Watonwan River Watershed Hydrology, Connectivity, and Geomorphology Assessment Report Report

Total Page:16

File Type:pdf, Size:1020Kb

Watonwan River Watershed Hydrology, Connectivity, and Geomorphology Assessment Report Report 1 Watonwan River Watershed Hydrology, Connectivity, and Geomorphology Assessment Report Report wq-ws3-07020010d MINNESOTA DEPARTMENT OF NATURAL RESOURCES Table of Contents DIVISION OF ECOLOGICAL AND WATER RESOURCES 2014 2 Table of Figures ............................................................................................................................................. 4 Table of Tables .............................................................................................................................................. 8 List of Acronyms ............................................................................................................................................ 9 Executive Summary ..................................................................................................................................... 11 Introduction ................................................................................................................................................ 12 Study Background ................................................................................................................................... 12 Hydrology ................................................................................................................................................ 14 Connectivity ............................................................................................................................................ 15 Geomorphology ...................................................................................................................................... 17 Methods ...................................................................................................................................................... 17 Hydrology ................................................................................................................................................ 17 Discharge Analysis ............................................................................................................................... 17 Precipitation ........................................................................................................................................ 19 Double Mass Curve ............................................................................................................................. 19 Web-based Hydrograph Analysis Tool ................................................................................................ 19 Ground Water Usage .......................................................................................................................... 19 Connectivity ............................................................................................................................................ 20 Longitudinal Connectivity ................................................................................................................... 20 Lateral Connectivity ............................................................................................................................ 20 Geomorphology ...................................................................................................................................... 20 Field Methods ..................................................................................................................................... 20 Office Methods ................................................................................................................................... 23 Results ......................................................................................................................................................... 24 Hydrology ................................................................................................................................................ 24 Discharge Analysis ............................................................................................................................... 24 Precipitation ........................................................................................................................................ 27 Double Mass Curve ............................................................................................................................. 30 Web-based Hydrograph Analysis Tool ................................................................................................ 30 Ground Water Usage .......................................................................................................................... 33 Connectivity ............................................................................................................................................ 36 Longitudinal Connectivity ................................................................................................................... 36 3 Lateral Connectivity ............................................................................................................................ 36 Geomorphology ...................................................................................................................................... 41 North Fork Watonwan ........................................................................................................................ 42 Upper Watonwan River ...................................................................................................................... 48 Judicial Ditch #1 .................................................................................................................................. 51 Lower Saint James Creek .................................................................................................................... 55 Upper Saint James Creek .................................................................................................................... 59 South Fork Watonwan River ............................................................................................................... 62 Willow Creek ....................................................................................................................................... 67 Middle Watonwan River ..................................................................................................................... 71 Lower Perch Creek .............................................................................................................................. 