Herbivory and Resource Availability Shift Plant Defense and Herbivore Feeding Choice in a Seagrass System

Total Page:16

File Type:pdf, Size:1020Kb

Herbivory and Resource Availability Shift Plant Defense and Herbivore Feeding Choice in a Seagrass System Oecologia (2019) 189:719–732 https://doi.org/10.1007/s00442-019-04364-6 PLANT-MICROBE-ANIMAL INTERACTIONS – ORIGINAL RESEARCH Herbivory and resource availability shift plant defense and herbivore feeding choice in a seagrass system Gema Hernán1,2 · Inés Castejón1 · Jorge Terrados1 · Fiona Tomas1,3 Received: 15 July 2018 / Accepted: 18 February 2019 / Published online: 26 February 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Numerous hypotheses have been posited to explain the observed variation in plant defense strategies against herbivory. Under resource-rich environments, plants are predicted to increase their tolerance (limiting resource model; LRM) and, while the resource availability hypothesis (RAH) predicts a decrease in constitutive resistance in plant species growing in resource-rich environments, at the intraspecifc level, plants are predicted to follow an opposite pattern (intraspecifc RAH). Furthermore, the efect of multiple factors in modulating plant defense strategies has been scarcely explored and is more difcult to predict. Our aim was to understand how plant defense traits respond to herbivory, resource availability and their interactions, and to assess the efects on plant palatability. To this end, we performed an in situ factorial experiment at two sites simulating three herbivory levels and two nutrient availability conditions with the seagrass Posidonia oceanica. Additionally, we performed a series of feeding experiments with its two main herbivores. While plants decreased their constitutive resistance under nutri- ent fertilization (contrary to intraspecifc RAH but in accordance to the RAH), and did not increase allocation to tolerance (likely due to resource limitation, LRM), simulated herbivory induced resistance traits. However, we found no interactive efects of nutrient fertilization and herbivory simulation on plant defense. Both herbivores responded similarly to changes in plant palatability, strongly preferring nutrient-enriched plants and non-clipped plants. This work highlights the need to better understand the drivers of plant defense intraspecifc variability in response to resources, particularly in habitat-forming species where changes in plant traits and abundance will cascade onto associated species. Keywords Plant–herbivore interactions · Limited resource model · Resource availability hypothesis · Nutrients · Posidonia oceanica Introduction Herbivory is a key ecological process that regulates the fow of energy to upper trophic levels and the composition, abundance and distribution of plant communities (Huntly Communicated by Daniel C. Reed. 1991; Wood et al. 2016). Herbivory has strong efects on Electronic supplementary material The online version of this plant ftness and can be an important pathway of biomass article (https ://doi.org/10.1007/s0044 2-019-04364 -6) contains and nutrient loss in plants (Cebrian 1999). Therefore, plants supplementary material, which is available to authorized users. have evolved diverse defense strategies against herbivory; tolerance strategies that reduce the impact of herbivory on * Gema Hernán [email protected] plant ftness (e.g., increased growth to compensate for leaf loss), and resistance strategies that reduce the preference 1 Department of Marine Ecology, IMEDEA (CSIC-UIB), or performance of herbivores (e.g., production of phenolic Mediterranean Institute for Advanced Studies, compounds; Fritz and Simms 1992). Plant allocation to these Balearic Islands, Spain diferent strategies is determined by a trade-of between ben- 2 Department of Biological Science, Florida State University, efts (i.e., better defense against herbivores) and costs (i.e., Tallahassee, FL, USA less resources available for growth and/or reproduction; 3 Department of Fisheries and Wildlife, Oregon State Bazzaz et al. 1987). Although initially thought otherwise University, Corvallis, OR, USA Vol.:(0123456789)1 3 720 Oecologia (2019) 189:719–732 (Van Der Meijden et al. 1988), recent studies suggests that result in higher limitation not only of carbon fxation but also plants present mixed tolerance-resistance defense mecha- of nutrient acquisition. nisms (Agrawal 2011; Carmona and Fornoni 2013), but that In addition to resource availability, plant defense