The Levy-Steinitz Rearrangement Theorem for Duals of Metrizable Spaces
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
General Reflexivity for Absolutely Convex Sets
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2019 General Reflexivity orF Absolutely Convex Sets Mahtab Lak University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Lak, Mahtab, "General Reflexivity For Absolutely Convex Sets" (2019). Doctoral Dissertations. 2454. https://scholars.unh.edu/dissertation/2454 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. GENERAL REFLEXIVITY FOR ABSOLUTELY CONVEX SETS BY MAHTAB LAK BS, Applied Mathematics, Sheikh-Bahaee University of Isfahan, Iran, September 2008 MS, Mathematics, Isfahan University of Technology, Iran , 2012 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics May 2019 ALL RIGHTS RESERVED ©2019 Mahtab Lak This dissertation has been examined and approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics by: Dissertation Director, Don Hadwin, Professor of Mathematics and Statistics Eric Nordgren, Professor of Mathematics and Statistics Junhoa Shen, Professor of Mathematics and Statistics John Gibson, Associate Professor of Mathematics and Statistics Mehment Orhan, Senior Lecture of Mathematics and Statistics on 4/15/2019. Original approval signatures are on file with the University of New Hampshire Graduate School. iii ACKNOWLEDGMENTS Firstly, I would like to express my sincere gratitude to my advisor Prof. -
P-Quasi-Λ-Nuclear Operators Between Locally Convex Spaces * ﺩ
Al-Aqsa University Journal (Natural Sciences Series) , Vol.14, No.2, Pages 18-26, Jan. 2010 ISSN 2070-3155 p-Quasi-λ-Nuclear Operators Between Locally Convex Spaces * ﺩ. ﺯﻴﺎﺩ ﺼﺎﻓﻲ * ﺩ. ﺃﺤﻤﺩ ﺍﻻﺸﻘﺭ ﺍﻟﻤﻠﺨﺹ ﻓﻲ ﻫﺫﺍ ﺍﻟﺒﺤﺙ ﻗﻤﻨﺎ ﺒﺘﻌﻤﻴﻡ ﻤﻔﻬﻭﻡ ﺍﻟﻤﺅﺜﺭﺍﺕ 2- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻔﻀﺎﺀﺍﺕ ﺍﻟﻤﻌﻴﺎﺭﻴﺔ (λ⊆ l1) ﺇﻟﻰ p- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ ﺒﻴﻥ ﺍﻟﻔﻀﺎﺀﺍﺕ ﺍﻟﻤﺤﺩﺒﺔ ﺍﻟﻤﺤﻠﻴﺔ ( ∞p >0, λ⊆ l)، ﻭﻜﺫﺍﻟﻙ ﺩﺭﺴﻨﺎ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺅﺜﺭﺍﺕ p- ﺸﺒﻪ-λ- ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ λ- ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺍﻟﻤﺅﺜﺭﺍﺕ ﺸﺒﻪ-λ-ﺍﻟﻨﻭﻭﻴﺔ، ﻭﺒﺭﻫﻨﺎ ﺃﻥ ﺘﺭﻜﻴﺏ ﻤﺅﺜﺭﻴﻥ ﺃﺤﺩﻫﻤﺎ p- ﺸﺒﻪ-λ- ﻨﻭﻭﻱ ﻴﻜﻭﻥ p - ﺸﺒﻪ-λ- ﻨﻭﻭﻱ . ABSTRACT In this paper we generalize the concept of 2-quasi-λ-nuclear operators between Normed spaces (λ⊆ l1) to p-quasi-λ-nuclear operators between locally convex spaces (p >0, λ⊆ l∞ ) and we study the relationship between p-quasi-λ-nuclear, nuclear operators, λ-nuclear, quasi-nuclear and quasi-λ- nuclear. Also we prove that the composition of two operators, one of them is a p-quasi-λ-nuclear, is again a p-quasi-λ-nuclear operator. * ﻗﺴﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ – ﻜﻠﻴﺔ ﺍﻟﻌﻠﻭﻡ- ﺠﺎﻤﻌﺔ ﺍﻷﻗﺼﻰ - ﻏﺯﺓ - ﻓﻠﺴﻁﻴﻥ. p-Quasi-λ-Nuclear Operators Between Locally… 1. Preliminary. By Shatanawi [5], the operator T from a normed space E into a normed space F is said to be 2-quasi-λ-nuclear if there is a sequence ()α n ∈ λ ( λ ⊆ l1 ) and a bounded sequence ()an in E ′ such that ∞ 12 ⎛⎞2 Tx≤〈〉∞∀∈⎜⎟∑ |α nn || x , a | < , x E. ⎝⎠n =1 In this paper, we generalize this definition to p-quasi-λ-nuclear operator between locally convex spaces where λ ⊆ l ∞ and p > 0 . -
Locally Convex Spaces Manv 250067-1, 5 Ects, Summer Term 2017 Sr 10, Fr