75 Upper Perch Creek .............................................................................................................................. 79 Lower Watonwan River (downstream of gage station near Garden City) .......................................... 83 Bank Assessment for Non-point Source Consequences of Sediment (BANCS) Model Results .............. 89 Channel Changes via GIS Investigation ................................................................................................... 95 Conclusions ................................................................................................................................................. 98 Restoration and Protection Strategies ........................................................................................................ 99 4 Table of Figures Figure 1. Light Detection and Ranging (LiDAR) imagery depicting the west-to-east slope of the watershed’s landscape with the major and minor tributaries of the watershed. ...................................... 13 Figure 2. Five components of a healthy watershed. All components are interrelated; a disruption of any one of the components can have an effect on the rest of the components. ............................................. 13 Figure 3. Three spatial dimensions of connectivity: longitudinal (red), lateral (green), and riparian (orange). Dams and bridges are two of several structures that disrupt each of these three dimensions of connectivity. Rapidan Dam, Blue Earth River image courtesy of Google Earth, 2014. .............................. 16 Figure 4. Measurements used to classify a representative stream reach. Once measurements of entrenchment, bankfull width to depth ratio, sinuosity, and slope at a riffle cross section have been established, a conclusion on stream type can be made. Additional measurements are taken to determine whether the stream is stable within its current state or if it is in a successional state to adapt to its current climate, hydrology, and land use (Rosgen 1997). ................................................................. 18 Figure 5. Light Detection and Ranging (LiDAR) imagery depicting the west-to-east slope of the watershed’s landscape with the spatial location of geomorphology sites included. ................................. 22 Figure 6. Average monthly discharge in the Watonwan watershed. ......................................................... 25 Figure 7. Average precipitation and runoff (i.e. discharge/area) in the Watonwan watershed. ............... 25 Figure 8. Annual total discharge and precipitation values over time. ........................................................ 26 Figure 9. Flow duration curve of Watonwan monthly discharge values. ................................................... 28 Figure 10. Flow duration curve plotted as discharge over watershed area. .............................................. 28 Figure 11. Number of days where flows are at or above high flow volumes (Q10) compared to annual precipitation
Recommended publications
  • 5.15 Water Pollution and Hydrologic Impacts 5.15.1 Chapter Index 5.15
    Transportation Cost and Benefit Analysis II – Water Pollution Victoria Transport Policy Institute (www.vtpi.org) 5.15 Water Pollution and Hydrologic Impacts This chapter describes water pollution and hydrologic impacts caused by transport facilities and vehicle use. 5.15.1 Chapter Index 5.15 Water Pollution and Hydrologic Impacts ........................................................... 1 5.15.2 Definitions .............................................................................................. 1 5.15.3 Discussion ............................................................................................. 1 5.15.4 Estimates: .............................................................................................. 3 Summary Table ..................................................................................... 3 Water Pollution & Combined Estimates ................................................. 4 Storm Water, Hydrology and Wetlands ................................................. 6 5.15.5 Variability ............................................................................................... 7 5.15.6 Equity and Efficiency Issues .................................................................. 7 5.15.7 Conclusion ............................................................................................. 7 5.15.8 Information Resources .......................................................................... 9 5.15.2 Definitions Water pollution refers to harmful substances released into surface or ground water,
    [Show full text]
  • NRSM 385 Syllabus for Watershed Hydrology V200114 Spring 2020
    NRSM 385 Syllabus for Watershed Hydrology v200114 Spring 2020 NRSM (385) Watershed Hydrology Instructor: Teaching Assistant: Kevin Hyde Shea Coons CHCB 404 CHCB 404 [email protected] [email protected] Course Time & Location: Office Hours: (or by appointment) Tue/Thu 0800 – 0920h Kevin: Tue & Thu, 1500 – 1600h Natural Science 307 Shea: Wed & Fri, 1200 – 1300h Recommended course text: Physical Hydrology by SL Dingman, 2002 (2nd edition). Other readings as assigned. Additional course information and materials will be posted on Moodle: umonline.umt.edu Science of water resource management in the 21st Century: Sustainability of all life requires fundamental changes in hydrologic science and water resource management. Forty percent of the Earth’s ever-increasing population lives in areas of water scarcity, where the available supply cannot meet basic needs. Water pollution from human activities and increasing water withdrawals for human use impair and threaten entire ecosystems upon which human survival depends. Climate change increases environmental variability, exacerbating drought in some regions while leading to greater hydrologic hazards in others. Higher intensity and more frequent storms generate flooding that is especially destructive in densely developed areas of and where ecosystems are already compromised. Sustainable water resource management starts with scientifically sound management of forested landscapes. Eighty percent of fresh water supplies in the US originate on forested lands, providing over 60% of municipal drinking water. Forests also account for significant portions of biologically complex and vital ecosystems. Multiple land use activities including logging, agriculture, industry, mining, and urban development compromise forest ecosystems and threaten aquatic ecosystems and freshwater supplies.