strate- a trade-of exists between both strategies whereby selection gies against herbivores can respond to diferent consump- for increased resistance can lead to decreased tolerance tion levels. Indeed, herbivore intensity and duration modify (Fineblum and Rausher 2002). In addition, these defenses plant defense responses, with some traits only being induced can be either constitutive (i.e., expressed regardless of the under high herbivory (e.g., secondary metabolites, mineral herbivory pressure sufered by the plant) or induced (i.e., crystals; Vergés et al. 2008; Dostálek et al. 2016; Hartley produced in response to herbivory damage; Agrawal and et al. 2016), while others tend to be induced under mod- Karban 1999; Vergés et al. 2008). Recent studies suggest a erate herbivory (e.g., compensatory growth; Ruiz-R et al. trade-of between both strategies in which plants with higher 2008; Vergés et al. 2008; Sanmartí et al. 2014). Therefore, induced resistance invest less in constitutive resistance (e.g.; increased resource availability (when limiting resources are Kempel et al. 2011; Rasmann et al. 2015). considered) could minimize the costs of defense under dif- Since defense has a cost, availability of resources is an ferent levels of herbivory pressure. Yet, few studies have important determinant of defense strategies in plants. As an assessed the interactive efects of resource availability and explanation of how resources infuence plant allocation to varying herbivory pressure on plant defense strategies (i.e., defense, the Resource Availability Hypothesis (RAH) postu- tolerance and resistance). lates that species adapted to resource-rich environments have Furthermore, the consequences of resource availability higher growth rates and have less constitutive defenses but and herbivory pressure on plants may extend beyond the higher inducible defenses. On the contrary, species adapted individual species of herbivore, as we often fnd several her- to environments with low resource availability will have bivore species feeding on the same plant species. Indeed, lower growth rates and invest more in constitutive defense herbivory damage exerted by one guild or group of herbi- strategies (reviewed in Endara and Coley 2011). Although vores often has strong efects on other herbivores within the the RAH has been refuted by some studies (see Endara and same community due to changes in plant community struc- Coley 2011 and references therein) it is considered as an ture or abundance (Foster et al. 2014) or plant defenses (Del- adequate framework to explain the variation observed in phia et al. 2007; Ramirez and Eubanks 2016). This is even defense strategies under diferent resource availability con- more relevant when herbivory is exerted upon foundation ditions. Recent studies have explored this hypothesis in the species that are the base of ecosystems such as terrestrial context of intraspecifc variations in plant defense (hereafter forests, coral reefs, or kelp beds, since in these ecosystems, intraspecifc RAH) suggesting the opposite pattern. In this grazing-mediated changes cascade through the food web and case, individuals of the same species have higher consti- can have profound ecological impacts such as loss of feeding tutive resistance in high resource environments mediated resources or refuge (Steneck et al. 2002; Ellison et al. 2005; by the higher herbivory pressure found in these environ- Pagès et al. 2012). ments. Accordingly, in low-resource environments, induc- Seagrasses are important foundation species, forming ibility should be more efective and would trade-of with extensive underwater meadows that perform important constitutive resistance (Hahn and Maron 2016). However, functions and provide crucial ecosystem services. Due to some plant species inhabiting high resource environments, their high primary productivity and structural complexity, such as tropical forests, do not bear high herbivory rates and they provide food and shelter for many marine species (Jack- thus, the predictions of the intraspecifc RAH may not be son et al. 2015) and they protect the shore against coastal applicable (Lamarre et al. 2012). Similarly, high resource erosion, stabilize the substrate, and increase water clarity availability should also allow plants to better tolerate and/or (Nordlund et al. 2016). These marine systems in temper- compensate herbivory. In this regard, the Limiting Resource ate regions are undergoing an increase in herbivore pres- Model (LRM; Wise and