A Tale of Two Indices Or How to Count Black Hole Microstates in Ads/CFT

Total Page:16

File Type:pdf, Size:1020Kb

A Tale of Two Indices Or How to Count Black Hole Microstates in Ads/CFT Scuola Internazionale Superiore di Studi Avanzati - Trieste Doctoral Thesis A Tale of Two Indices or How to Count Black Hole Microstates in AdS/CFT Candidate : Paolo Milan Supervisor : Prof. Francesco Benini Academic Year 2018 – 2019 SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY Abstract In this thesis we investigate on the microscopic nature of the entropy of black holes in string theory in the context of AdS/CFT correspondence. We focus our attention on two particularly interesting cases in different dimensions. First, we consider static dyonic BPS black holes in AdS4 in 4d N = 2 gauged supergravities with vector and hyper 6 multiplets. More precisely, we focus on the example of BPS black holes in AdS4 × S in massive Type IIA, whose dual three-dimensional holographic description is known and simple. To provide a microscopic counting of the black hole entropy we employ a topologically twisted index in the dual field theory, which can be computed exactly and non-perturbatively with localization techniques. We find perfect match at leading order. 5 Second, we turn to rotating electrically-charged BPS black holes in AdS5 × S in Type IIB. Here, the microscopic entropy counting is done in terms of the superconformal index of the dual N = 4 Super-Yang-Mills theory. We proceed by deriving a new formula, which expresses the index as a finite sum over the solution set of certain transcendental equations, that we dub Bethe Ansatz Equations, of a function evaluated at those solutions. Then, using the latter formula, we reconsider the large N limit of the superconformal index. We find an exponentially large contribution which exactly reproduces the Bekenstein- Hawking entropy of the black holes of Gutowski-Reall. Besides, the large N limit exhibits a complicated structure, with many competing exponential contributions and Stokes lines, hinting at new physics. iii iv Acknowledgements Completing this thesis represents the end of a four years long path in which I learned so much and lived many experiences that made me the person I am now. Here is the place where I can thank all the people that have been crucial in the completion of this journey. First, I would like to thank my supervisor Francesco. His patience and attention greatly helped me grow as a physicist, especially through some difficult times that hap- pened here and there. Needless to say, I will always be indebted to him for his dedication, for the effort he put in the works we have completed together and for sharing his vast knowledge with me. Next, I would like to thank the many excellent people I have had the opportunity to discuss with and to learn from: Arash Arabi Ardehali, Giulio Bonelli, Atish Dabholkar, Nima Doroud, Francesca Ferrari, Seyed Morteza Hosseini, Shiraz Minwalla, Kyriakos Papadodimas, Arnab Rudra and Alberto Zaffaroni. During these wonderful four years I met many people whom I want to thank for the friendship and support. A special mention goes to Luca Arceci, Francesco Ferrari, Juraj Hašik and Jacopo Marcheselli, for all the experiences we have lived together and for being there in the good as well as difficult moments. I would also like to thank Ric- cardo Bergamin, Lorenzo Bordin, Marco Celoria, Alessandro Davoli, Fabrizio Del Monte, Harini Desiraju, Daniele Dimonte, Laura Fanfarillo, Matteo Gallone, Marco Gorghetto (especially for the rants and all the Gorghettism moments), Maria Laura Inzerillo, J, Diksha Jain, Hrachya Khachatryan, Francesco Mancin, Shani Meynet, Giulia Panat- toni, Andrea Papale, Mihael Petac, Michele Petrini, Matteo Poggi, Chiara Previato, Giulio Ruzza, Paolo Spezzati, Martina Teruzzi, Arsenii Titov, Maria Francesca Trom- bini, Lorenzo Ubaldi, Elena Venturini and Ludovica Zaccagnini. Last but not least, my most heartfelt gratitude goes to my family—Carla, Renato, Enrico, Andrea, Francesca, Elena, Gabriele, Alessandro, Matteo, Davide and Marta— for their love and unconditional support. I would not have been able to achieve this accomplishment without them. v vi Preface This thesis is based on the following publications and preprints, listed in chronological order: [1] F. Benini, H. Khachatryan, and P. Milan, “Black hole entropy in massive Type IIA,” Class. Quant. Grav. 35 no. 3, (2018) 035004, arXiv:1707.06886 [hep-th] [2] F. Benini and P. Milan, “A Bethe Ansatz type formula for the superconformal in- dex,” arXiv:1811.04107 [hep-th]. Submitted to Communications in Mathemat- ical Physics. [3] F. Benini and P. Milan, “Black holes in 4d N = 4 Super-Yang-Mills,” arXiv:1812.09613 [hep-th] vii viii Contents Abstract iii Acknowledgements v Preface vii Introduction and summary 1 I The topologically twisted index and AdS4 black holes 9 1 Black hole entropy in massive Type IIA 11 1.1 Dyonic black holes in massive Type IIA . 