    [Show full text]
  • From Engineering Hydrology to Earth System Science: Milestones in the Transformation of Hydrologic Science
    Hydrol. Earth Syst. Sci., 22, 1665–1693, 2018 https://doi.org/10.5194/hess-22-1665-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science Murugesu Sivapalan1,* 1Department of Civil and Environmental Engineering, Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA * Invited contribution by Murugesu Sivapalan, recipient of the EGU Alfred Wegener Medal & Honorary Membership 2017. Correspondence: Murugesu Sivapalan ([email protected]) Received: 13 November 2017 – Discussion started: 15 November 2017 Revised: 2 February 2018 – Accepted: 5 February 2018 – Published: 7 March 2018 Abstract. Hydrology has undergone almost transformative hydrology to Earth system science, drawn from the work of changes over the past 50 years. Huge strides have been made several students and colleagues of mine, and discuss their im- in the transition from early empirical approaches to rigorous plication for hydrologic observations, theory development, approaches based on the fluid mechanics of water movement and predictions. on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogene- ity, including subsurface heterogeneity present at all scales. எப்ெபாள் யார்யாரவாய் ் க் ேகட்ம் The inability to measure or map the heterogeneity every- அப்ெபாள் ெமய் ப்ெபாள் காண் ப த where prevented the development of balance equations and In whatever matter and from whomever heard, associated closure relations at the scales of interest, and has Wisdom will witness its true meaning.
    [Show full text]
  • Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology
    Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology By Charles J. Taylor and Earl A. Greene Chapter 3 of Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water Edited by Donald O. Rosenberry and James W. LaBaugh Techniques and Methods 4–D2 U.S. Department of the Interior U.S. Geological Survey Contents Introduction...................................................................................................................................................75 Hydrogeologic Characteristics of Karst ..........................................................................................77 Conduits and Springs .........................................................................................................................77 Karst Recharge....................................................................................................................................80 Karst Drainage Basins .......................................................................................................................81 Hydrogeologic Characterization ...............................................................................................................82 Area of the Karst Drainage Basin ....................................................................................................82 Allogenic Recharge and Conduit Carrying Capacity ....................................................................83 Matrix and Fracture System Hydraulic Conductivity ....................................................................83
    [Show full text]
  • Introduction
    Introduction Description of the Study Area The Blue Earth River Watershed is one of twelve major watersheds located within the Minnesota River Basin. The Blue Earth River Watershed is located in south central Minnesota within Blue Earth, Cottonwood, Faribault, Freeborn, Jackson, Martin, and Watonwan counties and northern Iowa (Figure 1). The Blue Earth River Major Watershed area is a region of gently rolling ground moraine, with a total area of approximately 1,550 square miles or 992,034 acres. Of the 992,034 acres, 775,590 acres are located in Minnesota and 216,444 acres are located in Iowa. The Blue Earth River Watershed is located within the Western Corn Belt Plains Ecoregion, where agriculture is the predominate land use, including cultivation and feedlot operations. Urban land use areas include the cities of Blue Earth, Fairmont, Jackson, Mankato, Wells, and other smaller communities. The watershed is subdivided using topography and drainage features into 115 minor watersheds ranging in size from 2,197 acres to 30,584 acres with a mean size of approximately 8,626 acres. The Blue Earth River Major Watershed drainage network is defined by the Blue Earth River and its major tributaries: the East Branch of Blue Earth River, the West Branch of Blue Earth River, the Middle Branch of the Blue Earth River, Elm Creek, and Center Creek. Other smaller streams, public and private drainage systems, lakes, and wetlands complete the drainage network. The lakes and other wetlands within the Blue Earth River Watershed comprise about 3% of the watershed. The total length of the stream network is 1,178 miles of which 414 miles are intermittent streams and 764 miles are perennial streams.
