Habitat Use Affects Morphological Diversification In

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Use Affects Morphological Diversification In doi:10.1111/j.1420-9101.2010.01971.x Habitat use affects morphological diversification in dragon lizards D.C.COLLAR*,J.A.SCHULTEII ,B.C.O’MEARAà &J.B.LOSOS* *Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA Department of Biology, Clarkson University, Potsdam, NY, USA àDepartment of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA Keywords: Abstract Agamidae; Habitat use may lead to variation in diversity among evolutionary lineages Brownian motion; because habitats differ in the variety of ways they allow for species to make a ecomorphology; living. Here, we show that structural habitats contribute to differential Iguania; diversification of limb and body form in dragon lizards (Agamidae). Based on locomotion; phylogenetic analysis and ancestral state reconstructions for 90 species, we phylogenetic comparative method. find that multiple lineages have independently adopted each of four habitat use types: rock-dwelling, terrestriality, semi-arboreality and arboreality. Given these reconstructions, we fit models of evolution to species’ morphological trait values and find that rock-dwelling and arboreality limit diversification relative to terrestriality and semi-arboreality. Models preferred by Akaike information criterion infer slower rates of size and shape evolution in lineages inferred to occupy rocks and trees, and model-averaged rate estimates are slowest for these habitat types. These results suggest that ground-dwelling facilitates ecomorphological differentiation and that use of trees or rocks impedes diversification. tion. In this study, we test the hypothesis that diversity Introduction varies as a function of habitat. One of the great questions in evolutionary biology For many reasons, some habitats may foster greater concerns the causes of differences in diversity among diversity than others. Some habitat types may be readily clades. Ecological factors are often implicated to explain subdivided, perhaps because of spatial complexity (e.g. this pattern because the ecological circumstances avail- coral reefs [Alfaro et al., 2007]) or geographical area (e.g. able to the members of a lineage contribute to the mode arid habitats in Australia [Rabosky et al., 2007]) and may of natural selection they experience and thus shape thereby present evolutionary lineages with many alter- ecological divergence, morphological adaptation and the native means for microhabitat specialization or local evolution of new species. Although much work has adaptation. Other habitats may impose stringent func- focused on the role of biotic interactions within commu- tional constraints that lead to strong selection resisting nities (e.g. competition-driven divergent selection in ecological and phenotypic divergence away from an Anolis lizards [Williams, 1972; Losos, 2009], Hawaiian adaptive peak (Butler & King, 2004; Collar et al., 2009). silverswords [Carlquist et al., 2003] and Darwin’s finches Habitat types may also contribute differently to diversi- [Schluter, 1988; Grant & Grant, 2008]), other aspects of a fication because they vary in the number and type of lineage’s ecology may also be important for diversifica- species interactions they present, such as the presence or absence of predators (McPeek & Brown, 2000). In Correspondence: David C. Collar, Department of Organismic and addition, some habitats may provide opportunities if Evolutionary Biology and Museum of Comparative Zoology, they are variable across space in the strength of species Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. interactions (McPeek, 1996) or in their functional Tel.: 617 496 9099; fax: 617 495 5667; e-mail: [email protected] Re-use of this article is permitted in accordance with the demands. Terms and Conditions set out at http://www3.interscience.wiley.com/ The consequences of habitat use for diversification authorresources/onlineopen.html have been investigated primarily in the context of ª 2010 THE AUTHORS. J.EVOL.BIOL. 23 (2010) 1033–1049 JOURNALCOMPILATION ª 2010 EUROPEAN SOCIETY FOR EVOLUTIONARY BIOLOGY 1033 1034 D.C.COLLAR ETAL. explaining variation in species richness among clades. Materials and methods Evolutionary transitions between habitat types that differ in the opportunities they provide for ecological diver- Reconstructing phylogeny gence are often implicated to explain shifts in rates of lineage diversification. For example, several invasions of We reconstructed phylogenetic relationships for 90 coral reefs in tetraodontiform fish lineages are temporally agamid species—representing nearly one-quarter of the coincident with increases in rates of diversification group’s recognized species diversity—as well as four (Alfaro et al., 2007), the transition into arid habitats outgroup species. Our molecular data set included 1.2 kb is associated with elevated rates of diversification in of mitochondrial DNA including partial sequences for the Australian skinks (Rabosky et al., 2007), and diversifica- protein-coding genes, NADH dehydrogenase subunit 1 tion rates in damselflies vary across gradients of pond (ND1) and cytochrome c oxidase subunit I (COI), and the permanence (McPeek & Brown, 2000). complete sequence for NADH dehydrogenase subunit 2 One explanation for these associations between habitat (ND2). This analysis excluded intervening tRNA-coding use and species richness is that the process