11 1.1.1 Black hole horizons . 14 1.1.2 The Bekenstein-Hawking entropy . 18 1.2 Microscopic counting in field theory . 19 1.2.1 The topologically twisted index . 24 1.2.2 The large N limit . 26 1.3 Entropy matching through attractor equations . 30 1.4 Conclusions . 32 II The superconformal index and AdS5 black holes 33 2 A Bethe Ansatz formula for the superconformal index 35 2.1 The 4d superconformal index . 35 2.2 A new Bethe Ansatz formula . 38 ix 2.2.1 Continuation to generic fugacities . 41 2.2.2 Proof of the formula . 42 2.3 Conclusions . 51 3 Black holes in 4d N = 4 Super-Yang-Mills 53 3.1 BPS black holes in AdS5 ............................ 53 3.2 The dual field theory and its index . 55 3.2.1 Exact solutions to the BAEs . 59 3.3 The large N limit . 61 3.3.1 Contribution of the basic solution . 62 3.3.2 Contribution of SL(2; Z)-transformed solutions . 68 3.3.3 Final result and Stokes lines . 69 3.3.4 Comparison with previous literature . 71 3.4 Statistical interpretation and I-extremization . 72 3.5 Black hole entropy from the index . 75 3.5.1 Example: equal charges and angular momenta . 79 3.6 Conclusions . 83 Appendices 85 A Special functions 87 B Numerical semigroups and the Frobenius problem 91 C A dense set 95 D Weyl group fixed points 97 D.1 The rank-one case . 97 D.2 The higher-rank case . 101 E Real fugacities 107 E.1 The case 0 < q < 1 ............................... 107 x E.2 The case −1 < q < 0 .............................. 112 Bibliography 117 xi xii Introduction and summary One of the fascinating aspects of the physics of black holes is its connection with the laws of thermodynamics. Of particular importance is the fact that black holes carry a macroscopic entropy [4–8], semi-classically determined in terms of the horizon area by the famous Bekenstein-Hawking formula: 3 kB c Area SBH = ; (1) ~ GN 4 where c is the speed of light, kB is the Boltzmann constant, ~ is the reduced Planck constant and GN is the Newton constant (to simplify the notation, throughout the rest of this thesis we will work in natural units and set c = kB = ~ = 1). In this formula, the 1 4 proportionality factor is very important and it has been very precisely determined by Hawking [8], using arguments involving the black hole thermal radiation—the Hawking radiation. In the search for a theory of quantum gravity, explaining the microscopic origin of black hole thermodynamics is a fundamental but challenging test. As string theory is proposed to embed gravity in a consistent quantum system, it should in particular provide a microscopic description of (1) in terms of a degeneracy of string states. Evidences that such expectation is correct have been put forward by appealing to the nature of black holes arising in string theory. The latter can indeed be formed from systems of branes [9] which, in turn, admit a description in terms of a worldvolume gauge theory [10–15]. This provides a powerful alternative point of view, besides the gravitational description, much more amenable to a quantum treatment. This framework was first used by Strominger and Vafa [16] to show that, within string theory, one can give a microscopic statistical interpretation to the thermodynamic Bekenstein-Hawking entropy (1) of BPS black holes in flat space. Many different setups have been analyzed since then, including quantum corrections, to an impressive precision [17–21] (see e.g. [22] for more references). In essentially all examples, the microscopic counting is performed in a 2d conformal field theory (CFT) that appears—close to the black hole horizon—as one plays with the moduli available in string theory (and takes advantage of various dualities). In fact, also the entropy of BPS black holes in AdS3 is well understood, since the microstate counting can be performed in 1 A Tale of Two Indices the 2d CFT related to AdS3 by the AdS/CFT correspondence [23–25] (see e.g. [26,27] for reviews and further references). It is important to stress here that many of the derivations of the black hole entropy in these contexts involve the use of the Cardy formula [28], which gives the asymptotic growth of CFT states for large charges. In the case of asymptotically-AdS black holes in dimension d ≥ 4 the situation is different, because in general there is no regime in which the black holes are described by a 2d CFT. On the other hand, the AdS/CFT duality constitutes a natural and wonderful framework to study their properties at the quantum level. The duality provides a non- perturbative definition of quantum gravity, in terms of a CFT living at the boundary of AdS space. Therefore, one would expect the black holes to appear as ensembles of states with exponentially large degeneracy in the dual field theory.1 The problem of offering a microscopic account of the black hole entropy is then rephrased into that of counting particular CFT states.
