Physiological and Regenerative Plant Traits Explain Vegetation Regeneration Under Different Severity Levels in Mediterranean Fire-Prone Ecosystems
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Phylogenetics, Flow-Cytometry and Pollen Storage in Erica L
Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Phylogenetics, flow-cytometry and pollen storage in Erica L. (Ericaceae). Implications for plant breeding and interspecific crosses. Inaugural-Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Ana Laura Mugrabi de Kuppler aus Buenos Aires Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Referent: Prof. Dr. Jens Léon Korreferent: Prof. Dr. Jaime Fagúndez Korreferent: Prof. Dr. Dietmar Quandt Tag der mündlichen Prüfung: 15.11.2013 Erscheinungsjahr: 2013 A mis flores Rolf y Florian Abstract Abstract With over 840 species Erica L. is one of the largest genera of the Ericaceae, comprising woody perennial plants that occur from Scandinavia to South Africa. According to previous studies, the northern species, present in Europe and the Mediterranean, form a paraphyletic, basal clade, and the southern species, present in South Africa, form a robust monophyletic group. In this work a molecular phylogenetic analysis from European and from Central and South African Erica species was performed using the chloroplast regions: trnL-trnL-trnF and 5´trnK-matK , as well as the nuclear DNA marker ITS, in order i) to state the monophyly of the northern and southern species, ii) to determine the phylogenetic relationships between the species and contrasting them with previous systematic research studies and iii) to compare the results provided from nuclear data and explore possible evolutionary patterns. All species were monophyletic except for the widely spread E. arborea , and E. manipuliflora . The paraphyly of the northern species was also confirmed, but three taxa from Central East Africa were polyphyletic, suggesting different episodes of colonization of this area. -
Phylogeography of a Tertiary Relict Plant, Meconopsis Cambrica (Papaveraceae), Implies the Existence of Northern Refugia for a Temperate Herb
Article (refereed) - postprint Valtueña, Francisco J.; Preston, Chris D.; Kadereit, Joachim W. 2012 Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molecular Ecology, 21 (6). 1423-1437. 10.1111/j.1365- 294X.2012.05473.x Copyright © 2012 Blackwell Publishing Ltd. This version available http://nora.nerc.ac.uk/17105/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at http://onlinelibrary.wiley.com Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1 Phylogeography of a Tertiary relict plant, Meconopsis cambrica 2 (Papaveraceae), implies the existence of northern refugia for a 3 temperate herb 4 Francisco J. Valtueña*†, Chris D. Preston‡ and Joachim W. Kadereit† 5 *Área de Botánica, Facultad deCiencias, Universidad de Extremadura, Avda. de Elvas, s.n. -
Cally Plant List a ACIPHYLLA Horrida
Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’ -
Diversity of Fungal Assemblages in Roots of Ericaceae in Two
Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems Ahlam Hamim, Lucie Miche, Ahmed Douaik, Rachid Mrabet, Ahmed Ouhammou, Robin Duponnois, Mohamed Hafidi To cite this version: Ahlam Hamim, Lucie Miche, Ahmed Douaik, Rachid Mrabet, Ahmed Ouhammou, et al.. Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. Comptes Rendus Biologies, Elsevier Masson, 2017, 340 (4), pp.226-237. 10.1016/j.crvi.2017.02.003. hal- 01681523 HAL Id: hal-01681523 https://hal.archives-ouvertes.fr/hal-01681523 Submitted on 23 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/315062117 Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems Article in Comptes rendus biologies · March 2017 DOI: 10.1016/j.crvi.2017.02.003 CITATIONS READS 0 37 7 authors, including: Ahmed Douaik Rachid Mrabet Institut National de Recherche Agronomique -
Growth and Reproduction in an Alpine Cushion Plant: Astragalus Kentrophyta Var