of lineage regions because they are highly variable among the splitting is mechanistically linked to niche differentiation. sampled taxa, making unambiguous alignment of these However, species richness and ecological diversity need regions difficult and potentially unreliable (Schulte et al., not be correlated during evolution (Foote, 1993; Losos & 2004a; Schulte & de Queiroz, 2008). All sequences were Miles, 2002; Adams et al., 2009), and elevated rates of obtained from GenBank (accession numbers are in lineage diversification within a habitat type do not Table S1) and aligned by eye. Base positions inferred to require increases in rates of ecological evolution. Indeed, have ambiguous homology at the ends of ND1 and ND2 the neutral theory of biodiversity emphasizes the extent were excluded from phylogenetic analyses (198 of 1281 to which species diversification may occur in the absence aligned positions). Alignment is available in TREEBASE of ecological differentiation (Hubbell, 2001). (Study accession number S2669, Matrix accession num- Using morphological variation in ecologically relevant bers M5148; to be added upon acceptance of manuscript). characters as a surrogate for ecological variation, we We used these sequences to simultaneously infer asked whether a relationship exists between habitat use phylogenetic relationships among agamid species and and ecological diversity. We focused on dragon lizards estimate branch lengths in relative time using Bayesian (Agamidae), an ecologically and morphologically diverse phylogenetic analysis and a relaxed molecular clock radiation of iguanian lizards comprising roughly 400 approach implemented in the program BEAST (Drum- species distributed throughout the Old World. Agamid mond et al., 2006; Drummond & Rambaut, 2007). We lizards vary in their structural habitat use, including partitioned mtDNA sequences by codon position and, for species that primarily use rocks, trees or terrestrial each partition, separately fit a general time reversible surfaces as well as some semi-arboreal species that model of nucleotide substitution that allows for gamma- frequently use both trees and terrestrial surfaces. Because distributed substitution rate variation among sites and the ability to move about and hold position in the invariant sites (Yang, 1994) because previous analysis of environment is partly a consequence of structural habitat these sequences for a subset of the agamid species use and because movement is important to the perfor- included in this study showed that this model provided mance of ecological tasks, such as foraging, evading the best fit relative to simpler substitution models predation and defending territory (Losos, 1990; Irschick (Schulte et al., 2004a). Variation in substitution rates & Garland, 2001), these four types of habitat use may among lineages was modelled by a lognormal distribu- contribute differently to ecomorphological diversification tion in which the mean rate was set to 1.0 (i.e. no in agamid lineages. external calibration was used to estimate divergence To evaluate this hypothesis, we applied a phylogenetic times), and no correlation was assumed between ances- approach that tests for associations between habitat and tor and descendant branches (Drummond et al., 2006; rates of morphological evolution in agamid lineages. We Drummond & Rambaut, 2007). Uninformative priors inferred phylogenetic relationships for 90 agamid species were applied for all parameter estimates. based on mitochondrial DNA sequences, reconstructed We used BEAST to sample the posterior probability ancestral habitat use and used these reconstructions as distribution of phylogenetic trees and substitution model the basis for fitting models of evolution to species values parameters given species’ sequence data according to a for morphological traits. We then compared fit and Markov chain Monte Carlo (MCMC) algorithm (Drum- parameter estimates for models that differ in the number mond & Rambaut, 2007), which we ran twice for of evolutionary rates (based on the Brownian motion 25 · 106 generations per run. For each
Recommended publications
  • Lake Pinaroo Ramsar Site
    Ecological character description: Lake Pinaroo Ramsar site Ecological character description: Lake Pinaroo Ramsar site Disclaimer The Department of Environment and Climate Change NSW (DECC) has compiled the Ecological character description: Lake Pinaroo Ramsar site in good faith, exercising all due care and attention. DECC does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. © State of New South Wales and Department of Environment and Climate Change DECC is pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. Published by: Department of Environment and Climate Change NSW 59–61 Goulburn Street, Sydney PO Box A290, Sydney South 1232 Phone: 131555 (NSW only – publications and information requests) (02) 9995 5000 (switchboard) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au DECC 2008/275 ISBN 978 1 74122 839 7 June 2008 Printed on environmentally sustainable paper Cover photos Inset upper: Lake Pinaroo in flood, 1976 (DECC) Aerial: Lake Pinaroo in flood, March 1976 (DECC) Inset lower left: Blue-billed duck (R. Kingsford) Inset lower middle: Red-necked avocet (C. Herbert) Inset lower right: Red-capped plover (C. Herbert) Summary An ecological character description has been defined as ‘the combination of the ecosystem components, processes, benefits and services that characterise a wetland at a given point in time’.