LOCALLY CONVEX SPACES MANV 250067-1, 5 ECTS, SUMMER TERM 2017 SR 10, FR. 13:15{15:30 EDUARD A. NIGSCH These lecture notes were developed for the topics course locally convex spaces held at the University of Vienna in summer term 2017. Prerequisites consist of general topology and linear algebra. Some background in functional analysis will be helpful but not strictly mandatory. This course aims at an early and thorough development of duality theory for locally convex spaces, which allows for the systematic treatment of the most important classes of locally convex spaces. Further topics will be treated according to available time as well as the interests of the students. Thanks for corrections of some typos go out to Benedict Schinnerl. 1 [git] • 14c91a2 (2017-10-30) LOCALLY CONVEX SPACES 2 Contents 1. Introduction3 2. Topological vector spaces4 3. Locally convex spaces7 4. Completeness 11 5. Bounded sets, normability, metrizability 16 6. Products, subspaces, direct sums and quotients 18 7. Projective and inductive limits 24 8. Finite-dimensional and locally compact TVS 28 9. The theorem of Hahn-Banach 29 10. Dual Pairings 34 11. Polarity 36 12. S-topologies 38 13. The Mackey Topology 41 14. Barrelled spaces 45 15. Bornological Spaces 47 16. Reflexivity 48 17. Montel spaces 50 18. The transpose of a linear map 52 19. Topological tensor products 53 References 66 [git] • 14c91a2 (2017-10-30) LOCALLY CONVEX SPACES 3 1. Introduction These lecture notes are roughly based on the following texts that contain the standard material on locally convex spaces as well as more advanced topics. -
XILIARY CONCEPTS ASD FACTS IBTERNAL REPOET (.Limited Distribution) 1
AUXILIARY CONCEPTS ASD FACTS IBTERNAL REPOET (.Limited distribution) 1. If {e } , {h. } are orttLonormal tases in the Hilbert space H, and n n 1 o> , respectively, and X > 0 are the numbers such that the series > X International Atomic Energy Agency n _ / . n •,., and converges, then the formula Af = X (f,e )h defines an operator of the n n n Un'itad nations Educational Scientific and Cultural Organization n = 1 Hirbert-Schmidt type, and defines a nuclear operator vhich maps the space INTEBNATIOtTAL CENTRE FOR THEORETICAL PHYSICS H into if X < => n n = 1 By a nuclear space we mean a locally convex space with the property that every linear continuous map from this space into a Banach space is i [8,9,10] nuclear ' . 2. The inductive limit I ind. * (T ) is defined as follows: We are a« A a a CRITERION FOE THE IUCLEAEITY OF SPACES OF FUNCTIONS given a family {t (T )} of locally compact space, a linear space J and OF INFINITE NUMBER OF VARIABLES * a linear map u : * such that the family {u (4 )} spans the entire space * . The topology T , if $ is defined as the finest locally I.H. Gali ** convex topology such that the maps A. : $ (T } •+ *(T),remains continuous. A International Centre for Theoretical Physics, Trieste, Italy. basis of neighbourhoods of zero may be formed by sets T A(U ), where U are neighbourhoods of zero in $ (T ) . If $(T) is a Hausdorff space, then it is called the inductive limit of the spaces 4 (T ), and the topology T is called the inductive topology. -
Arxiv:2107.04662V1 [Math.GN]
ON LINEAR CONTINUOUS OPERATORS BETWEEN DISTINGUISHED SPACES Cp(X) JERZY KA¸KOL AND ARKADY LEIDERMAN Abstract. As proved in [16], for a Tychonoff space X, a locally convex space Cp(X) is distinguished if and only if X is a ∆-space. If there exists a linear con- tinuous surjective mapping T : Cp(X) → Cp(Y ) and Cp(X) is distinguished, then Cp(Y ) also is distinguished [17]. Firstly, in this paper we explore the following question: Under which con- ditions the operator T : Cp(X) → Cp(Y ) above is open? Secondly, we devote a special attention to concrete distinguished spaces Cp([1, α]), where α is a countable ordinal number. A complete characterization of all Y which admit a linear continuous surjective mapping T : Cp([1, α]) → Cp(Y ) is given. We also observe that for every countable ordinal α all closed linear subspaces of Cp([1, α]) are distinguished, thereby answering an open question posed in [17]. Using some properties of ∆-spaces we prove that a linear continuous sur- jection T : Cp(X) → Ck(X)w, where Ck(X)w denotes the Banach space C(X) endowed with its weak topology, does not exist for every infinite metrizable compact C-space X (in particular, for every infinite compact X ⊂ Rn). 1. Introduction ′ A locally convex space (lcs) E is called distinguished if its strong dual Eβ = (E′, β(E′, E)) is a barrelled space. A. Grothendieck [11] proved that a metrizable ′ lcs is distinguished if and only if Eβ is bornological. Also, if all bounded subsets of ′ the strong dual Eβ of a metrizable lcs are metrizable, then E is distinguished [11]. -