Abrahamson 2005) states that a sure due to the expansion of tropical species (Vergés et al. plant will become more tolerant when the availability of 2014; Hyndes et al. 2016) that, together with the predicted resources, including limiting resources, increases. However, increase in herbivore feeding rates resulting from higher when herbivory damage afects the use or acquisition of an seawater temperature (Carr and Bruno 2013), may increase alternate resource, plants under high resource availability the grazing pressure in seagrass meadows. In addition, the will not increase their investment in tolerance (Hay et al. commonly observed increases in nutrient concentrations 2011; Hattas et al. 2017). Regarding marine macrophytes in coastal waters (Smith
Recommended publications
  • Growth and Population Dynamics of Posidonia Oceanica on the S~Anishmediterranean Coast: Elucidatina Seacrrass Decline
    MARINE ECOLOGY PROGRESS SERIES Vol. 137: 203-213, 1996 Published June 27 Mar Ecol Prog Ser Growth and population dynamics of Posidonia oceanica on the S~anishMediterranean coast: elucidatina seacrrass decline Nuria ~arba'l*,Carlos M. ~uarte',Just cebrianl, Margarita E. ~allegos~, Birgit Olesen3, Kaj sand-~ensen~ 'Centre dlEstudis Avanqats de Blanes, C.S.I.C., Cami de Santa Barbara sin, E-17300 Blanes, Girona, Spain 'Departamento de Hidrobiologia, Universidad Autonoma Metropolitana- Iztapalapa, Michocan y Purisima, col. Vicentina, AP 55-535, 09340 Mexico D.F., Mexico 3Department of Plant Ecology, University of Aarhus, Nordlandsvej 68, DK-8240 Risskov. Denmark 'Freshwater Biological Laboratory. University of Copenhagen, 51 Helsingersgade, DK-3400 Hillered. Denmark ABSTRACT: The growth and population dynamics of Posidonia oceanica were examined in 29 mead- ows along 1000 km of the Spanish Mediterranean coast (from 36"46' to 42"22' N). oceanica devel- oped the densest meadows (1141 shoots m-') and the highest aboveground biomass (1400 g DW m") between 38 and 39"N. P. oceanica shoots produced, on average, 1 leaf every 47 d, though leaf forma- tion rates in the populations increased from north to south (range 5 7 to 8.9leaves shoot-' yr-'). P ocean- ica is a long-living seagrass, with shoots able to live for at least 30 yr P, oceanica recruited shoots at low rates (0.02 to 0.5 In units yr-l) which did not balance the mortality rates (0.06 to 0.5 In unlts yr.') found in most (57 %) of the meadows. If the present disturbance and rate of decline are maintained, shoot den- sity is predicted to decline by 50% over the coming 2 to 24 yr.
    [Show full text]
  • Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
    Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.
    [Show full text]
  • Posidonia Paper.Docx
    Epiphyte accruel patterns and effects on Posidonia oceanica By Emily Hardison and Scott Borsum Abstract This study focuses on the relationship between Posidonia oceanica leaves and the epiphytes that live on those leaves at Stareso Research center in Calvi Bay, Corsica. We determine patterns of epiphyte accrual along Posidonia oceanica leaves for depths of 5m, 10m, 15m, and 20m and calculate the abundance of epiphytes across this depth range and the biomass of epiphytes in Posidonia oceanica bed at each depth, through in water measurements and characterizing epiphyte loads of samples brought onshore. We show that epiphytes aggregate in depth specific and leaf-side specific patterns along Posidonia leaves, cause degradation of live Posidonia tissue, and contribute a significant amount of biomass to Posidonia oceanica beds and detritus. We attempt to explain why certain patterns of epiphyte accrual are seen by determining that the convex side of the leaf most commonly faces up towards the sun. Introduction Posidonia oceanica is a protected endemic seagrass species in the Mediterranean Sea. This species is particularly interesting because of the large role it plays in maintaining a healthy and diverse Mediterranean ecosystem. It grows in vasts meadows and provides habitats, food, and nursery areas for a wide array of species (Boudouresque C. et al., 2006). Despite its energy expensive lifestyle, Posidonia is able to survive in the nutrient poor waters of the Mediterranean Sea (Lepoint, 2002). Posidonia is often inhabited by epiphytes. Previous research has shown that epiphyte load on Posidonia leaves has a negative relationship with depth (Lopez, 2012). Light attenuates with depth and can therefore become a limiting factor for primary producers, like Posidonia.
