2004,2007 1.8 MeetingoftheDutchSpeakingNutritionResearcher 2005,2006,2007 0.9 CongressoftheEuropeanSocietyofVeterinaryandComparativeNutrition(EVSCNLeipzig) 2007 0.9 Seminars and workshops WIASScienceDay 2004,2005,2006 0.90 PhDRetreat,Nijmegen,Netherlands 2004 0.60 WIASSeminar:DietaryproteinPhysiologicalconstraintstonutritivevalue 2004 0.60 WIASseminar:Perennialryegrassfordairycows 2005 0.15 WIASseminar:AnimalproductionsysteminIndonesia 2006 0.15 WIASseminar:DynamicsofknowledgemanagementinAgriculturalRandD 2006 0.15 WIASseminar:Nutritionalinfluencesonrumendevelopmentandglucosemetabolismincalves 2006 0.15 WIASSeminar:Robustnessinfutureanimalproductionsystems:stakeholdervisions 2007 0.15 Presentations MeetingoftheDutchSpeakingNutritionResearcher 2005,2007 2.0 CongressoftheEuropeanSocietyofVeterinaryandComparativeNutrition(EVSCNLeipzig) 2007 1.0 InternationalPostgraduateCourse:PetNutritionandHealth 2007 1.0 SubtotalInternationalExposure 9.9 InDepthStudies year credits Disciplinary and interdisciplinary courses Ecophysiologyofgastrointestinaltract 2005 1.4 InternationalPostgraduatecourse:AdvancesinFeedEvaluationScience 2006 1.5 InternationalPostgraduatecourse:PetNutritionandHealth 2007 0.6 Advanced statistics courses Experimentaldesign 2005 1.0 StatisticsfortheLifeSciences 2007 1.5 xxvi

MSc level courses AnimalNutritionandPhysiology 2005 6.0 FeedTechnology 2004 6.0 Educationindevelopingandchanging(transition)countries 2006 6.0 SubtotalInDepthStudies 24.0 StatutoryCourses year credits CourseonLaboratoryAnimalScience(UtrechtUniversity) 2004 4.0 SubtotalStatutoryCourses 4.0 ProfessionalSkillsSupportCourses year credits CourseonTechniquesforScientificWriting(advised) 2004 1.2 WorkshoponScientificPublishing 2004 0.3 CourseonSupervisingMScthesiswork(advisedwhensupervisingMScstudents) 2006 1.0 CentaEnglishcourseIndependentUserIV 2006 1.5 ProjectandTimeManagement 2006 1.5 PhDInformationLiteracy 2007 0.6 SubtotalProfessionalSkillsSupportCourses 6.1 ResearchSkillsTraining (optional) year credits PreparingownPhDresearchproposal 2004 3.0 SubtotalResearchSkillsTraining 3.0 DidacticSkillsTraining (optional) year credits Supervising MSc theses MariaRas 2005 2.0 SubtotalDidacticSkillsTraining 2.0 EducationandTrainingTotal 52.0 *oneECTScreditequalsastudyloadofapproximately28hours

xxvii

ThisresearchwasfundedbytheVietnameseGovernment (viatheVietnameseOverseasScholarshipProgramVOSP)