2012 Program

Total Page:16

File Type:pdf, Size:1020Kb

2012 Program Abstracts http://www.isce2012.lt 2 Contents Meeting Overview ......................................................................................................... 4 Program ........................................................................................................................ 6 Abstracts..................................................................................................................... 18 Silver Medal Lecture ................................................................................................... 19 Silverstein-Simeone Medal Lecture ............................................................................ 21 Plenary talks ............................................................................................................... 23 Oral Presentations ...................................................................................................... 29 Symposium 1: Plant – Animal – Animal Interactions .................................................. 30 Symposium 2: Chemical Ecology Meets Evolutionary and Molecular Biology ............ 47 Symposium 3. Biosynthesis and Chemistry of Natural Products ................................ 82 Symposium 4. Chemical Ecology of Microorganisms ................................................. 99 Symposium 5. Chemical Ecology of Vertebrates ...................................................... 110 Symposium 7. Climate Change, Invasive/Alien Species and Chemical Ecology ...... 117 Symposium 8. Applied Chemical Ecology ................................................................ 124 Poster Session ......................................................................................................... 145 Symposium 1: Plant – Animal – Animal Interactions ................................................ 146 Symposium 2: Chemical Ecology Meets Evolutionary and Molecular Biology .......... 172 Symposium 3. Biosynthesis and Chemistry of Natural Products .............................. 181 Symposium 4. Chemical Ecology of Microorganisms ............................................... 201 Symposium 6. Aquatic Chemical Ecology ................................................................ 207 Symposium 7. Climate Change, Invasive/Alien Species and Chemical Ecology ...... 214 Symposium 8. Applied Chemical Ecology ................................................................ 221 Authors index ............................................................................................................ 246 3 Meeting Overview 4 Sunday 22nd July Monday 23rd July Tuesday 24th July Wednesday 25th July Thursday 26th July 08:30 – 09:00 Welcome-Registration Welcome-Registration Welcome-Registration Welcome-Registration Plenary Plenary Plenary Silverstein-Simeone Award 09:00 – 10:00 Francke W Pickett J Löfstedt C Lecture: Kubanek J 10:00 – 10:30 Coffe break Coffe break Coffe break Coffe break Keynote Keynote Keynote Keynote Keynote Keynote 10:30 – 11:00 speaker speaker speaker Oral Oral speaker speaker speaker Symposium 1 Symposium 2 Symposium 3 presentations presentations Symposium 8 Symposium 2 Symposium 8 Oral Oral Oral Symposium 7 Symposium 5 Oral Oral Oral 11:00 – 12:00 presentations presentations presentations presentations presentations presentations symposium 1 symposium 2 symposium 3 Symposium 8 Symposium 2 Symposium 8 12:00 – 14:00 Lunch Lunch lunch Lunch Keynote Keynote Keynote Keynote Keynote Keynote 14:00 – 14:30 speaker speaker speaker speaker speaker speaker Symposium 1 Symposium 2 Symposium 3 Symposium 4 Symposium 2 Symposium 8 Oral 14:30 – 15:30 ISCE Oral Oral Oral Oral Oral presentations Executive presentations presentations presentations presentations presentations Symposium 8 Welcome- Committee Symposium 1 Symposium 2 Symposium 3 Symposium 4 