    [Show full text]
  • Morpho-Chronological Variations and Primary Production in Posidonia
    Morpho-chronological variations and primary production in Posidonia sea grass from Western Australia Gérard Pergent, Christine Pergent-Martini, Catherine Fernandez, Pasqualini Vanina, Diana Walker To cite this version: Gérard Pergent, Christine Pergent-Martini, Catherine Fernandez, Pasqualini Vanina, Diana Walker. Morpho-chronological variations and primary production in Posidonia sea grass from Western Aus- tralia. Journal of the Marine Biological Association of the United Kingdom, Cambridge University Press, 2004, 84 (5), pp.895-899. 10.1017/S0025315404010161h. hal-01768985 HAL Id: hal-01768985 https://hal.archives-ouvertes.fr/hal-01768985 Submitted on 17 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Mar. Biol. Ass. U.K. (2004), 84, 895^899 Printed in the United Kingdom Morpho-chronological variations and primary production in Posidonia sea grass from Western Australia P Ge¤rard Pergent* , Christine Pergent-Martini*, Catherine Fernandez*, O Vanina Pasqualini* and Diana Walker O *Equipe Ecosyste' mes Littoraux, Faculty of Sciences,
    [Show full text]
  • Use of Posidonia Oceanica Seedlings from Beach- Cast Fruits for Seagrass Planting
    DOI 10.1515/bot-2012-0200 Botanica Marina 2013; 56(2): 185–195 Jorge Terrados * , Arnaldo Mar í n and David Celdr á n Use of Posidonia oceanica seedlings from beach- cast fruits for seagrass planting Abstract: Posidonia oceanica seedlings produced from biological productivity, nutrient cycling, carbon burial beach-cast fruits were planted in an area where this and sediment stabilisation (Hemminga and Duarte 2000 ). Mediterranean seagrass was lost as a consequence of fish- In the last century, human populations in coastal zones farming. The effects of substratum type (dead matte vs. have been rapidly increasing. This has increased anthro- meadow) and planting level (above vs. below bottom sur- pogenic impacts on seagrass ecosystems, in turn leading face) on seedling survivorship and leaf development were to a worldwide decline of seagrasses (Orth et al. 2006a , evaluated after 3 years. Seedling capacity to resist uproot- Waycott et al. 2009 ). Seagrass declines have stimulated ing was also tested by comparing survivorship and leaf interest in seagrass restoration research, and several development after 2 years in seedlings firmly anchored approaches have been used (Fonseca et al. 1998 , Treat in dead matte by artificial means (mesh-pot) with those and Lewis 2006 , Paling et al. 2009 ) because adaptation to planted without any anchoring other than their roots. Sur- local conditions and to the features of the seagrass species vivorship in dead matte was 44 % after 3 years and was to be planted is required. A record of seagrass presence in not affected by planting level. Seedling planting inside the past, knowledge about what caused seagrass loss and the meadow led to complete mortality after 3 years.