Proceedings of A. Razmadze Mathematical Institute Vol. 160 (2012), 143–164 GENERALIZED SPLINE ALGORITHMS and CONDITIONS OF
Proceedings of A. Razmadze Mathematical Institute Vol. 160 (2012), 143{164 GENERALIZED SPLINE ALGORITHMS AND CONDITIONS OF THEIR LINEARITY AND CENTRALITY D. UGULAVA AND D. ZARNADZE Abstract. The worst case setting of linear problems, when the error is measured with the help of a metric, is studied. The notions of gener- alized spline and generalized central algorithms are introduced. Some conditions for a generalized spline algorithm to be linear and gener- alized central are given. The obtained results are applied to operator equations with positive operators in some Hilbert spaces. Examples of strong degenerated elliptic and their inverse operators satisfying the conditions appearing in the obtained theorems, are given. æØ. ßªŁŁ ߪ ºŁØ æ ÆØ - تªª, ºÆø øÆºØŁ ºØŁ Ø æ- Ł. ØºæŁ ŒºÆæŁ ŁŒæ Æ ŒºÆ- æŁÆ øŒŁæ ŁºØ øŒ. ØæŁ º Ø, ºØ ŒºÆæŁ ŁŒæ ŁºØ ıº ߪ Æ ŒºÆæŁÆ øŒŁæ. ØæŁ Æ ØºıŒ- æŁ º Ł ªø ŒŁæŁ ººæŁ ŒºŁª. غıªŒŁ ØøÆ ÆªæŁ Ł- æ Æ Ø æŒæŁ ºº ØŁ, ºØŁø ØıºŁŒ ØæŁ ºØ º. Introduction In the present paper we use terminology and notations mainly from [1]. Let F be an absolutely convex set in a linear space F1 over the scalar ¯eld of real or complex numbers. Let us consider a linear operator S : F1 ! G called a solution operator, where G is a local convex metric linear space over the scalar ¯eld of real or complex numbers with metric d. Elements f from F are called the problem elements for the solution operator and S(f) are called the solution elements. For f we are required to compute S(f). -
Random Linear Functionals
RANDOM LINEAR FUNCTIONALS BY R. M. DUDLEYS) Let S be a real linear space (=vector space). Let Sa be the linear space of all linear functionals on S (not just continuous ones even if S is topological). Let 86{Sa, S) or @{S) denote the smallest a-algebra of subsets of Sa such that the evaluation x -> x(s) is measurable for each s e S. We define a random linear functional (r.l.f.) over S as a probability measure P on &(S), or more formally as the pair (Sa, P). In the cases we consider, S is generally infinite-dimensional, and in some ways Sa is too large for convenient handling. Various alternate characterizations of r.l.f.'s are useful and will be discussed in §1 below. If 7 is a topological linear space let 7" be the topological dual space of all con- tinuous linear functions on T. If 7" = S, then a random linear functional over S defines a " weak distribution " on 7 in the sense of I. E. Segal [23]. See the discussion of "semimeasures" in §1 below for the relevant construction. A central question about an r.l.f. (Sa, P), supposing S is a topological linear space, is whether P gives outer measure 1 to S'. Then we call the r.l.f. canonical, and as is well known P can be restricted to S' suitably (cf. 2.3 below). For simplicity, suppose that for each s e S, j x(s)2 dP(x) <oo. Let C(s)(x) = x(s). -
Arxiv:1612.01421V1 [Math.OA] 5 Dec 2016