Symposium 2 Keynote Registration 15:30 – 16:00 Meeting speaker Free afternoon Symposium 8 16:00 – 16:30 Coffe break Coffe break or Coffe break Keynote Excursion 16:30 – 17:00 Oral Oral Oral speaker Oral Oral presentations presentations presentations Symposium 4 presentations presentations Symposium 1 Symposium 2 Symposium 3 Oral Symposium 2 Symposium 8 17:00 – 17:30 Opening Ceremony presentations Symposium 4 Business meeting and Closing 17:30 – 18:00 Silver Medal Award Poster session Poster session remarks Conference: Baker TC 18:00 – 18:30 (odd numbered posters) (even numbered posters) 18:30 – 19:00 19:00 – 19:30 Panoramic tour of Vilnius Journal of Chemical Ecology 19:30 – 23:00 including Welcome Cocktail Meeting Gala dinner Symposium 1 - Plant-Animal-Animal Interactions Symposium 5 - Chemical Ecology of Vertebrates Symposium 2 - Chemical Ecology Meets Evolutionary and Molecular Biology Symposium 6 - Aquatic Chemical Ecology Symposium 3 - Biosynthesis and Chemistry of Natural Products Symposium 7 - Climate Change, Invasive/Alien Species and Chemical Ecology Symposium 4 - Chemical Ecology of Microorganisms Symposium 8 - Applied Chemical Ecology Program Sunday 22nd July 14:00 Welcome-Registration ISCE Executive Committee Meeting – Conference Centre Hall (Committee members only) 17:00 Theta Hall 17:00 Opening Ceremony – Alfa Hall 17:30 Silver Medal Lecture Alfa Hall 17:30 BAKER TC – 18:30 Everything‟s In Flux: a Neuroethological Journey 19:00 – Panoramic tour of Vilnius including Welcome Cocktail 1 23:00 1 For the Panoramic Tour of Vilnius including Welcome Reception the pick up and drop off point for participants is the Main Conference Hotel - Radisson BLU Lietuva. All participants staying at the other hotels are requested to walk to Radisson BLU Lietuva Hotel. 19.00 - Departure from Main Meeting Hotel Radisson BLU Lietuva 19.00 - 19.30 Panoramic tour of Vilnius 20.00 - 22.30 Welcome Reception at Entertainment Center Belmontas 22.30 - Departure back to Main Meeting Hotel Radisson BLU Lietuva 7 Monday 23rd July 8:30 – Welcome-Registration 9:00 Conference Centre Hall Plenary talk 9:00 Alfa Hall – 10:00 FRANCKE W, The Pheromone Phenomenon 10:00 – Coffe break 10:30 Conference Centre Hall S1: Plant – Animal – Animal Interactions S2: Chemical Ecology Meets Alfa Hall Evolutionary and Molecular Biology Zeta Hall Chair morning session: Hilker M Chair morning session: Wei Xu & Leal WS Keynote speaker Keynote speaker 10:30 BURSE A LEAL WS – Identification of transport proteins implicated Moth sex pheromone receptors and 11:00 in the sequestration of plant derived deceitful parapheromones metabolites by using RNAi in juvenile leaf beetles 11:00 SHAHEED M WEI XU – Local distribution of epicuticular wax A sugar gustatory receptor identified from 11:15 compounds on the leaf surface of Populus the foregut of cotton bollworm Helicoverpa trichocarpa. armigera 11:15 ALBRECTSEN B DAN-DAN ZHANG – Defence chemicals in aspen and associated Characterization of pheromone receptor 11:30 community structures genes in the turnip moth, Agrotis segetum 11:30 MORIN S BÖRÖCZKY K – Asymmetric adaptation to indolic- and Acuity of the peripheral olfactory system is 11:45 aliphatic-glucosinolates in the B and Q mediated by antennal grooming sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae) 11:45 ATAIDE L MCNEIL JN – Herbivore-induced or suppressed plant The chemical ecology of the Pacific beetle 12:00 jasmonate-defenses affect the foraging cockroach, Diploptera punctata strategy of a predator 12:00 – Lunch 14:00 Riverside Restaurant 8 Monday 23rd July S1: Plant – Animal – Animal Interactions S2: Chemical Ecology Meets Alfa Hall Evolutionary and Molecular Biology Zeta Hall Chair afternoon session: Steppuhn A Chair afternoon session: Carde R Keynote speaker UNBEHEND M 14:00 Speciation in progress: pheromonal – DÖTTERL S divergence between