Great Basin Naturalist Volume 55 Number 2 Article 3 4-21-1995 Growth and reproduction in an alpine cushion plant: Astragalus kentrophyta var. implexus Wayne R. Owen University of California, Davis and White Mountain Research Station, University of California, Las Angeles Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Owen, Wayne R. (1995) "Growth and reproduction in an alpine cushion plant: Astragalus kentrophyta var. implexus," Great Basin Naturalist: Vol. 55 : No. 2 , Article 3. Available at: https://scholarsarchive.byu.edu/gbn/vol55/iss2/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 55(2), © 1995, pp. 117-123 GROWTH AND REPRODUCTION IN AN ALPINE CUSHION PLANT: ASTRAGALUS KENTROPHYTA VAR. IMPLEXUS Wayne R. Owen1 ABSTRACf.-A two-year field experiment was conducted to investigate factors hypothesized to affect the reproduc tive potential ofAstragalus kentrophyta var. implexus and to test the importance oftrade-offs between growth and repro duction in this species. Levels of mineral nutrients, water, herbivory, and competition were manipulated. Seed output R."1d growth of individuals in treatment groups were compared against control plants. Neither water nor mineral nutri ents alone were shown to affect growth or reproduction. Herbivory was shown to be similarly unimportant in affecting growth and reproduction. Competition with other species influenced growth but not reproduction. No significant trade offs between growth and reproduction were detected within years. -
Species: Cytisus Scoparius, C. Striatus
Species: Cytisus scoparius, C. striatus http://www.fs.fed.us/database/feis/plants/shrub/cytspp/all.html SPECIES: Cytisus scoparius, C. striatus Table of Contents Introductory Distribution and occurrence Botanical and ecological characteristics Fire ecology Fire effects Management considerations References INTRODUCTORY AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS Scotch broom Portuguese broom © Br. Alfred Brousseau, Saint Mary's © 2005 Michael L. Charters, Sierra Madre, College CA. AUTHORSHIP AND CITATION: Zouhar, Kris. 2005. Cytisus scoparius, C. striatus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: CYTSCO CYTSTR CYTSPP 1 of 54 9/24/2007 4:15 PM Species: Cytisus scoparius, C. striatus http://www.fs.fed.us/database/feis/plants/shrub/cytspp/all.html SYNONYMS: None NRCS PLANT CODE [141]: CYSC4 CYST7 COMMON NAMES: Scotch broom Portuguese broom English broom scotchbroom striated broom TAXONOMY: The scientific name for Scotch broom is Cytisus scoparius (L.) Link [48,55,57,63,105,112,126,132,147,154,160] and for Portuguese broom is C. striatus (Hill) Rothm. [55,63,132]. Both are in the pea family (Fabaceae). In North America, there are 2 varieties of Scotch broom, distinguished by their flower color: C. scoparius var. scoparius and C. scoparius var. andreanus (Puiss.) Dipp. The former is the more widely distributed variety, and the latter occurs only in California [63]. This review does not distinguish between these varieties. -
Allocation Strategies and Seed Traits Are Hardly Affected by Nitrogen
ARTICLE IN PRESS Perspectives in Plant Ecology, Evolution and Systematics Perspectives in Plant Ecology, Evolution and Systematics 11 (2009) 267–283 www.elsevier.de/ppees RESEARCH ARTICLE Allocation strategies and seed traits are hardly affected by nitrogen supply in 18 species differing in successional status Claire Fortunela,Ã, Cyrille Viollea, Catherine Roumeta, Bruno Buatoisa, Marie-Laure Navasb, Eric Garniera aCNRS, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175), 1919 Route de Mende, 34293 Montpellier Cedex 5, France bMontpellier SupAgro, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175), 1919 Route de Mende, 34293 Montpellier Cedex 5, France Received 9 May 2008; received in revised form 7 April 2009; accepted 8 April 2009 Abstract Species performance depends on ecological strategies, revealed by suites of traits, conferring different relative ecological advantages in different environments. Although current knowledge on plant strategies along successional gradients is derived from studies conducted in situ, actually quantifying these strategies requires disentangling the effects of environmental factors from intrinsic differences between species. Here we tested whether allocation strategies and seed traits differ among successional stages and nitrogen levels. To this aim, we assessed biomass and nitrogen allocations and seed traits variations for 18 species, differing in life history and belonging to three stages of a Mediterranean old-field succession. These species were grown as monocultures in an experimental garden under limiting and non-limiting nitrogen supply. Early successional species allocated allometrically more nitrogen and proportionally more biomass to reproduction, and set more seeds than later successional species. Seed mass increased with successional status and was negatively related to seed number. -