    [Show full text]
  • Runoff Hydrology 101
    Runoff Hydrology 101 Hydrology 101 Runoff Hydrology 101 Legislation (c) The agency shall develop performance standards, design standards, or other tools to enable and promote the implementation of low-impact development and other stormwater management techniques. For the purposes of this section, "low-impact development" means an approach to storm water management that mimics a site's natural hydrology as the landscape is developed. Using the low-impact development approach, storm water is managed on-site and the rate and volume of predevelopment storm water reaching receiving waters is unchanged. The calculation of predevelopment hydrology is based on native soil and vegetation. Minnesota Statutes 2009, section 115.03, subdivision 5c Runoff Hydrology 101 The Water Cycle Hanson, 1994 Runoff Hydrology 101 Development Impacts on the Water Cycle Runoff Hydrology 101 Runoff Hydrology 101 Rate Impacts of Development 1 Existing Hydrograph 2 Developed, conventional CN, no controls Vegetation Removal Pre-development Soil Compaction Peak Runoff Volume Rate Q Drainage Alteration 2 Impervious Areas 1 Area under the curve = Volume T Runoff Hydrology 101 Hydrograph Scenarios Rate 1 Existing 2 Developed, conventional CN, no control. 3 Developed, conventional CN and control. MIDS Pre-development 4 Peak Runoff Volume Rate Q 3 2 1 4 T Runoff Hydrology 101 Factors Affecting Q Runoff • Precipitation • Antecedent moisture • Soil permeability • Watershed area • Ground cover • Storage in watershed • Time parameters Runoff Hydrology 101 Runoff Equations Runoff Hydrology 101 Runoff Curve Numbers Commonly used approach to determine runoff Based on land cover and soils Simple regression model that is useful for quickly assessing stormwater management practices and assessing impacts of land use changes Runoff Hydrology 101 Hydrological Soil Group: Soil groups which are classified according to their drainage potential.
    [Show full text]
  • Hydrology and Water Quality
    City of Malibu Environmental Impact Analysis Hydrology and Water Quality 4.7. Hydrology and Water Quality This section discusses the hydrology and water quality issues associated with construction and operation of the proposed Civic Center Wastewater Treatment Facility Project (“the Project”). It includes a review of existing hydrologic conditions based on available information and an analysis of direct and indirect impacts of the Project. Where feasible, mitigation measures are recommended to reduce the level of impacts. The Project would be constructed in three phases and has four main elements that could result in impacts to hydrologic resources: 1) wastewater treatment facility; 2) pump stations; 3) wastewater collection and recycled water distribution system pipelines; and 4) percolation ponds and groundwater injection wells. For the purposes of this section, “Project area” refers to the area that encompasses the extents of the four main elements described above and the area that would be served by these proposed Project facilities, and “Project site” refers specifically to those areas that would be disturbed by construction activities associated with these four main elements. The Project would include a Local Coastal Program Amendment (including amendments to the Local Implementation Plan (LIP) for wastewater systems and water quality), and modification of zoning for the wastewater treatment facility to include an Institutional District Overlay. 4.7.1. Environmental Setting Regulatory Setting Federal Regulations Clean Water Act The Clean Water Act (CWA) is the primary federal law that protects the quality of the nation’s surface waters, including lakes, rivers, and coastal wetlands. It is based on the principle that all discharges into the nation’s waters are unlawful unless specifically authorized by a permit.