Recommended publications
  • New Beginnings
    NEW BEGINNINGS A three-year report of Eklavya Foundation 2001-2004 NEW BEGINNINGS A three vi'ar report of the Ikb\\a I ouruiatinn fJQOl Jun/j i We gratffulli a. k now ledpc tor Design. IOVLM illu-itMtion & le<if motif: Urijii Moh.mly. IDC. NT F'OVM^I, Murnbai Sketches Mrm.r.wmi 1 ^td Ravnuird & AntdM HjzanK.i Murnhni ic This honor, uy piojoU Inciu'.ti i.il D ,icjn C^ntif, MF P'j\\-ii. Mun.h.ii Eklavya Foundation H(Hji'.U>u>rJ Vu itMy No S l *n I ) H U--H .-/> 1 lh.' 1 ' 1 -- Mi'qiM(M(KlUtfic" H .' i. .VKM!. W.M U..lhi , O'uj ' ' ".." i " ' AM (l(.jt|.|ir In | U.'.-v.i i" 't!|i l-i, mi*, i.j, ,M.-t ,"H.'I.. :i ] J,)I)M 1- * ' 1 >' ' l I ; v'lil- '-! i i- ' .. ii i'. .i J /()(.)/ [ '! .'11" ',-,* ? ;i' ! \ i i i I)' .'. )! _>f [ ^h Jciiuuirv <?Ol)S '.'Jon uj l ontnhutoiy put i <-, sn Published In Eklavya L / Hir,-1',^ Arer.u olony Phone 0755 246 3380, 246 4824 - Fax: 0755 246 1 703 Email eklavyampfj'mantrdfteenet corn Printed at ' Bhanclan Otis*.". Pnnti-rs Arfj v.n!c>nv Bliou.u P ( iont- /-it; i Contents The dismantling oKwiMon People's voices Report of cK-tiviLies(;OOl Foreword In this report we share with you a truly momentous leg of our long journey Two events impacted significantly on the structure and work of Eklavya. One was the closure of our collaborative middle school educational programmes by the Madhya Pradesh government in July 2002 The second was the bifurcation of Eklavya into two autonomous units - a 'school education and publication' group and a'rural development'group.The latter was registered as a new society on August 1 1, 2003 as the Samavesh Society for Development and Governance.
    [Show full text]
  • 16 February 2016 Prof. M. Jagadesh Kumar Vice Chancellor
    16 February 2016 Prof. M. Jagadesh Kumar Vice Chancellor Jawaharlal Nehru University New Delhi-110 067, India Dear Prof. Kumar, We are writing, as a group of academics, to express our deep disappointment with your actions in the event leading up to the arrest of several students last week. We understand that last Tuesday, a student group organized a rally to commemorate the death anniversary of Afzal Guru. The police alleges that some of the students voiced controversial opinions. The police then proceeded to arrest the president of the JNU Students Union, Kanhaiya Kumar, and charged him with sedition. This has been followed by a number of further arrests. What is most disturbing is that the JNU administration appears to have defended and aided these repressive actions by the police, rather than defending the students who were involved in a non-violent activity. The arrest of the president of the JNUSU is especially troublesome since he was not even an organizer of the rally but merely present to express his solidarity. However, even as far the organizers and the speakers at the event are concerned, we hope that you recognize that expressing controversial views in a peaceful forum cannot be equated with sedition. For example, many people believe that Afzal Guru was let down by a lack of appropriate legal representation in his trial, and that his execution was therefore a grave miscarriage of justice. One may agree or disagree with this viewpoint — and, indeed, signatories to this letter hold different positions — but we are unanimous that students should have the right to freely discuss this issue.