the two strains of 14:15 Private chemical communication in the oil- Spodopterda frugiperda (Lepidoptera: flower oil-bee pollination system and how Noctuidae) Ceropegia trap flowers deceive OTTE T 14:15 kleptoparasitic flies Looking for a similar partner: Host plant – species rather than geographic isolation 14:30 promotes sexual isolation of herbivorous insects 14.30 VANDERPLANCK M HARARI AR – Evolution of host-plant interactions in The role of female moth sex pheromone in 14.45 specialist bees sexual selection 14.45 REIFENRATH K BENTO JMS – Why do ants collect diaspores? Pheromone and molecular characterization 15.00 of Brazilian populations of the fall armyworm Spodoptera frugiperda 15. 00 HEE AKW STEIGER S – Ethyl vanillate confers mating advantage in Social environment determines degree of 15.15 male Oriental fruit fly chemical signalling 15.15 SAVARIT F HANUS R – 15.30 Differential responses to larval chemicals as Readiness of Termite Workers for Suicidal a function of experimental context in ants Chemical Defense Increases with Age 15.30 FISCHER C BRAMER C – Ant-aphid mutualism - Implication of Evolution of cardenolide sequestration and 15.45 honeydew microflora resistance in lygaeid bugs 15.45 MÄNTYLÄ E DOBLER S – Can birches treated with methyl jasmonate Convergent evolution of tolerance to 16.00 attract insectivorous birds in the nature? cardenolides - leaf beetles evolved different tricks 16.00 – Coffe break 16.30 Conference Centre Hall 9 Monday 23rd July S1: Plant – Animal – Animal Interactions S2: Chemical Ecology Meets Alfa Hall Evolutionary and Molecular Biology Zeta Hall Chair late afternoon session: McNeil J Chair late afternoon session: Leal WS 16.30 MARTINS CBC ALLISON JD – Volatile Organic Compounds of Eucalyptus Molecular Evidence of Facultative 16.45 benthamii before and after herbivory by Intraguild Predation by Larval Thaumastocoris peregrinus (Heteroptera,
Recommended publications
  • Mosquito Survey Reveals the First Record of Aedes (Diptera: Culicidae) Species in Urban Area, Annaba District, Northeastern Algeria
    Online ISSN: 2299-9884 Polish Journal of Entomology 90(1): 14–26 (2021) DOI: 10.5604/01.3001.0014.8065 Mosquito survey reveals the first record of Aedes (Diptera: Culicidae) species in urban area, Annaba district, Northeastern Algeria Djamel Eddine Rachid Arroussi1* , Ali Bouaziz2 , Hamid Boudjelida1 1 Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, University Badji Mokhtar Annaba, Algeria. 2 Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University Souk Ahras, Algeria. * Correspondending author: [email protected] Abstract: The diversity, distribution and ecology of mosquitoes, especially arbovirus vectors are important indices for arthropod-borne diseases control. The mosquito larvae were collected in different habitats in four sites of Annaba district, Algeria, during the period of March 2018 to February 2019 and the properties of larval habitats were recorded for each site. The systematic study revealed the presence of 8 species belonging to 4 genera; including Culex pipiens (Linnaeus, 1758), Culex modestus (Ficalbi, 1889), Culex theileri (Theobald, 1903), Culiseta longiareolata (Macquart, 1838), Anopheles labranchiae (Falleroni, 1926), Anopheles claviger (Meigen, 1804), Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894). Among the species, C. pipiens presented the highest species abundance (RA %) (55.23%) followed by C. longiareolata (20.21%). The Aedes species are recorded for the first time in the study urban area. Variation of diversity in different sites depends on the type of breeding habitat. These results provided important information on species diversity, distribution and factors associated with breeding habitats. They could be used for the mosquito control and to prevent the spread of mosquito-borne diseases to the population of the region.