    [Show full text]
  • Blue Earth River Watershed
    Minnesota River Basin 2010 Progress Report Blue Earth River Watershed BLUE EARTH RIVER WATERSHED Part of the Greater Blue Earth River Basin, which also includes the Le Sueur River and Watonwan River watersheds, the Blue Earth River Watershed is characterized by a terrain of gently rolling prairie and glacial moraine with river valleys and ravines cut into the landscape. The Blue Earth River Watershed drains approximately 1,550 square miles or 992,034 acres with a total of 775,590 acres located in Minnesota and the rest in Iowa. Located in the intensive row-crop agriculture areas of south central Minnesota, this watershed carries one of the highest nutrient loads in the Minnesota River Basin. Major tributaries are the East, Middle and West branches, Elm and Center creeks along with smaller streams, public and private drainage systems, lakes and wetlands. Fairmont is the largest city in the Blue Earth River Watershed with part of the City of Mankato Monitoring the Blue Earth River flowing into the river as it meets the Minnesota River. 16. 15. BERBI Conservation 18. Blue Earth River Comprehensive Marketplace 17. Greater Blue Landing 19. Mankato Sibley Nutrient of MN Earth River Basin Parkway 20. Greater Blue Management Plan Initiative Earth River Basin Alliance (GBERBA) 14. Blue Earth River Basin 21. Mankato Initiative Wastewater (BERBI) Treatment Plant 22. Simply 13. BERBI Homemade Intake Initiative 12. Rural 1. Faribault SWCD Advantage Conservation Practices 11. Dutch Creek Farms 2. Small Community Stormwater 10. Elm Creek Project Restoration Project 3. Faribault SWCD Rain Barrel Program 9. Center & Lily Creek watersheds 7.
    [Show full text]
  • Military Use of Geologists and Geology: a Historical Overview and Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Military use of geologists and geology: a historical overview and introduction EDWARD P. F. ROSE1*, JUDY EHLEN2,3 & URSULA L. LAWRENCE4 1Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK 2US Army Engineer Research and Development Center, Alexandria, VA, USA (retired) 3Present address: 3 Haytor Vale, Haytor, Newton Abbot, Devon TQ13 9XP, UK 4Capita Property and Infrastructure, Capita House, Wood Street, East Grinstead, West Sussex RH19 1UU, UK E.P.F.R., 0000-0003-4182-6426; J.E., 0000-0002-1595-7820; U.L.L., 0000-0001-8820-1699 *Correspondence: [email protected] Abstract: Napoleon Bonaparte was, in 1798, the first general to include geologists as such on a military operation. Within the UK, the following century saw geology taught, and national geological mapping initiated, as a military science. Nevertheless, military geologists were not deployed on a battlefield until World War I, first by the German and Austro-Hungarian armies and later and less intensively those of the UK and USA. Geol- ogists were used primarily to guide abstraction of groundwater, construction of ‘mine’ tunnels and dug-outs, development of fortifications and quarrying of natural resources to enhance or repair supply routes. Only the USSR and Germany entered World War II with organized military geological expertise, but the UK and later the USA made significant use of military geologists, albeit far fewer than the c. 400 in total used by German forces. Military geologist roles in World War II included most of those of World War I, but were extended to other aspects of terrain evaluation, notably the rapid construction of temporary airfields and factors affecting cross-country vehicular movement (‘going’).
    [Show full text]
  • Module Name Potamology Module Level, If Applicable Advance Code, If Applicable GEL Semester(S) in Which the Module 4Th Person Responsible for the Module Dr
    Module Name Potamology Module level, if applicable Advance Code, if applicable GEL Semester(s) in which the module 4th Person responsible for the module Dr. Slamet Suprayogi, MS Lecturer 1. Dr. Slamet Suprayogi, MS 2. Prof. Dr. Sudarmadji, M.Eng.Sc 3. Nugroho Christanto, M.Sc Language Bahasa Indonesia Relation to curriculum Potamology Course is one of the elective courses in Environmental Geography Study Program, Faculty of Geography. Student in the 4th semester are allowed to take this course. Potamology courses are advanced courses of basic surface hydrology courses focused on river and watershed. The course explains the river flow mechanism and sediment transport processes on river and watershed. The basic theory for extreme condition on watershed is offered. Students apply physical concepts and approaches that are used to describe and interpret hydrological processes of a watershed. Type of teaching, contact hours STAR (Student Teacher Aesthetic Role-Sharing) is an optimal combination between SCL (Student Centered Learning) and TCL (Teacher Centered Learning). Workload Lecturer, including homework and discussion : 13 meetings x 100 minutes each Mid Semester Examination: 100 minutes Final Semester Examination: 100 minutes Total workload = 1500 minutes Credit points 2 Credits Requirements according to the Minimum attendance requirement 70% from total lecture examination regulations Recommended prerequisites Basic Hydrology, Hydrometry Module objectives/intended 1. After following the lecture topic Introduction: the scope learning outcomes of the lecture, rule of the lecture, assessment system, Watershed Dynamics: From Mountain to Ocean, students are able to: a. Identify hidrological cycle. b. Analyze watershed problems. 2. After following the lecture topic Hydrological Watershed Dynamics, students are able to: a.