    [Show full text]
  • IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof
    dm{f©H$ à{VdoXZ Annual Report 2015-16 ¼ããäÌãÓ¾ã ãä¶ã¹ã¥ã †Ìãâ Êãà¾ã „ÞÞã¦ã½ã ½ãÖ¦Ìã ‡ãŠñ †‡ãŠ †ñÔãñ Ìãõ—ãããä¶ã‡ãŠ ÔãâÔ©ãã¶ã ‡ãŠãè Ô©ãã¹ã¶ãã ãä•ãÔã½ãò ‚㦾ãã£ãìãä¶ã‡ãŠ ‚ã¶ãìÔãâ£ãã¶ã Ôããä֦㠂㣾ãã¹ã¶ã †Ìãâ ãäÍãàã¥ã ‡ãŠã ¹ãî¥ãùã Ôãñ †‡ãŠãè‡ãŠÀ¥ã Öãñý ãä•ã—ããÔãã ¦ã©ãã ÀÞã¶ã㦽ã‡ãŠ¦ãã Ôãñ ¾ãì§ãŠ ÔãÌããó§ã½ã Ôã½ãã‡ãŠÊã¶ã㦽ã‡ãŠ ‚㣾ãã¹ã¶ã ‡ãñŠ ½ã㣾ã½ã Ôãñ ½ããõãäÊã‡ãŠ ãäÌã—ãã¶ã ‡ãŠãñ ÀãñÞã‡ãŠ ºã¶ãã¶ããý ÊãÞããèÊãñ †Ìãâ Ôããè½ããÀãäÖ¦ã / ‚ãÔããè½ã ¹ã㟿ã‰ãŠ½ã ¦ã©ãã ‚ã¶ãìÔãâ£ãã¶ã ¹ããäÀ¾ããñ•ã¶ãã‚ããò ‡ãñŠ ½ã㣾ã½ã Ôãñ œãñ›ãè ‚ãã¾ãì ½ãò Öãè ‚ã¶ãìÔãâ£ãã¶ã àãñ¨ã ½ãò ¹ãÆÌãñÍãý Vision & Mission Establish scientific institution of the highest caliber where teaching and education are totally integrated with state-of-the- art research Make learning of basic sciences exciting through excellent integrative teaching driven by curiosity and creativity Entry into research at an early age through a flexible borderless curriculum and research projects Annual Report 2015-16 Governance Correct Citation Board of Governors IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof. T.V. Ramakrishnan (till 03/12/2015) Emeritus Professor of Physics, DAE Homi Bhabha Professor, Department of Physics, Indian Institute of Science, Bengaluru Published by Dr. K. Venkataramanan (from 04/12/2015) Director and President (Engineering and Construction Projects), Dr.
    [Show full text]
  • Academic Report 2009–10
    Academic Report 2009–10 Harish-Chandra Research Institute Chhatnag Road, Jhunsi, Allahabad 211019 Contents About the Institute 2 Director’s Report 4 Governing Council 8 Academic Staff 10 Administrative Staff 14 Academic Report: Mathematics 16 Academic Report: Physics 47 Workshops and Conferences 150 Recent Graduates 151 Publications 152 Preprints 163 About the Computer Section 173 Library 174 Construction Work 176 1 About the Institute Early Years The Harish-Chandra Research Institute is one of the premier research institute in the country. It is an autonomous institute fully funded by the Department of Atomic Energy, Government of India. Till October 10, 2000 the Institute was known as Mehta Research Institute of Mathematics and Mathematical Physics (MRI) after which it was renamed as Harish-Chandra Research Institute (HRI) after the internationally acclaimed mathematician, late Prof Harish-Chandra. The Institute started with efforts of Dr. B. N. Prasad, a mathematician at the University of Allahabad with initial support from the B. S. Mehta Trust, Kolkata. Dr. Prasad was succeeded in January 1966 by Dr. S. R. Sinha, also of Allahabad University. He was followed by Prof. P. L. Bhatnagar as the first formal Director. After an interim period in January 1983, Prof. S. S. Shrikhande joined as the next Director of the Institute. During his tenure the dialogue with the Department of Atomic Energy (DAE) entered into decisive stage and a review committee was constituted by the DAE to examine the Institutes fu- ture. In 1985 N. D. Tiwari, the then Chief Minister of Uttar Pradesh, agreed to provide sufficient land for the Institute and the DAE promised financial sup- port for meeting both the recurring and non-recurring expenditure.