    [Show full text]
  • Gliding Dragons and Flying Squirrels: Diversifying Versus Stabilizing Selection on Morphology Following the Evolution of an Innovation
    vol. 195, no. 2 the american naturalist february 2020 E-Article Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation Terry J. Ord,1,* Joan Garcia-Porta,1,† Marina Querejeta,2,‡ and David C. Collar3 1. Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia; 2. Institute of Evolutionary Biology (CSIC–Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, Barcelona 08003, Spain; 3. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606 Submitted August 1, 2018; Accepted July 16, 2019; Electronically published December 17, 2019 Online enhancements: supplemental material. Dryad data: https://doi.org/10.5061/dryad.t7g227h. fi abstract: Evolutionary innovations and ecological competition are eral de nitions of what represents an innovation have been factors often cited as drivers of adaptive diversification. Yet many offered (reviewed by Rabosky 2017), this classical descrip- innovations result in stabilizing rather than diversifying selection on tion arguably remains the most useful (Galis 2001; Stroud morphology, and morphological disparity among coexisting species and Losos 2016; Rabosky 2017). Hypothesized innovations can reflect competitive exclusion (species sorting) rather than sympat- have drawn considerable attention among ecologists and ric adaptive divergence (character displacement). We studied the in- evolutionary biologists because they can expand the range novation of gliding in dragons (Agamidae) and squirrels (Sciuridae) of ecological niches occupied within communities. In do- and its effect on subsequent body size diversification. We found that gliding either had no impact (squirrels) or resulted in strong stabilizing ing so, innovations are thought to be important engines of selection on body size (dragons).
    [Show full text]
  • Kowari Monitoring in Sturts Stony Desert 2008
    Kowari Dasycercus byrnei Distribution Monitoring in Sturts Stony Desert, South Australia, Spring 2007 Peter Canty & Robert Brandle – Science & Conservation, SA Dept Environment & Heritage, 2008 For SA Arid Lands Natural Resources Management Board i Contents Page Summary iii List of Figures, Photos and Tables iv Acknowledgments vi Project Aims 1 Methods 1 Results 8 Discussion 12 Conclusions 14 Recommendations 15 Bibliography 16 Appendices 17 1. The Kowari Habitat Assessment Datasheet 18 2. Satellite Images of Trapsites 19 3. Key Healthy Sand Mound Indicators 25 4. Other Mammal Species Likely to be Confused with Kowaris 43 5. Kowari Survey – Clifton Hills and Pandie Pandie Station December 2007 (Pedler & Read) 47 ii Summary: This paper reports on a presence/absence population status and distribution survey primarily for the Kowari (Dasycercus byrnei) in areas of known or likely habitat in Sturts Stony Desert, north-eastern South Australia. The survey was carried out between 27th August to 11th September 2007 on Mulka, Cowarie, Pandie Pandie, Innamincka and Cordillo Downs pastoral leases. The Kowari’s major habitat areas on Clifton Hills Pastoral Lease were not sampled as access was not approved by the property manager. Monitoring traplines followed typical Kowari survey standards with aluminium box/treadle traps (Elliott Type A) placed 100 metres apart on 10 kilometre long transects sampling ideal habitat over two trap-nights. The only variation from this standard was the pairing of traps at each station, one having bait specifically for Kowaris and other carnivorous species, the other baited for general sampling. Trapping was carried out at 6 locations over 12 nights with an approximate intensity of 400 trap-nights per sample.