A Global Method for Calculating Plant CSR Ecological Strategies Applied Across Biomes World-Wide
Functional Ecology 2016 doi: 10.1111/1365-2435.12722 A global method for calculating plant CSR ecological strategies applied across biomes world-wide Simon Pierce*,1, Daniel Negreiros2, Bruno E. L. Cerabolini3, Jens Kattge4, Sandra Dıaz5, Michael Kleyer6, Bill Shipley7, Stuart Joseph Wright8, Nadejda A. Soudzilovskaia9, Vladimir G. Onipchenko10, Peter M. van Bodegom9, Cedric Frenette-Dussault7, Evan Weiher11, Bruno X. Pinho12, Johannes H. C. Cornelissen13, John Philip Grime14, Ken Thompson14, Roderick Hunt15, Peter J. Wilson14, Gabriella Buffa16, Oliver C. Nyakunga16,17, Peter B. Reich18,19, Marco Caccianiga20, Federico Mangili20, Roberta M. Ceriani21, Alessandra Luzzaro1, Guido Brusa3, Andrew Siefert22, Newton P. U. Barbosa2, Francis Stuart Chapin III23, William K. Cornwell24, Jingyun Fang25, Geraldo Wilson Fernandez2,26, Eric Garnier27, Soizig Le Stradic28, Josep Penuelas~ 29,30, Felipe P. L. Melo12, Antonio Slaviero16, Marcelo Tabarelli12 and Duccio Tampucci20 1Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133 Milan, Italy; 2Ecologia Evolutiva e Biodiversidade/DBG, ICB/Universidade Federal de Minas Gerais, CP 486, 30161-970 Belo Horizonte, MG, Brazil; 3Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, I-21100 Varese, Italy; 4Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany; 5Instituto Multidisciplinario de Biologıa Vegetal (CONICET-UNC) and FCEFyN, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, -
Unearthing Belowground Bud Banks in Fire-Prone Ecosystems
Unearthing belowground bud banks in fire-prone ecosystems 1 2 3 Author for correspondence: Juli G. Pausas , Byron B. Lamont , Susana Paula , Beatriz Appezzato-da- Juli G. Pausas 4 5 Glo'ria and Alessandra Fidelis Tel: +34 963 424124 1CIDE-CSIC, C. Naquera Km 4.5, Montcada, Valencia 46113, Spain; 2Department of Environment and Agriculture, Curtin Email [email protected] University, PO Box U1987, Perth, WA 6845, Australia; 3ICAEV, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile; 4Depto Ci^encias Biologicas,' Universidade de Sao Paulo, Av P'adua Dias 11., CEP 13418-900, Piracicaba, SP, Brazil; 5Instituto de Bioci^encias, Vegetation Ecology Lab, Universidade Estadual Paulista (UNESP), Av. 24-A 1515, 13506-900 Rio Claro, Brazil Summary To be published in New Phytologist (2018) Despite long-time awareness of the importance of the location of buds in plant biology, research doi: 10.1111/nph.14982 on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Key words: bud bank, fire-prone ecosystems, Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground lignotuber, resprouting, rhizome, xylopodium. provides fitness benefits in fire-prone ecosystems. Thus, in these ecosystems, there is a remarkable diversity of bud-bearing structures. There are at least six locations where belowground buds are stored: roots, root crown, rhizomes, woody burls, fleshy -
October 1961 , Volume 40, Number 4 305
TIIE .A:M:ERICA.N ~GAZINE AMERICAN HORTICULTURAL SOCIETY A union of the Amej'ican HOTticu~tural Society and the AmeTican HOTticultural Council 1600 BLADENSBURG ROAD, NORTHEAST. WASHINGTON 2, D. C. For United Horticulture *** to accumulate, increase, and disseminate horticultural intOTmation B. Y. MORRISON, Editor Directors Terms Expiring 1961 JAMES R. HARLOW, Managing Editor STUART M. ARMSTRONG Maryland Editorial Committee JOH N L. CREECH . Maryland W. H . HODGE, Chairman WILLIAM H. FREDERICK, JR. Delaware JOH N L. CREECH FRANCIS PATTESON-KNIGHT FREDERIC P. LEE Virginia DONALD WYMAN CONRAD B. LINK Massachusetts CURTIS MAY T erms Expiring 1962 