    [Show full text]
  • Annual Report
    THE INSTITUTE OF MATHEMATICAL SCIENCES C. I. T. Campus, Taramani, Chennai - 600 113. ANNUAL REPORT Apr 2015 - Mar 2016 Telegram: MATSCIENCE Telephone: +91-44-22543100,22541856 Fax:+91-44-22541586 Website: http://www.imsc.res.in/ e-mail: offi[email protected] Foreword The Institute of Mathematical Sciences, Chennai has completed 53 years and I am pleased to present the annual report for 2015-2016 and note the strength of the institute and the distinctive achievements of its members. Our PhD students strength is around 170, and our post-doctoral student strength is presently 59. We are very pleased to note that an increasing number of students in the country are ben- efiting from our outreach programmes (for instance, Enriching Mathematics Education, FACETS 2015, Physics Training and Talent Search Workshop) and we are proud of the efforts of our faculty, both at an individual and at institutional level in this regard. IMSc has started a monograph series last year, with a plan to publish at least one book every year. A book entitled “Problems in the Theory of Modular Forms” as ‘IMSc Lecture Notes - 1’ has been published this year Academic productivity of the members of the Institute has remained high. There were several significant publications reported in national and international journals and our faculty have authored a few books as well. Five students were awarded Ph.D., and three students have submitted their Ph.D. theses. Four students were awarded M.Sc. by Research, and two students have submitted their master’s theses under the supervision of our faculty.
    [Show full text]
  • Quantum Black Holes, Localization & Mock Modular
    Quantum Entropy Localization Mock Modularity Index Quantum Black Holes, Localization & Mock Modular Forms (BITS of BRANES from BLACK HOLES) ATISH DABHOLKAR CERN, GENEVA CNRS/ UNIVERSITY OF PARIS VI Bits , Branes, & Black Holes 23 May 2012 Atish Dabholkar (CERN/Paris) Quantum Black Holes May 2012, Santa Barbara 1 / 33 Quantum Entropy Localization Mock Modularity Index 1 Quantum Entropy 2 Localization 3 Mock Modularity 4 Index Atish Dabholkar (CERN/Paris) Quantum Black Holes May 2012, Santa Barbara 2 / 33 Quantum Entropy Localization Mock Modularity Index References A. D., Jo~aoGomes, Sameer Murthy arXiv:1111.1161 arXiv:1012.0265 A. D., Sameer Murthy, Don Zagier arXiv:1206.nnnn A. D., Jo~aoGomes, Sameer Murthy, Ashoke Sen arXiv:1009.3226 A new application of localization techniques in gravitational theories 2 to reduce functional integral over string fields on AdS2 × S to ordinary integrals. Wall-crossing and Mock Modular Forms. Define and compute a supersymmetric Index from black hole entropy. Atish Dabholkar (CERN/Paris) Quantum Black Holes May 2012, Santa Barbara 3 / 33 Quantum Entropy Localization Mock Modularity Index References A. D., Jo~aoGomes, Sameer Murthy arXiv:1111.1161 arXiv:1012.0265 A. D., Sameer Murthy, Don Zagier arXiv:1206.nnnn A. D., Jo~aoGomes, Sameer Murthy, Ashoke Sen arXiv:1009.3226 A new application of localization techniques in gravitational theories 2 to reduce functional integral over string fields on AdS2 × S to ordinary integrals. Wall-crossing and Mock Modular Forms. Define and compute a supersymmetric Index from black hole entropy. Atish Dabholkar (CERN/Paris) Quantum Black Holes May 2012, Santa Barbara 3 / 33 Quantum Entropy Localization Mock Modularity Index References A.