    [Show full text]
  • Lubber Grasshoppers, Romalea Microptera (Beauvois), Orient to Plant Odors in a Wind Tunnel
    J. B. HELMS, C. M. BOOTH, J. RIVERA, J. A. SIEGLER,Journal S. WUELLNER,of Orthoptera D. W. Research WHITMAN 2003,12(2): 135-140135 Lubber grasshoppers, Romalea microptera (Beauvois), orient to plant odors in a wind tunnel JEFF B. HELMS, CARRIE M. BOOTH, JESSICA RIVERA, JASON A. SIEGLER, SHANNON WUELLNER, AND DOUGLAS W. WHITMAN 4120 Department of Biological Sciences, Illinois State University, Normal, IL 61790. E-mail: [email protected] Abstract We tested the response of individual adult lubber grasshoppers in a wind tion, palpation, and biting often increase in the presence of food tunnel to the odors of 3 plant species and to water vapor. Grasshoppers moved odors (Kennedy & Moorhouse 1969, Mordue 1979, Chapman upwind to the odors of fresh-mashed narcissus and mashed Romaine lettuce, but not to water vapor, or in the absence of food odor. Males and females 1988, Chapman et al. 1988). Grasshoppers will also retreat from showed similar responses. Upwind movement tended to increase with the the odors of deterrent plants or chemicals (Kennedy & Moorhouse length of starvation (24, 48, or 72 h). The lack of upwind movement to water 1969, Chapman 1974). However, the most convincing evidence vapor implies that orientation toward the mashed plants was not simply an that grasshoppers use olfaction in food search comes from wind orientation to water vapor. These results support a growing data base that tunnel and olfactometer experiments, showing that grasshoppers suggests that grasshoppers can use olfaction when foraging in the wild. can orient upwind in response to food odors. To date, 3 grass- hopper species, Schistocerca gregaria, S.
    [Show full text]
  • Identification Key for Mosquito Species
    ‘Reverse’ identification key for mosquito species More and more people are getting involved in the surveillance of invasive mosquito species Species name used Synonyms Common name in the EU/EEA, not just professionals with formal training in entomology. There are many in the key taxonomic keys available for identifying mosquitoes of medical and veterinary importance, but they are almost all designed for professionally trained entomologists. Aedes aegypti Stegomyia aegypti Yellow fever mosquito The current identification key aims to provide non-specialists with a simple mosquito recog- Aedes albopictus Stegomyia albopicta Tiger mosquito nition tool for distinguishing between invasive mosquito species and native ones. On the Hulecoeteomyia japonica Asian bush or rock pool Aedes japonicus japonicus ‘female’ illustration page (p. 4) you can select the species that best resembles the specimen. On japonica mosquito the species-specific pages you will find additional information on those species that can easily be confused with that selected, so you can check these additional pages as well. Aedes koreicus Hulecoeteomyia koreica American Eastern tree hole Aedes triseriatus Ochlerotatus triseriatus This key provides the non-specialist with reference material to help recognise an invasive mosquito mosquito species and gives details on the morphology (in the species-specific pages) to help with verification and the compiling of a final list of candidates. The key displays six invasive Aedes atropalpus Georgecraigius atropalpus American rock pool mosquito mosquito species that are present in the EU/EEA or have been intercepted in the past. It also contains nine native species. The native species have been selected based on their morpho- Aedes cretinus Stegomyia cretina logical similarity with the invasive species, the likelihood of encountering them, whether they Aedes geniculatus Dahliana geniculata bite humans and how common they are.
