The Unix System
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Glibc and System Calls Documentation Release 1.0
Glibc and System Calls Documentation Release 1.0 Rishi Agrawal <[email protected]> Dec 28, 2017 Contents 1 Introduction 1 1.1 Acknowledgements...........................................1 2 Basics of a Linux System 3 2.1 Introduction...............................................3 2.2 Programs and Compilation........................................3 2.3 Libraries.................................................7 2.4 System Calls...............................................7 2.5 Kernel.................................................. 10 2.6 Conclusion................................................ 10 2.7 References................................................ 11 3 Working with glibc 13 3.1 Introduction............................................... 13 3.2 Why this chapter............................................. 13 3.3 What is glibc .............................................. 13 3.4 Download and extract glibc ...................................... 14 3.5 Walkthrough glibc ........................................... 14 3.6 Reading some functions of glibc ................................... 17 3.7 Compiling and installing glibc .................................... 18 3.8 Using new glibc ............................................ 21 3.9 Conclusion................................................ 23 4 System Calls On x86_64 from User Space 25 4.1 Setting Up Arguements......................................... 25 4.2 Calling the System Call......................................... 27 4.3 Retrieving the Return Value...................................... -
The Linux Kernel Module Programming Guide
The Linux Kernel Module Programming Guide Peter Jay Salzman Michael Burian Ori Pomerantz Copyright © 2001 Peter Jay Salzman 2007−05−18 ver 2.6.4 The Linux Kernel Module Programming Guide is a free book; you may reproduce and/or modify it under the terms of the Open Software License, version 1.1. You can obtain a copy of this license at http://opensource.org/licenses/osl.php. This book is distributed in the hope it will be useful, but without any warranty, without even the implied warranty of merchantability or fitness for a particular purpose. The author encourages wide distribution of this book for personal or commercial use, provided the above copyright notice remains intact and the method adheres to the provisions of the Open Software License. In summary, you may copy and distribute this book free of charge or for a profit. No explicit permission is required from the author for reproduction of this book in any medium, physical or electronic. Derivative works and translations of this document must be placed under the Open Software License, and the original copyright notice must remain intact. If you have contributed new material to this book, you must make the material and source code available for your revisions. Please make revisions and updates available directly to the document maintainer, Peter Jay Salzman <[email protected]>. This will allow for the merging of updates and provide consistent revisions to the Linux community. If you publish or distribute this book commercially, donations, royalties, and/or printed copies are greatly appreciated by the author and the Linux Documentation Project (LDP). -
ENCE360: Operating Systems Course Outline
ENCE360: Operating Systems Course Outline This course is an introduction to operating systems: Operating systems are a special type of software that sits between the hardware and other software applications. They function to manage various computer resources, and to provide a convenient interface to the users. This course emphasises system calls (which provide an interface between the operating system and applications) and examples of operating systems. Lecture Topic Reading Laboratory Topic Introduction to Operating Systems MOS: Ch 1 C Revision Processes and Threads MOS: Ch 2 Scheduling (processes/threads) Threads, Processes Inter-process Communicatioin (pipes/sockets) MOS: pgs 43-45, 733-734 Concurrency Pipes, Files, Signals Input/Output MOS: Ch 5 Files and Directories MOS: Ch.4 Sockets LAB TEST 1 MID SEMESTER BREAK Memory Management - Caches MOS: Ch 3, 7.8 labs on OS examples, including Memory Management - Virtual Memory MOS: Sect 3.3 Xv6 (simple teaching OS) Virtualisation Distributed Systems Operating System Examples include: Windows, Linux, Android, macOS/iOS, real-time operating systems Assignment due Staff for Operating Systems Course Supervisor & Lecturer Dr Richard Green [email protected] Lecturer: Prof Mark Claypool [email protected] Tutor Gordon Beintmann [email protected] Laboratories There are two Labs begin the first week of term scheduled lab streams. For lab times and locations, check www.canterbury.ac.nz/tt All labs will be held in the department Self-allocate your lab via labs in the Erskine https://mytimetable.canterbury.ac.nz building. /aplus/apstudent Each student should If you hit any snags, email attend one 2-hour [email protected] lab each week. -
Version 7.8-Systemd
Linux From Scratch Version 7.8-systemd Created by Gerard Beekmans Edited by Douglas R. Reno Linux From Scratch: Version 7.8-systemd by Created by Gerard Beekmans and Edited by Douglas R. Reno Copyright © 1999-2015 Gerard Beekmans Copyright © 1999-2015, Gerard Beekmans All rights reserved. This book is licensed under a Creative Commons License. Computer instructions may be extracted from the book under the MIT License. Linux® is a registered trademark of Linus Torvalds. Linux From Scratch - Version 7.8-systemd Table of Contents Preface .......................................................................................................................................................................... vii i. Foreword ............................................................................................................................................................. vii ii. Audience ............................................................................................................................................................ vii iii. LFS Target Architectures ................................................................................................................................ viii iv. LFS and Standards ............................................................................................................................................ ix v. Rationale for Packages in the Book .................................................................................................................... x vi. Prerequisites -