    [Show full text]
  • Growth and Reproduction in an Alpine Cushion Plant: Astragalus Kentrophyta Var
    Great Basin Naturalist Volume 55 Number 2 Article 3 4-21-1995 Growth and reproduction in an alpine cushion plant: Astragalus kentrophyta var. implexus Wayne R. Owen University of California, Davis and White Mountain Research Station, University of California, Las Angeles Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Owen, Wayne R. (1995) "Growth and reproduction in an alpine cushion plant: Astragalus kentrophyta var. implexus," Great Basin Naturalist: Vol. 55 : No. 2 , Article 3. Available at: https://scholarsarchive.byu.edu/gbn/vol55/iss2/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 55(2), © 1995, pp. 117-123 GROWTH AND REPRODUCTION IN AN ALPINE CUSHION PLANT: ASTRAGALUS KENTROPHYTA VAR. IMPLEXUS Wayne R. Owen1 ABSTRACf.-A two-year field experiment was conducted to investigate factors hypothesized to affect the reproduc­ tive potential ofAstragalus kentrophyta var. implexus and to test the importance oftrade-offs between growth and repro­ duction in this species. Levels of mineral nutrients, water, herbivory, and competition were manipulated. Seed output R."1d growth of individuals in treatment groups were compared against control plants. Neither water nor mineral nutri­ ents alone were shown to affect growth or reproduction. Herbivory was shown to be similarly unimportant in affecting growth and reproduction. Competition with other species influenced growth but not reproduction. No significant trade­ offs between growth and reproduction were detected within years.
    [Show full text]
  • Chemotyping the Lignin of Posidonia Seagrasses
    APL001 Analytical Pyrolysis Letters 1 Chemotyping the lignin of Posidonia seagrasses JOERI KAAL1,O SCAR SERRANO 2,J OSÉ CARLOS DEL RÍO3, AND JORGE RENCORET3 1Pyrolyscience, Santiago de Compostela, Spain 2Edith Cowan University, Joondalup, Australia 3IRNAS, CSIC, Seville, Spain Compiled January 18, 2019 A recent paper in Organic Geochemistry entitled "Radi- cally different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity" discusses the remarkable difference in lignin chemistry between two kinds of “Neptune grass”, i.e. Posidonia oceanica and Posidonia australis. A recent paper in Organic Geochemistry entitled "Radically different lignin composition in Posidonia species may link to differences in organic carbon sequestration capacity" discusses the remarkable difference in lignin chemistry between two kinds of “Neptune grass”, i.e. Posidonia oceanica and Posidonia australis. Initial efforts using analytical pyrolysis techniques (Py-GC- MS and THM-GC-MS) showed that the endemic Mediterranean Fig. 1. Posidonia oceanica mat deposits in Portlligat (Western member of the Posidonia genus, P. oceanica, has abnormally Mediterranean). Photo: Kike Ballesteros high amounts of p-HBA (para-hydroxybenzoic acid) whereas the down-under variety does not. State-of-the-art lignin charac- terization in Seville (DFRC, 2D-NMR) showed that the p-HBA ranean high-carbon accumulator (see figure below), but it proba- is part of the lignin backbone, and not glycosylated as initially bly contains slightly more p-HBA than Posidonia australis. Posido- expected, and P. oceanica is now the producer of the most exten- nia sinuosa is not capable of producing big mat deposits neither, sively p-HBA-acylated lignin known in the Plant Kingdom.