    [Show full text]
  • Chapter 4 Hydrology, Water Quality, and Flood Control
    Chapter 4 Hydrology, Water Quality, and Flood Control Chapter 4 Hydrology, Water Quality, and Flood Control This chapter discusses the effects the MIAD Modification Project alternatives may have on hydrology, water quality, and flood control. Impacts associated with groundwater are addressed in Chapter 5, Groundwater. Impacts associated with wetlands are addressed in Chapter 7, Biological Resources. 4.1 Affected Environment/Environmental Setting Existing hydrologic conditions and water resources potentially affected by the alternatives are identified in this section, along with regulatory settings and regional information pertaining to hydrologic resources in the area of analysis. 4.1.1 Area of Analysis The area of analysis for this section includes MIAD site and the Mississippi Bar mitigation site. Lake Natoma is the receiving body of water in regards to water quality impacts generated at both sites 4.1.1.1 Mormon Island Auxiliary Dam The MIAD area of analysis includes the MIAD facility, the adjacent Mormon Island Wetland Preserve area, and Humbug Creek as it will receive discharged groundwater generated by dewatering activities. 4.1.1.2 Mississippi Bar The Mississippi Bar mitigation site includes 80 acres of land on the western shore of Lake Natoma, near the intersection of Sunset Avenue and Main Avenue and south of the community of Orangevale. All proposed mitigation would occur on land parcels currently owned by DPR and Reclamation and managed by DPR as part of the FLSRA. Surface water at this site includes Lake Natoma and various lagoons along the Lake Natoma shoreline. 4.1.2 Regulatory Setting 4.1.2.1 Federal The CWA establishes the basic structure for regulating discharges of pollutants into the waters of the U.S.
    [Show full text]
  • Henry Larcom Abbot 1831-1927
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XIII FIRST MEMOIR BIOGRAPHICAL MEMOIR OF HENRY LARCOM ABBOT 1831-1927 BY CHARLES GREELEY ABBOT PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1929 HENRY LARCOM ABBOT 1831-1927 BY CHARGES GREKLEY ABBOT Chapter I Ancestry Henry Larcom Abbot, Brigadier General, Corps of Engi- neers, U. S. Army, member of the National Academy of Sciences, was born at Beverly, Essex County, Massachusetts, August 13, 1831. He died on October 1, 1927, at Cambridge, Massachusetts, aged 96 years. He traced his descent in the male line from George Abbot, said to be a native of Yorkshire, England, who settled at Andover, Massachusetts, in the year 1642. Through early intermarriage, this line is closely con- nected with that of the descendants of George Abbott of Row- ley, Essex County, Massachusetts. The Abbots of Andover were farmers, highly respected by their townsmen, and often intrusted with elective office in town, church, and school affairs. In the fifth generation, de- scended through John, eldest son of George Abbot of An- dover,1 Abiel Abbot, a great-grandfather of General Abbot, removed from Andover to settle in Wilton, Hillsborough County, New Hampshire, in the year 1763. He made his farm from the wilderness on "Abbot Hill" in the southern part of the township. Having cleared two acres and built a two-story house and barn, he married Dorcas Abbot and moved into the house with his bride before the doors were hung, in November, 1764. They had thirteen children, of whom the fourth, Ezra Abbot, born February 8, 1772, was grandfather to our propo- s^tus.
    [Show full text]