System Calls
System Calls What are they? ● Standard interface to allow the kernel to safely handle user requests – Read from hardware – Spawn a new process – Get current time – Create shared memory ● Message passing technique between – OS kernel (server) – User (client) Executing System Calls ● User program issues call ● Core kernel looks up call in syscall table ● Kernel module handles syscall action ● Module returns result of system call ● Core kernel forwards result to user Module is not Loaded... ● User program issues call ● Core kernel looks up call in syscall table ● Kernel module isn't loaded to handle action ● ... ● Where does call go? System Call Wrappers ● Wrapper calls system call if loaded – Otherwise returns an error ● Needs to be in a separate location so that the function can actually be called – Uses function pointer to point to kernel module implementation Adding System Calls ● You'll need to add and implement: – int start_elevator(void); – int issue_request(int, int, int); – int stop_elevator(void); ● As an example, let's add a call to printk an argument passed in: – int test_call(int); Adding System Calls ● Files to add (project files): – /usr/src/test_kernel/hello_world/test_call.c – /usr/src/test_kernel/hello_world/hello.c – /usr/src/test_kernel/hello_world/Makefile ● Files to modify (core kernel): – /usr/src/test_kernel/arch/x86/entry/syscalls/syscall_64.tbl – /usr/src/test_kernel/include/linux/syscalls.h – /usr/src/test_kernel/Makefile hello_world/test_call.c ● #include <linux/linkage.h> ● #include <linux/kernel.h> ● #include -
Reference Guide
Reference Guide Scyld ClusterWare Release 5.10.1-5101g0000 December 18, 2013 Reference Guide: Scyld ClusterWare Release 5.10.1-5101g0000; December 18, 2013 Revised Edition Published December 18, 2013 Copyright © 1999 - 2013 Penguin Computing, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the prior written permission of Penguin Computing, Inc.. The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source). Use beyond license provisions is a violation of worldwide intellectual property laws, treaties, and conventions. Scyld ClusterWare, the Highly Scyld logo, and the Penguin Computing logo are trademarks of Penguin Computing, Inc.. Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries. Infiniband is a trademark of the InfiniBand Trade Association. Linux is a registered trademark of Linus Torvalds. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. in the United States and other countries. All other trademarks and copyrights referred to are the property of their respective owners. Table of Contents Preface .....................................................................................................................................................................................v -
Certified Systems Matrix 12C Release 3 (12.3.2.0.0) E59961-07 July 2016
Oracle® Enterprise Manager Ops Center Certified Systems Matrix 12c Release 3 (12.3.2.0.0) E59961-07 July 2016 This guide lists the certified systems for Oracle Enterprise Manager Ops Center. The following topics are covered in this document: · Base Operating Systems · Base Browsers · Base Databases · Base Oracle Clusterware for High Availability · Target Operating Systems · Target Servers · Target Non-Server Hardware · Target Virtualization · Target Engineered Systems · Supported Technology Base Operating Systems This section describes the supported operating systems for the Enterprise Controller and Proxy Controller. Enterprise Controller Operating Systems This table lists the supported operating systems for the Enterprise Controller. Table 1-1 Enterprise Controller Operating Systems Enterprise Controller Operating Systems Certification Platform Version Minimum Update Level and Comments Oracle Solaris NA NA Oracle Solaris SPARC 10 Embedded Database: 1/13 Customer-Managed Database: 9/10 through 1/13 1 Table 1-1 (Cont.) Enterprise Controller Operating Systems Certification Platform Version Minimum Update Level and Comments Oracle Solaris SPARC 11 Embedded Database: 11.1 SRU 14.5 through 11.3 Customer-Managed Database: 11.0 SRU 10 through 11.3 Oracle Solaris 11 Express is not supported. Oracle Solaris SPARC 10 Embedded Database: 1/13 Local Zone Customer-Managed Database: 9/10 through 1/13 Oracle Solaris SPARC 11 Embedded Database: 11.1 SRU 14.5 through Local Zone 11.3 Customer-Managed Database: 11.0 SRU 10 through 11.3 Oracle Solaris 11 Express is not supported. Oracle VM Server for 10 Embedded Database: 1/13 SPARC Customer-Managed Database: 9/10 through 1/13 Oracle VM Server for 11 Embedded Database: 11.1 SRU 14.5 through SPARC 11.3 Customer-Managed Database: 11.0 SRU 10 through 11.3 Oracle Solaris 11 Express is not supported. -
Oracle Solaris Security for Developers Guide • September 2010 Contents
Oracle® Solaris Security for Developers Guide Part No: 816–4863–16 September 2010 Copyright © 2004, 2010, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms setforth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065. -
Demarinis Kent Williams-King Di Jin Rodrigo Fonseca Vasileios P