    [Show full text]
  • Draft Animal Keepers Species List
    Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290,
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • Reptiles of the Wet Tropics
    Reptiles of the Wet Tropics The concentration of endemic reptiles in the Wet Tropics is greater than in any other area of Australia. About 162 species of reptiles live in this region and 24 of these species live exclusively in the rainforest. Eighteen of them are found nowhere else in the world. Many lizards are closely related to species in New Guinea and South-East Asia. The ancestors of two of the resident geckos are thought to date back millions of years to the ancient super continent of Gondwana. PRICKLY FOREST SKINK - Gnypetoscincus queenlandiae Length to 17cm. This skink is distinguished by its very prickly back scales. It is very hard to see, as it is nocturnal and hides under rotting logs and is extremely heat sensitive. Located in the rainforest in the Wet Tropics only, from near Cooktown to west of Cardwell. RAINFOREST SKINK - Eulamprus tigrinus Length to 16cm. The body has irregular, broken black bars. They give birth to live young and feed on invertebrates. Predominantly arboreal, they bask in patches of sunlight in the rainforest and shelter in tree hollows at night. Apparently capable of producing a sharp squeak when handled or when fighting. It is rare and found only in rainforests from south of Cooktown to west of Cardwell. NORTHERN RED-THROATED SKINK - Carlia rubrigularis Length to 14cm. The sides of the neck are richly flushed with red in breeding males. Lays 1-2 eggs per clutch, sometimes communally. Forages for insects in leaf litter, fallen logs and tree buttresses. May also prey on small skinks and own species.
    [Show full text]
  • For Peer Review Journal: Biological Journal of the Linnean Society
    Biological Journal of the Linnean Society The evolution of Australasian agamid lizards based on nuclear and mitochondrial genes, and the affinities of the thorny devil (Moloch horridus). For Peer Review Journal: Biological Journal of the Linnean Society Manuscript ID: BJLS-0023 Manuscript Type: Original Manuscript Date Submitted by the 26-Jun-2006 Author: Complete List of Authors: Hugall, Andrew; University of Adelaide, Earth and Environmental Sciences Foster, Ralph; South Australian Museum Lee, Michael; South Australian Museum Hutchinson, Mark; South Australian Museum agamidae, phylogeny, partition support, congruence, convergence, Keywords: molecular clock, aridification Biological Journal of the Linnean Society Page 1 of 33 Biological Journal of the Linnean Society 1 2 3 4 The evolution of Australasian agamid lizards based on nuclear and 5 mitochondrial genes, and the affinities of the thorny devil (Moloch 6 horridus). 7 8 9 A.F. Hugall1*, R. Foster2, M. Hutchinson2 and M.S.Y. Lee1,2 10 11 12 13 1 School of Earth and Environmental Sciences, University of Adelaide, SA 5005 14 2 15 Natural Sciences Building, South Australian Museum, Adelaide, SA 5000, Australia 16 17 *Corresponding Author, E-mail [email protected], Fax +61 8 8303 4364 18 19 20 For Peer Review 21 Running title: Austral Agamid Phylogeny 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Biological Journal of the Linnean Society Biological Journal of the Linnean Society Page 2 of 33 Austral Agamid Phylogeny 2 1 2 3 ABSTRACT 4 5 6 7 Recent mtDNA phylogenies of Australasian agamid lizards are highly incongruent with 8 existing morphological views.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • South West Queensland QLD Page 1 of 89 21-Jan-11 Species List for NRM Region South West Queensland, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Methods for Assessment and Techniques for Management of Striped Legless Lizard Delma Impar Populations in South-Eastern Australia
    Methods for Assessment and Techniques for Management of Striped Legless Lizard Delma impar Populations in South-eastern Australia By Megan Bernadette O’Shea (B. App. Sci. Hons.) Sustainability Group Victoria University Australia A thesis submitted in fulfillment of the requirements of the degree of Doctor of Philosophy at Victoria University January 2005 Printed on recycled paper Statement of Originality This thesis is my original work and has not been submitted in whole or in part, for a degree at this or any other university. Nor does it contain, to the best of my knowledge and belief, any material published or written by another person, except as acknowledged in the text. Megan Bernadette O’Shea ii Acknowledgements The input, assistance, guidance and support of many people have helped to bring this project and our understanding of the biology of the Striped Legless Lizard to what is hereafter presented. Much is still to be learned and hopefully others will be given the same level of support to follow on with this work. My supervisor and friend Dr. Colin Hocking (Senior Lecturer in Ecology, Victoria University) gave me the opportunity and guidance to pursue a range of aspects of Striped Legless Lizard biology and ecology. The Victorian Striped Legless Lizard Working Group provided insight, enthusiasm and financial support for the project. Thanks especially to Chris Banks, Sue Hadden, Peter Robertson, Stephen Smith and Alan Webster. So many people assisted with the chore of installing pit-fall traps and drift- fences – a remarkable effort by all! Thanks especially to Matthew Cattanach, Paul Evans, Meredith Henderson, Bram Mason, Steve Parker, Bill Smith, Natasha Sullivan and Cheryl Taylor.