    [Show full text]
  • New Species of Hammerschmidtiella Chitwood, 1932, and Blattophila
    Zootaxa 4226 (3): 429–441 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4226.3.6 http://zoobank.org/urn:lsid:zoobank.org:pub:77877607-ECE7-455E-A76C-353B16F92296 New species of Hammerschmidtiella Chitwood, 1932, and Blattophila Cobb, 1920, and new geographical records for Severianoia annamensis Van Luc & Spiridonov, 1993 (Nematoda: Oxyurida: Thelastomatoidea) from Cockroaches (Insecta: Blattaria) in Ohio and Florida, U.S.A. RAMON A. CARRENO Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, 43015, USA. E-mail: [email protected] Abstract Two new species of thelastomatid nematodes parasitic in the hindgut of cockroaches are described. Hammerschmidtiella keeneyi n. sp. is described from a laboratory colony of Diploptera punctata (Eschscholtz, 1822) from a facility in Ohio, U. S. A. This species is characterized by having females with a short tail and males smaller than those described from other species. The new species also differs from others in the genus by a number of differing measurements that indicate a distinct identity, including esophageal, tail, and egg lengths as well as the relative position of the excretory pore. Blat- tophila peregrinata n. sp. is described from Periplaneta australasiae (Fabricius, 1775) and Pycnoscelus surinamensis (Linnaeus, 1758) in a greenhouse from Ohio, U.S.A. and from wild P. surinamensis in southern Florida, U.S.A. This spe- cies differs from others in the genus by having a posteriorly directed vagina, vulva in the anterior third of the body, no lateral alae in females, and eggs with an operculum.
    [Show full text]
  • Abatement Patterns of Predation Risk in an Insect Herbivore Jörg G
    Predator hunting mode and host plant quality shape attack- abatement patterns of predation risk in an insect herbivore Jörg G. Stephan,1,† Matthew Low,1 Johan A. Stenberg,2 and Christer Björkman1 1Department of Ecology, Swedish University of Agricultural Sciences, PO Box 7044, SE-75007 Uppsala, Sweden 2Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-23053 Alnarp, Sweden Citation: Stephan, J. G., M. Low, J. A. Stenberg, and C. Björkman. 2016. Predator hunting mode and host plant quality shape attack- abatement patterns of predation risk in an insect herbivore. Ecosphere 7(11):e01541. 10.1002/ecs2.1541 Abstract. Group formation reduces individual predation risk when the proportion of prey taken per predator encounter declines faster than the increase in group encounter rate (attack-abatement). Despite attack- abatement being an important component of group formation ecology, several key aspects have not been empirically studied, that is, interactions with the hunting mode of the predator and how these relationships are modified by local habitat quality. In 79 cage trials, we examined individual egg predation risk in different- sized egg clutches from the blue willow beetle Phratora vulgatissima for two predators with different hunting modes (consumption of full group [Orthotylus marginalis] vs. part group [Anthocoris nemorum]). Because these predators also take nutrients from plant sap, we could examine how the quality of alternative food sources (high- vs. low- quality host plant sap) influenced attack-abatement patterns in the presence of different hunting strategies. For the O. marginalis predator, individual egg predation risk was largely independent of group size.
    [Show full text]
  • Using Odour Traps for Population Monitoring and Dispersal Analysis of the Threatened Saproxylic Beetles Osmoderma Eremita and Elater Ferrugineus in Central Italy
    J Insect Conserv (2014) 18:801–813 DOI 10.1007/s10841-014-9687-8 ORIGINAL PAPER Using odour traps for population monitoring and dispersal analysis of the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus in central Italy Agnese Zauli • Stefano Chiari • Erik Hedenstro¨m • Glenn P. Svensson • Giuseppe M. Carpaneto Received: 7 March 2014 / Accepted: 8 August 2014 / Published online: 17 August 2014 Ó Springer International Publishing Switzerland 2014 Abstract Pheromone-based monitoring could be a very lure compared to racemic c-decalactone in detecting its efficient method to assess the conservation status of rare presence. The population size at the two sites were esti- and elusive insect species, but there are still few studies for mated to 520 and 1,369 individuals, respectively. Our which pheromone traps have been used to obtain infor- model suggests a sampling effort of ten traps checked for mation on