    [Show full text]
  • Allocation Strategies and Seed Traits Are Hardly Affected by Nitrogen
    ARTICLE IN PRESS Perspectives in Plant Ecology, Evolution and Systematics Perspectives in Plant Ecology, Evolution and Systematics 11 (2009) 267–283 www.elsevier.de/ppees RESEARCH ARTICLE Allocation strategies and seed traits are hardly affected by nitrogen supply in 18 species differing in successional status Claire Fortunela,Ã, Cyrille Viollea, Catherine Roumeta, Bruno Buatoisa, Marie-Laure Navasb, Eric Garniera aCNRS, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175), 1919 Route de Mende, 34293 Montpellier Cedex 5, France bMontpellier SupAgro, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175), 1919 Route de Mende, 34293 Montpellier Cedex 5, France Received 9 May 2008; received in revised form 7 April 2009; accepted 8 April 2009 Abstract Species performance depends on ecological strategies, revealed by suites of traits, conferring different relative ecological advantages in different environments. Although current knowledge on plant strategies along successional gradients is derived from studies conducted in situ, actually quantifying these strategies requires disentangling the effects of environmental factors from intrinsic differences between species. Here we tested whether allocation strategies and seed traits differ among successional stages and nitrogen levels. To this aim, we assessed biomass and nitrogen allocations and seed traits variations for 18 species, differing in life history and belonging to three stages of a Mediterranean old-field succession. These species were grown as monocultures in an experimental garden under limiting and non-limiting nitrogen supply. Early successional species allocated allometrically more nitrogen and proportionally more biomass to reproduction, and set more seeds than later successional species. Seed mass increased with successional status and was negatively related to seed number.
    [Show full text]
  • The Global Distribution and Status of Seagrass Ecosystems
    The global distribution and status of seagrass ecosystems ^^ ^^^H Discussion paper prepared for tlie UNEP-WCWIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards WA.. WORLD CONSERVATION MONITORING CENTRE Digitized by tine Internet Archive in 2010 witii funding from UNEP-WCIVIC, Cambridge Iittp://www.archive.org/details/globaldistributi01spal The global distribution and status of seagrass ecosystems Discussion paper prepared for tlie UNEP-WCIVIC Global Seagrass Workshop St Pete's Beach, Florida, 9 November, 2001 Prepared by: Mark D. Spalding, Michelle L. Taylor, Sergio Martins, Edmund P. Green, and Mary Edwards With assistance from: Mark Taylor and Corinna Ravilious Table of Contents Introduction to the workshop 2 The global distribution and status of seagrass ecosystems 3 Introduction 3 Definitions 3 The diversity of seagrasses 3 Species distribution 4 Associated Species 6 Productivity and biomass 7 The distribution and area of seagrass habitat 8 The value of seagrasses 13 Threats to seagrasses 13 Management Interventions 14 Bibliography; 16 29 Annex 1 : Seagrass Species Lists by Country Annex 2 - Species distribution maps 34 Annex 3 - Seagrass distribution maps 68 74 Annex 4 -Full list of MPAs by country ; /4^ ] UNEP WCMC Introduction to the workshop The Global Seagrass Workshop of 9 November 2001 has been set up with the expressed aim to develop a global synthesis on the distribution and status of seagrasses world-wide. Approximately 20 seagrass experts from 14 counu-ies, representing all of the major seagrass regions of the world have been invited to share their knowledge and expertise.
    [Show full text]
  • A Global Method for Calculating Plant CSR Ecological Strategies Applied Across Biomes World-Wide