NUCLEARITY PROPERTIES AND C∗-ENVELOPES OF OPERATOR SYSTEM INDUCTIVE LIMITS PREETI LUTHRA AND AJAY KUMAR Abstract. We study the relationship between C∗-envelopes and inductive limit of operator systems. Various operator system nuclearity properties of inductive limit for a sequence of operator systems are also discussed. 1. Introduction In last few years, the development of the theory of operator systems has seen a fair amount of attention. All the important notions from the theory of C∗-algebras including exactness, nuclearity, weak expectation property and lifting properties have been explicitly defined in the category of operator systems. Associated to every representation φ of an operator system S into B(H), for some Hilbert Space H, there exist a C∗-cover the C∗-algebra C∗(φ(S)) ⊂ B(H). The minimal C∗-cover among all such representation is known as the C∗-envelope of S. It is thus quite natural to ask which C∗-algebraic properties of the C∗-envelopes are carried over to the generating operator systems in terms of their definitions in the operator system category, and to what extent. Some attempts done in this direction can be found in [5, 12]. It is well known (see [2]) that for the category of C∗-algebras, inductive limit pre- serves many intrinsic properties, viz., exactness, nuclearity, simplicity etc. The analysis of inductive limit of ascending sequences of finite dimensional C∗-algebras, known as approximately finite dimensional (AF) C∗-algebras, has played an im- portant role in theory of operator algebras. Existence of inductive limits in the category of operator systems has been shown in [10]. -
Bilinear Forms and Nuclearity
Czechoslovak Mathematical Journal Hans Jarchow; Kamil John Bilinear forms and nuclearity Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 2, 367–373 Persistent URL: http://dml.cz/dmlcz/128458 Terms of use: © Institute of Mathematics AS CR, 1994 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 44 (119) 1994, Praha BILINEAR FORMS AND NUCLEARITY H. JARCHOW, Zurich, and KAMIL JOHN, Praha (Received October 21, 1994) INTRODUCTION Back in 1965, A. Pietsch asked if a locally convex Hausdorff space (lcs) E must be nuclear whenever it has the property that every continuous bilinear form on E x E is nuclear (cf. [10], 7.4.5). The question remained open, even within the framework of Banach spaces where it translates to what is known as the "bounded non-nuclear operator problem": is a Banach space X necessarily finite-dimensional when all operators from X to its dual X* are nuclear? The related "compact non-nuclear operator problem" has a negative solution. In 1983, G. Pisier [12] constructed (separable, infinite-dimensional) Banach spaces P which, among others, have the property that every approximable operator P -> P is nuclear. In 1990, K. John [8] observed that this is also true for approximable operators p(m) -» p(n) for any choice of positive integers m and n; here p(m) is the ra-th dual of P. -
Examples of Summing, Integral and Nuclear Operators on the Space C([0, 1],X)With Values in C0
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J. Math. Anal. Appl. 331 (2007) 850–865 www.elsevier.com/locate/jmaa Examples of summing, integral and nuclear operators on the space C([0, 1],X)with values in c0 Dumitru Popa Department of Mathematics, University of Constanta, Bd. Mamaia 124, 8700 Constanta, Romania Received 16 January 2006 Available online 16 October 2006 Submitted by J. Diestel Abstract We give necessary and sufficient conditions that some operators on the space C([0, 1],X) with values in c0 be as in the title. Related questions are investigated. © 2006 Elsevier Inc. All rights reserved. Keywords: Banach spaces of continuous functions; Tensor products; Operator ideals; p-Summing operators 1. Introduction Let Ω be a compact Hausdorff space, let X be a Banach space, and let C(Ω,X) stand for the Banach space of continuous X-valued functions on Ω under the uniform norm and C(Ω) when X is the scalar field. It is well known that if Y is a Banach space, then any bounded linear operator U : C(Ω,X) → Y has a finitely additive vector measure G : Σ → L(X, Y ∗∗), where Σ is the σ -field of Borel subsets of Ω, such that ∗ ∗ ∗ y U(f)= fdGy∗ ,f∈ C(Ω,X), y ∈ Y . Ω The measure G is called the representing measure of U. For details, see [2, p. 217], [3, Theo- rem 2.2], [7, p. 182]. E-mail address: [email protected]. 0022-247X/$ – see front matter © 2006 Elsevier Inc. -