presence, abundance, phenology and movements 3 days being sufficient to detect the presence of E. ferru- of such insects. We performed a mark-recapture study of gineus at a given site. The distribution of dispersal dis- two threatened saproxylic beetles, Osmoderma eremita tances for the predator was best described by the negative (Scarabaeidae) and its predator Elater ferrugineus (Ela- exponential function with 1 % of the individuals dispersing teridae), in two beech forests of central Italy using phero- farther than 1,600 m from their natal site. In contrast to mone baited window traps and unbaited pitfall traps. Two studies on these beetles in Northern Europe, the activity lures were used: (1) the male-produced sex pheromone of pattern of the two beetle species was not influenced by O.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Four Year Study Involving Wildlife Monitoring of Commercial SRC Plantations Planted on Arable Land and Arable Control Plots
    Four year study involving wildlife monitoring of commercial SRC plantations planted on arable land and arable control plots DTI TECHNOLOGY PROGRAMME: NEW AND RENEWABLE ENERGY CONTRACT NUMBER B/U1/00627/00/00 URN NUMBER 04/961 PROJECT REPORT The DTI drives our ambition of ’prosperity for all' by working to create the best environment for business success in the UK. We help people and companies become more productive by promoting enterprise, innovation and creativity. We champion UK business at home and abroad. We invest heavily in world-class science and technology. We protect the rights of working people and consumers. And we stand up for fair and open markets in the UK, Europe and the world. ii ARBRE MONITORING - ECOLOGY OF SHORT ROTATION COPPICE B/U1/00627/REP DTI/PUB URN 04/961 Contractor The Game Conservancy Trust (GCT) Sub-Contractor The Central Science Laboratory (CSL) Prepared by M.D.Cunningham (GCT) J.D. Bishop (CSL) H.V.McKay (CSL) R.B.Sage (GCT) The work described in this report was carried out under contract as part of the DTI Technology Programme: New and Renewable Energy. The views and judgements expressed in this report are those of the contractor and do not necessarily reflect those of the DTI. First published 2004 © Crown Copyright 2004 ii i EXECUTIVE SUMMARY Introduction This project, funded by the Department of Trade and Industry (DTI) through Future Energy Solutions, was conducted over a four-year period starting in 2000. The project involved wildlife monitoring within Short Rotation Coppice (SRC) plots managed commercially for the project ARBRE (Arable Biomass Renewable Energy) throughout Yorkshire.
    [Show full text]
  • Durrell D. Kapan
    Durrell D. Kapan Biographical United States Citizen details Born 7 August 1965, San Francisco, California Married, spouse: Shannon N. Bennett, one child Anika Ku’ulei Kapan Current Assistant Researcher, Center for Conservation and Research Training, Pacific position Biosciences Research Center, University of Hawaii, Manoa Present address: Honolulu, HI 96822 Email: Center for Conservation Research and Training durrell AT hawaii DOT edu 3050 Maile Way, Gilmore 406 Ph.D. Thesis “Divergent natural selection and Müllerian mimicry in polymorphic Education Heliconius cydno (Lepidoptera: Nymphalidae).” Supervised by Prof. Dolph Schluter, Department of Zoology, University of British Columbia, Vancouver, BC, Canada. April 1998. B.A. Zoology. Department of Zoology, University of California, Berkeley, California, U.S.A. May 1988. Career May 2006 – present. Assistant Researcher. Center for Conservation and Research Training, Pacific Biosciences Research Center, University of Hawaii, Manoa under Director Dr. Ken Kaneshiro. Currently investigating Evolutionary genetics and gene-expression of local adaptation in rare Hawaiian Drosophila in collaboration with Cam Muir from UH Hilo (UH NSF EPSCoR REAP award) and working to develop projects on the evolutionary ecology of infectious disease (Dengue virus, Leptospirosis) with researchers Dr. Shannon Bennett and Dr. Bruce Wilcox of the Asia Pacific Institute of Tropical Medicine and Infectious Disease, University of Hawaii, School of Medicine. May 2006 – present. IGERT: Integrative Training in Ecology, Conservation and Pathogen Biology Core Curriculum Team Leader. Pacific Biosciences Research Center & Asia Pacific Institute of Emerging Infectious Diseases University of Hawaii, Manoa. I am presently teaching the core-curriculum I designed for the recently awarded Integrative Training in Ecology, Conservation and Pathogen Biology program (NSF-IGERT # 0549514).