    Functional Ecology 2016 doi: 10.1111/1365-2435.12722 A global method for calculating plant CSR ecological strategies applied across biomes world-wide Simon Pierce*,1, Daniel Negreiros2, Bruno E. L. Cerabolini3, Jens Kattge4, Sandra Dıaz5, Michael Kleyer6, Bill Shipley7, Stuart Joseph Wright8, Nadejda A. Soudzilovskaia9, Vladimir G. Onipchenko10, Peter M. van Bodegom9, Cedric Frenette-Dussault7, Evan Weiher11, Bruno X. Pinho12, Johannes H. C. Cornelissen13, John Philip Grime14, Ken Thompson14, Roderick Hunt15, Peter J. Wilson14, Gabriella Buffa16, Oliver C. Nyakunga16,17, Peter B. Reich18,19, Marco Caccianiga20, Federico Mangili20, Roberta M. Ceriani21, Alessandra Luzzaro1, Guido Brusa3, Andrew Siefert22, Newton P. U. Barbosa2, Francis Stuart Chapin III23, William K. Cornwell24, Jingyun Fang25, Geraldo Wilson Fernandez2,26, Eric Garnier27, Soizig Le Stradic28, Josep Penuelas~ 29,30, Felipe P. L. Melo12, Antonio Slaviero16, Marcelo Tabarelli12 and Duccio Tampucci20 1Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133 Milan, Italy; 2Ecologia Evolutiva e Biodiversidade/DBG, ICB/Universidade Federal de Minas Gerais, CP 486, 30161-970 Belo Horizonte, MG, Brazil; 3Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, I-21100 Varese, Italy; 4Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany; 5Instituto Multidisciplinario de Biologıa Vegetal (CONICET-UNC) and FCEFyN, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299,
    [Show full text]
  • Nacionalni Park Brijuni
    EVALUATION REPORT Nacionalni park Brijuni Location: Off the coast of western Istria, Republic of Croatia, Northern Adriatic Sea, Mediterranean Blue Park Status: Nominated (2021), Evaluated (2021) MPAtlas.org ID: 15663 Manager(s): Marno Milotić, Public Institution Brijuni National Park MAPS 2 1. ELIGIBILITY CRITERIA 1.1 Biodiversity Value 4 1.2 Implementation 6 2. AWARD STATUS CRITERIA 2.1 Regulations 9 2.2 Design, Management, and Compliance 11 3. SYSTEM PRIORITIES 3.1 Ecosystem Representation 16 3.2 Ecological Spatial Connectivity 17 SUPPLEMENTAL INFORMATION: Evidence of MPA Effects 17 Figure 1: Brijuni National Park covers 26.5 km2 of marine area off the Istrian coast of Croatia in the Northern Adriatic Sea. It contains 14 uninhabited islands and includes the surrounding sea and shelf area. Brijuni National Park is divided into four zones: 1a) the Zone of Very Strict Protection and 1b) the Zone of Strict Protection are shown together in dark blue – the Regulations-Based Classification score is 1 (fully protected); 2) the Zone of Directed Protection is shown in light blue and the Regulations-Based Classification Score is 4 (highly protected); and 3) the Zone of Usage is shown in dark blue and lined – the Regulations-Based Classification score is 3 (fully protected). See Section 2.1 for an explanation of the the Regulations-Based Classification scores. (Source: Marine Protection Atlas, Marine Conservation Institute) - 2 - Figure 2: Brijuni National Park’s Zone of Strict Protection has two sub-zones: 1a) Zone of Very Strict Protection shown in dark green and 1b) Zone of Strict Protection shown in light green.
    [Show full text]
  • Absence of Evidence Is Not Evidence of Absence
    UNEP-WCMC Technical Briefing Note December, 2015 Absence of evidence is not evidence of absence Working with data deficiency in global biodiversity spatial datasets Key messages More data is unknown than known in both the terrestrial and marine realms, due to numerous technical, logistical and financial challenges in biodiversity data collection at a global scale. Data deficiencies are therefore a common feature within global datasets. Users of global biodiversity datasets are often faced with uncertainty when interpreting data deficiencies: It is not always possible to infer whether the Interpretative approaches to data deficiency (red: false value, green: features themselves are absent, or whether the data required was absent. true value) Cases of confirmed absence of biodiversity features are also rarely highlighted within datasets. The absence of data may coincide with areas on-the-ground where the feature of interest exists, and areas where it does not exist. This may lead to two interpretative scenarios (see above right): - The true negative: No data is displayed in the area of interest because the biodiversity feature does not occur there. - The false negative: No data is displayed in the area of interest, however the biodiversity feature does occur on site. It is commonly misinterpreted that data deficiency (or data absence) is evidence that the feature is absent, but this is often not the case. Data deficiencies should be interpreted as “unknowns” with the potential for both presence and absence until further investigation or supplementary information is available to confirm whether a particular feature exists. This principle also applies to cases of species categorized as Data Deficient on the IUCN Red List of Threatened Species1.
    [Show full text]