    [Show full text]
  • (Marcr) 2010 - 2011
    Cairn Hill Magnetite-Copper-Gold Project Mining and Rehabilitation Compliance Report (MARCR) 2010 - 2011 26 July 2011 Reference No. Cairn Hill ML 6303 MARCR 2010-2011 Rev1 Document / Project Summary Information Mine Owner Termite Resources NL Mine Operator Termite Resources NL Primary Contact Person Simon Parsons, General Manager – Cairn Hill Contact Details Level 2, 16 Vardon Avenue, Adelaide 5000 Tel: +61 8 8227 0277 Fax: +61 8 8232 6740 Email: [email protected] Name of Mining Operation Cairn Hill Commodity Mined Magnetite-Copper-Gold Document Title Cairn Hill Magnetite – Copper – Gold Mining Project Mining and Rehabilitation Compliance Report (MARCR) 2010 – 2011 ML Granted 17 April 2008 ML Number ML 6303 Recipient: Mr Hans Bailiht – Principal Mining Regulator (Metallic & Uranium), Inspector of Mines Mining Regulation & Rehabilitation Branch Primary Industries and Resources South Australia GPO Box 1671 ADELAIDE SA 5001 Author: A Woidt – Termite Resources NL Reviewer: S Staines – Termite Resources NL Approved by: S Parsons – Termite Resources NL Date: 26 July 2011 Distribution: PIRSA (3 hard copies, 1 electronic copy), Termite Resources NL (2 hard copies, 1 electronic copy), IMX Resources (1 hard copy, 1 electronic copy) Cairn Hill ML 6303 MARCR 2010-2011 Rev1 i Contents 1 Introduction ....................................................................................................................................................... 1 1.1 General ...................................................................................................................................................
    [Show full text]
  • A Molecular Phylogenetic Study of Ecological Diversification in the Australian Lizard Genus Ctenophorus
    JEZ Mde 2035 JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 291:339–353 (2001) A Molecular Phylogenetic Study of Ecological Diversification in the Australian Lizard Genus Ctenophorus JANE MELVILLE,* JAMES A. SCHULTE II, AND ALLAN LARSON Department of Biology, Washington University, St. Louis, Missouri 63130 ABSTRACT We present phylogenetic analyses of the lizard genus Ctenophorus using 1,639 aligned positions of mitochondrial DNA sequences containing 799 parsimony-informative charac- ters for samples of 22 species of Ctenophorus and 12 additional Australian agamid genera. Se- quences from three protein-coding genes (ND1, ND2, and COI) and eight intervening tRNA genes are examined using both parsimony and maximum-likelihood analyses. Species of Ctenophorus form a monophyletic group with Rankinia adelaidensis, which we suggest placing in Ctenophorus. Ecological differentiation among species of Ctenophorus is most evident in the kinds of habitats used for shelter. Phylogenetic analyses suggest that the ancestral condition is to use burrows for shelter, and that habits of sheltering in rocks and shrubs/hummock grasses represent separately derived conditions. Ctenophorus appears to have undergone extensive cladogenesis approximately 10–12 million years ago, with all three major ecological modes being established at that time. J. Exp. Zool. (Mol. Dev. Evol.) 291:339–353, 2001. © 2001 Wiley-Liss, Inc. The agamid lizard genus Ctenophorus provides ecological categories based on whether species abundant opportunity for a molecular phylogenetic shelter in rocks, burrows, or vegetation. Eight spe- study of speciation and ecological diversification. cies of Ctenophorus are associated with rocks: C. Agamid lizards show a marked radiation in Aus- caudicinctus, C. decresii, C. fionni, C.
    [Show full text]