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Evaluating the Spatial Distribution of Dociostaurus Maroccanus Egg Pods Using Different Sampling Designs
    Bulletin of Insectology 65 (2): 223-231, 2012 ISSN 1721-8861 Evaluating the spatial distribution of Dociostaurus maroccanus egg pods using different sampling designs 1 2 3 Ferdinando BALDACCHINO , Andrea SCIARRETTA , Rocco ADDANTE 1Department UTTRI-BIOTEC – ENEA C.R. Trisaia, Rotondella, Italy 2Department of Animal, Vegetal and Environmental Science - University of Molise, Campobasso, Italy 3Department of Agricultural and Environmental Biology and Chemistry - University of Bari, Italy Abstract In its gregarious phase the locust Dociostaurus maroccanus (Thunberg) (Orthoptera Acrididae) has periodically caused significant yield losses in many Mediterranean and Asian countries, and alarm in the general public. Population outbreaks in recent years have frequently required the application of control measures, based on those that have low environmental impact, which are only possible with a sound knowledge of locust bio-ethology and ecology. Our research was aimed at studying the spatial distribution of D. maroccanus egg pods in two Apulian egg bed areas in southern Italy, thus contributing to the rationalization of control methods. The distribution of D. maroccanus egg pods was investigated using a geostatistical approach. Three sampling designs (called A, B and C), characterized by different mesh and clod sizes, were compared to evaluate their effectiveness and afforda- bility. In both egg bed areas, the variogram models were asymptotic with a small nugget effect, and indicated an aggregated dis- tribution of egg pods. Contour maps showed that design A, based on a larger mesh and clod size, was characterized by few hot spots and an extended zone of “low density” egg pods, while design B, involving a smaller mesh and clod size, showed a more structured distribution, with various hot spots alternating with zero level zones.
    [Show full text]
  • Estudo Comparativo Da Fauna De Comensais Nos Formigueiros De Três
    Bol. Mus. Para. Emílio Goeldi. Cienc. Nat., Belém, v. 15, n. 2, p. 377-391, maio-ago. 2020 Estudo comparativo da fauna de comensais nos formigueiros de três espécies de grande tamanho da mirmecofauna brasileira (Hymenoptera: Formicidae) Comparative study of the fauna of commensals in the nests of three large species of Brazilian ants (Hymenoptera: Formicidae) Ivone de Jesus Sena MoreiraI | Charles Darwin Ferreira CruzI | Anny Kelly Cantanhede FernandesI | Jacques Hubert Charles DelabieI, II | Gabriela Castaño-MenesesIII | Cléa dos Santos Ferreira MarianoI IUniversidade Estadual de Santa Cruz. Ilhéus, Bahia, Brasil IICentro de Pesquisas do Cacau. Ilhéus, Bahia, Brasil IIIUniversidad Nacional Autónoma de México. Querétaro, México Resumo: O ambiente interno de um formigueiro mantém condições homeostáticas, permitindo a sobrevivência de outros animais, além de a colônia ser um lugar complexo e com um sistema bem estruturado de defesa. Ninhos de formigas se tornam adequados para a sobrevivência e a reprodução de inúmeros organismos, que podem os utilizar apenas como abrigo ou até mesmo se alimentar dos restos das formigas. Os substratos de formigueiros de Dinoponera lucida, Dinoponera gigantea (Ponerinae) e Paraponera clavata (Paraponerinae) foram coletados nos municípios de Belmonte, Bahia, e Caxias, Maranhão. Foram, assim, amostrados três ninhos de D. lucida, quatro de D. gigantea e um de P. clavata. Os animais de maior tamanho foram coletados diretamente no substrato, colocado, em seguida, em funis de Berlese durante sete dias para extração da mesofauna. Nossos dados mostraram que existe maior diversidade de invertebrados associados ao ninho de P. clavata do que aos de D. lucida e D. gigantea, provavelmente por este possuir volume maior e oferecer diversidade maior de locais para reprodução e nidificação de numerosas pequenas espécies animais.
    [Show full text]