sysfilter: Automated System Call Filtering for Commodity Software Nicholas DeMarinis Kent Williams-King Di Jin Rodrigo Fonseca Vasileios P. Kemerlis Department of Computer Science Brown University Abstract This constant stream of additional functionality integrated Modern OSes provide a rich set of services to applications, into modern applications, i.e., feature creep, not only has primarily accessible via the system call API, to support the dire effects in terms of security and protection [1, 71], but ever growing functionality of contemporary software. How- also necessitates a rich set of OS services: applications need ever, despite the fact that applications require access to part of to interact with the OS kernel—and, primarily, they do so the system call API (to function properly), OS kernels allow via the system call (syscall) API [52]—in order to perform full and unrestricted use of the entire system call set. This not useful tasks, such as acquiring or releasing memory, spawning only violates the principle of least privilege, but also enables and terminating additional processes and execution threads, attackers to utilize extra OS services, after seizing control communicating with other programs on the same or remote of vulnerable applications, or escalate privileges further via hosts, interacting with the filesystem, and performing I/O and exploiting vulnerabilities in less-stressed kernel interfaces. process introspection. To tackle this problem, we present sysfilter: a binary Indicatively, at the time of writing, the Linux -
Open Directory Administration for Version 10.5 Leopard Second Edition
Mac OS X Server Open Directory Administration For Version 10.5 Leopard Second Edition Apple Inc. © 2008 Apple Inc. All rights reserved. The owner or authorized user of a valid copy of Mac OS X Server software may reproduce this publication for the purpose of learning to use such software. No part of this publication may be reproduced or transmitted for commercial purposes, such as selling copies of this publication or for providing paid-for support services. Every effort has been made to make sure that the information in this manual is correct. Apple Inc., is not responsible for printing or clerical errors. Apple 1 Infinite Loop Cupertino CA 95014-2084 www.apple.com The Apple logo is a trademark of Apple Inc., registered in the U.S. and other countries. Use of the “keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws. Apple, the Apple logo, iCal, iChat, Leopard, Mac, Macintosh, QuickTime, Xgrid, and Xserve are trademarks of Apple Inc., registered in the U.S. and other countries. Finder is a trademark of Apple Inc. Adobe and PostScript are trademarks of Adobe Systems Incorporated. UNIX is a registered trademark of The Open Group. Other company and product names mentioned herein are trademarks of their respective companies. Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these products. -
A Framework for Visual Modular Design of Educational Operating System
A Framework for Visual Modular Design of Educational Operating System Naeem Al-Oudat Communications and Computer Engineering Department, Tafila Technical University, Jordan [email protected] Abstract— Operating systems are a vital part in most • Memory manager. Utilizing the RAM and its computing systems. However, learning basic concepts of extensions in an efficient way is the role of this operating systems are hard for normal students although they component. are necessary and important. State of the art in teaching • File system. The main job of this component is to operating systems depends on studying existing open source operating systems like Linux, hacking teaching operating abstract the way of dealing with data and storing it in systems like Xv6, or using simulators. Difficulties of learning a permanent media as a hard disk. still there in these methods, since they require a great deal of Designing an environment where learners can work and system programming techniques. In this paper, we propose a design the above basic components of an operating system novel direction in learning operating systems that is solely without getting into the complicated details is an urgent need dependent on visually building the operating system. By using in today’s university classes of software systems. This this method, we mitigated the complexity of going into system simplicity should not make the whole process as a programming details. The development platform consists of key simulation/emulation-like design. A good option would be building blocks that a user can drag and drop into a working using pre-programmed components. The learner can select panel to build his own operating system. -
Processes and Job Control
Processes and Job Control Hour 17 PObjectives < Definitions: process, orphan, and zombie < System processes < Process creation < Examining processes: the ps command < Job control: &, nohup, fg, bg, jobs, ( ), and kill < Exit status Copyright © 1998-2002 Delroy A. Brinkerhoff. All Rights Reserved. Hour 17 Unix Slide 1 of 12 Process Also called a job by C and Korn shells PWhen a program or executable file is loaded from disk and started running (i.e., when a command is run), it is called a process vi pid 641 < identified by a unique process ID (PID) number < has an owner vi < private data vi PA program can be loaded more than once pid 895 < creates multiple processes vi < each process has a different PID < each process may have a different owner PPIDs are unique, nonnegative integers < numbers recycle without collisions Hour 17 Unix Slide 2 of 12 System Processes Processes created during system boot P0System kernel < “hand crafted” at boot < called swap in older versions (swaps the CPU between processes) < called sched in newer versions (schedules processes) < creates process 1 P1 init (the parent of all processes except process 0) < general process spawner < begins building locale-related environment < sets or changes the system run-level P2 page daemon (pageout on most systems) P3 file system flusher (fsflush) Hour 17 Unix Slide 3 of 12 Process Life Cycle Overview of creating new processes fork init init pid 467 Pfork creates two identical pid 1 exec processes (parent and child) getty pid 467 Pexec < replaces the process’s instructions