    [Show full text]
  • Schedule Titles and Zoom Links: Please Note That IST = UTC + 5:30
    The Dual Mysteries of Gauge Theories and Gravity IIT Madras 2020 Schedule Titles and zoom links: Please note that IST = UTC + 5:30 Mon, Oct 19, Session 1: Chair: Suresh Govindarajan ​ 09:00--9:30 IST Opening address by David Gross and Director’s welcome speech Zvi Bern 9:30- 10:25 IST Scattering Amplitudes as a Tool for Understanding Gravity Aninda Sinha 10:40--11:20 IST Rebooting the S-matrix bootstrap Mon, Oct 19, Session 2: Chair: Jyotirmoy Bhattacharyya ​ Jerome Gauntlett 14:00-14:40 IST Spatially Modulated & Supersymmetric Mass Deformations of N=4 SYM ​ Elias Kiritsis 14:55-15:35 IST ​ Emergent gravity from hidden sectors and TT deformations ​ ​ ​ Rene Meyer 15:50 -16:30 IST Strongly Correlated Dirac Materials, Electron Hydrodynamics & AdS/CFT ​ Mon, Oct 19, Session 3: Chair: Bindusar Sahoo ​ Chethan Krishnan 19:30-20:10 IST Cosmic Censorship of Trans-Planckian Field Ranges in Gravitational Collapse ​ ​ ​ Timm Wrase 20:25 - 21:05 IST Misaligned SUSY in string theory ​ Thomas van Riet 21:20 -22:00 IST A de Sitter landscape and Russel's teapot ​ 1 The Dual Mysteries of Gauge Theories and Gravity Tue, Oct 20, Session 1: Chair: Nabamita Banerjee ​ Rajesh Gopakumar 9:00 - 9:40 IST ​ ​ Branched Covers and Worldsheet Localisation in AdS_3 Gustavo Joaquin Turiaci 9:55- 10:35 IST ​ ​ The gravitational path integral near extremality Ayan Mukhopadhyay 10:50- 11:30 IST ​ ​ Analogue quantum black holes Tue, Oct 20, Session 2: Chair: Koushik Ray ​ David Mateos 14:00-14:40 IST Holographic Dynamics near a Critical Point Shiraz Minwalla 14:55 - 15:35 IST ​ ​ Fermi seas from Bose condensates and a bosonic exclusion principle in matter Chern Simons theories.
    [Show full text]
  • Appointments & Resigns
    69 APPOINTMENTS & RESIGNS 1. Who was appointed as the 20th governor of 4. Name the Indian Civil Accounts Service (ICAS) Nagaland ? Officer, who took over as the Controller General of 1) RN Ravi 2) Krishan Kant Paul Accounts (CGA) . 3) Padmanabha Acharya 4) Ashwani Kumar 1) Raosaheb Danve 2) Babul Supriyo 5) None of these 3) Girraj Prasad Gupta 4) Ramdas Athawale 1. Answer – 1) RN Ravi 5) None of these On August 1, 2019, RN Ravi (A 1976-batch Indian 4. Answer – 3) Girraj Prasad Gupta Police Service officer of the Kerala cadre,), a former On August 1, 2019, Girraj Prasad Gupta(a Intelligence Bureau(IB) officer was sworn in as the 1983-batch Indian Civil Accounts Service (ICAS) 20th governor of Nagaland. Arup Kumar Goswami, Officer) took over as the Controller General of Chief Justice (Acting) of Gauhati High Court(HC) Accounts (CGA) in New Delhi. He succeeds Anthony administered the oath of office to Ravi at the Raj Lianzuala as the new CGA, Department of Bhavan in Kohima, Nagaland. Ravi succeeds Expenditure, Ministry of Finance. He held higher Padmanabha Balakrishna Acharya, whose tenure positions in the Central Board of Direct Taxes ended on July 19, 2019. (CBDT), Ministry of Rural Development and served 2. To which ministry, Ravi Capoor was appointed as as the Director of National Institute of Financial the secretary ? Management (NIFM), Faridabad.Gupta, as an 1) Ministry of External Affairs Additional Controller General of Accounts, got 2) Ministry of Minority Affairs credit for the work in development and implementation of Public Financial Management 3) Ministry of Finance System (PFMS), a backbone IT (Information 4) Ministry of Textiles Technology) infrastructure for Direct Benefit 5) None of these Transfer (DBT) in Government of India.