Topological Vector Spaces
Topological Vector Spaces Maria Infusino University of Konstanz Winter Semester 2015/2016 Contents 1 Preliminaries3 1.1 Topological spaces ......................... 3 1.1.1 The notion of topological space.............. 3 1.1.2 Comparison of topologies ................. 6 1.1.3 Reminder of some simple topological concepts...... 8 1.1.4 Mappings between topological spaces........... 11 1.1.5 Hausdorff spaces...................... 13 1.2 Linear mappings between vector spaces ............. 14 2 Topological Vector Spaces 17 2.1 Definition and main properties of a topological vector space . 17 2.2 Hausdorff topological vector spaces................ 24 2.3 Quotient topological vector spaces ................ 25 2.4 Continuous linear mappings between t.v.s............. 29 2.5 Completeness for t.v.s........................ 31 1 3 Finite dimensional topological vector spaces 43 3.1 Finite dimensional Hausdorff t.v.s................. 43 3.2 Connection between local compactness and finite dimensionality 46 4 Locally convex topological vector spaces 49 4.1 Definition by neighbourhoods................... 49 4.2 Connection to seminorms ..................... 54 4.3 Hausdorff locally convex t.v.s................... 64 4.4 The finest locally convex topology ................ 67 4.5 Direct limit topology on a countable dimensional t.v.s. 69 4.6 Continuity of linear mappings on locally convex spaces . 71 5 The Hahn-Banach Theorem and its applications 73 5.1 The Hahn-Banach Theorem.................... 73 5.2 Applications of Hahn-Banach theorem.............. 77 5.2.1 Separation of convex subsets of a real t.v.s. 78 5.2.2 Multivariate real moment problem............ 80 Chapter 1 Preliminaries 1.1 Topological spaces 1.1.1 The notion of topological space The topology on a set X is usually defined by specifying its open subsets of X. -
Characterizations of Continuous Operators on with the Strict Topology
Tusi Mathematical Ann. Funct. Anal. (2021) 12:28 Research https://doi.org/10.1007/s43034-021-00112-1 Group ORIGINAL PAPER Characterizations of continuous operators on Cb(X) with the strict topology Marian Nowak1 · Juliusz Stochmal2 Received: 2 September 2020 / Accepted: 7 January 2021 © The Author(s) 2021 Abstract C X Let X be a completely regular Hausdorf space and b( ) be the space of all bounded continuous functions on X, equipped with the strict topology . We study some ⋅ C X important classes of (, ‖ ‖E)-continuous linear operators from b( ) to a Banach E ⋅ space ( , ‖ ‖E) : -absolutely summing operators, compact operators and -nuclear operators. We characterize compact operators and -nuclear operators in terms of their representing measures. It is shown that dominated operators and -absolutely T C X → E summing operators ∶ b( ) coincide and if, in particular, E has the Radon– Nikodym property, then -absolutely summing operators and -nuclear operators coincide. We generalize the classical theorems of Pietsch, Tong and Uhl concern- ing the relationships between absolutely summing, dominated, nuclear and compact operators on the Banach space C(X), where X is a compact Hausdorf space. Keywords Spaces of bounded continuous functions · k-spaces · Radon vector measures · Strict topologies · Absolutely summing operators · Dominated operators · Nuclear operators · Compact operators · Generalized DF-spaces · Projective tensor product Mathematics Subject Classifcation 46G10 · 28A32 · 47B10 Communicated by Raymond Mortini. * Juliusz Stochmal [email protected] Marian Nowak [email protected] 1 Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Gora, Poland 2 Institute of Mathematics, Kazimierz Wielki University, ul.