FREDERICK G . MEYER FREDERIC P. LEE WILBUR H . YOUNGMAN Maryland HENRY T . SKINNER District of Columbia OfJiceTS GEORGE H. SPALDING California PRESIDENT RICHARD P. WHITE DONAlJD WYMAN Distj'ict of Columbia Jamaica Plain, Massachusetts ANNE WERTSNER WOOD Pennsylvania FIRST VICE· PRESIDENT Ternu Expiring 1963 ALBERT J . IRVING New l'm'k, New York GRETCHEN HARSHBARGER Iowa SECOND VICE-PRESIDENT MARY W. M. HAKES Maryland ANNE WERTSNER W ' OOD FREDERIC HEUTTE Swarthmore, Pennsylvania Virginia W . H. HODGE SECRETARY-TREASURER OLIVE E. WEATHERELL ALBERT J . IRVING Washington, D, C. New York The Ame"ican Horticultural Magazine is the official publication of the American Horticultural Society and is issued four times a year during the quarters commencing with January, April, July and October. It is devoted to the dissemination of knowledge in the science and art of growing ornamental plants, fruits, vegetables, and related subjects. Original papers increasing the historical, varietal, and cultural knowledges of plant materials of economic and aesthetic importance are welcomed and will be published as early as possible. -
Herbivory and Resource Availability Shift Plant Defense and Herbivore Feeding Choice in a Seagrass System
Oecologia (2019) 189:719–732 https://doi.org/10.1007/s00442-019-04364-6 PLANT-MICROBE-ANIMAL INTERACTIONS – ORIGINAL RESEARCH Herbivory and resource availability shift plant defense and herbivore feeding choice in a seagrass system Gema Hernán1,2 · Inés Castejón1 · Jorge Terrados1 · Fiona Tomas1,3 Received: 15 July 2018 / Accepted: 18 February 2019 / Published online: 26 February 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Numerous hypotheses have been posited to explain the observed variation in plant defense strategies against herbivory. Under resource-rich environments, plants are predicted to increase their tolerance (limiting resource model; LRM) and, while the resource availability hypothesis (RAH) predicts a decrease in constitutive resistance in plant species growing in resource-rich environments, at the intraspecifc level, plants are predicted to follow an opposite pattern (intraspecifc RAH). Furthermore, the efect of multiple factors in modulating plant defense strategies has been scarcely explored and is more difcult to predict. Our aim was to understand how plant defense traits respond to herbivory, resource availability and their interactions, and to assess the efects on plant palatability. To this end, we performed an in situ factorial experiment at two sites simulating three herbivory levels and two nutrient availability conditions with the seagrass Posidonia oceanica. Additionally, we performed a series of feeding experiments with its two main herbivores. While plants decreased their constitutive resistance under nutri- ent fertilization (contrary to intraspecifc RAH but in accordance to the RAH), and did not increase allocation to tolerance (likely due to resource limitation, LRM), simulated herbivory induced resistance traits. However, we found no interactive efects of nutrient fertilization and herbivory simulation on plant defense. -
Evolution of the Leaf Economics Spectrum in Herbs: Evidence from Environmental Divergences in Leaf Physiology Across <I>He
ORIGINAL ARTICLE doi:10.1111/evo.12768 Evolution of the leaf economics spectrum in herbs: Evidence from environmental divergences in leaf physiology across Helianthus (Asteraceae) Chase M. Mason1,2 and Lisa A. Donovan1 1Department of Plant Biology, University of Georgia, Athens, Georgia, 30602 2E-mail: [email protected] Received January 31, 2015 Accepted August 23, 2015 The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource-acquisitive to resource-conservative ecological strategies. The LES has been interpreted to arise from leaf-level trade-offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf- level trade-offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource-acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole-plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf-level trade-offs. These results suggest that LES patterns do not reflect universal physiological trade-offs at small evolutionary scales.