    [Show full text]
  • 4Th Asian Winter School 2.Cdr
    THE 4TH ASIAN WINTER SCHOOL ON STRINGS, PARTICLES JANUARY 11 - 20, 2010 AND COSMOLOGY MAHABALESHWAR, INDIA www.icts.res.in/program/asian4 This School is being organized LIST OF SPEAKERS INCLUDE Hyung Do Kim (Seoul National as a program of the International Ignatios Antoniadis University, Korea) Nakwoo Kim (Kyung Hee Centre for Theoretical Sciences (Ecole Polytechnique, France) University, Korea) of TIFR. John Ellis (CERN, Switzerland) Sean Hartnoll Hideo Kodama (KEK, Japan) It forms part of an ongoing (Harvard University, USA) Miao Li (ITP, China) series of Asian Winter schools Kenneth Intriligator Yasuhiro Okada (KEK, Japan) organized by China, India, (University. of California, Sreerup Raychaudhuri (TIFR, India) Tarun Souradeep (IUCAA, India) Japan and Korea. The previous San Diego, USA) Liam McAllister Tadashi Takayanagi Schools were held in Korea, (IPMU, Tokyo University, Japan) Japan and China. The current (Cornell University, USA) Shiraz Minwalla (TIFR, India) school combines with the 4th Andrew Strominger Scientific Director: Gautam Mandal edition of the Asian Schools on (Harvard University, USA) (TIFR, India) Particles, Strings and Herman Verlinde Overall Director: Spenta Wadia Cosmology held annually in (Princeton University, USA) (TIFR, India) Japan. The current school is Laurence Yaffe (University of also a joint APCTP-ICTS activity Washington, Seattle, USA) STEERING COMMITTEE Bum-Hoon Lee and replaces the 14th APCTP (Sogang University, Korea) Winter School on String Theory. ADVISORY BOARD David Gross (KITP, USA) Sang Jin Sin The School will cover various Andrew Strominger (Hanyang University, Korea) areas in String Theory, High (Harvard University, USA) Soonkeon Nam (Kyung Hee Energy Physics and Cosmology. Hirotaka Sugawara University, Korea) The intended audience consists (Sokendai, Japan) Yoshihisa Kitazawa (KEK, Japan) Tamiaki Yoneya (University of Tokyo, of senior graduate students as Shing-Tung Yau (Harvard University, USA) Komaba, Japan) well as practising researchers.
    [Show full text]
  • Tata Institute of Fundamental Research
    Tata Institute of Fundamental Research NAAC Self-Study Report, 2016 VOLUME 2 VOLUME 2 1 Departments, Schools, Research Centres and Campuses School of Technology and School of Mathematics Computer Science (STCS) School of Natural Sciences Chemical Sciences Astronomy and (DCS) Main Campus Astrophysics (DAA) Biological (Colaba) High Energy Physics Sciences (DBS) (DHEP) Nuclear and Atomic Condensed Matter Physics (DNAP) Physics & Materials Theoretical Physics (DTP) Science (DCMPMS) Mumbai Homi Bhabha Centre for Science Education (HBCSE) Pune National Centre for Radio Astrophysics (NCRA) Bengaluru National Centre for Biological Sciences (NCBS) International Centre for Theoretical Sciences (ICTS) Centre for Applicable Mathematics (CAM) Hyderabad TIFR Centre for Interdisciplinary Sciences (TCIS) VOLUME 2 2 SECTION B3 Evaluative Report of Departments (Main Campus) VOLUME 2 3 Index VOLUME 1 A-Executive Summary B1-Profile of the TIFR Deemed University B1-1 B1-Annexures B1-A-Notification Annex B1-A B1-B-DAE National Centre Annex B1-B B1-C-Gazette 1957 Annex B1-C B1-D-Infrastructure Annex B1-D B1-E-Field Stations Annex B1-E B1-F-UGC Review Annex B1-F B1-G-Compliance Annex B1-G B2-Criteria-wise inputs B2-I-Curricular B2-I-1 B2-II-Teaching B2-II-1 B2-III-Research B2-III-1 B2-IV-Infrastructure B2-IV-1 B2-V-Student Support B2-V-1 B2-VI-Governance B2-VI-1 B2-VII-Innovations B2-VII-1 B2-Annexures B2-A-Patents Annex B2-A B2-B-Ethics Annex B2-B B2-C-IPR Annex B2-C B2-D-MOUs Annex B2-D B2-E-Council of Management Annex B2-E B2-F-Academic Council and Subject
    [Show full text]
  • Supersymmetric Partition Functions in the Ads/CFT Conjecture
    Supersymmetric Partition Functions in the AdS/CFT Conjecture A dissertation presented by Suvrat Raju to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts June 2008 CC BY: $n C This work is licenced under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. You may freely copy, distribute, transmit or adapt this work under the following conditions: $n You may not use this work for commercial purposes. C If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. BY: You must attribute this work. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, CA 94105, USA. Thesis advisor Author Shiraz Minwalla Suvrat Raju Supersymmetric Partition Functions in the AdS/CFT Conjec- ture Abstract We study supersymmetric partition functions in several versions of the AdS/CFT correspondence. We present an Index for superconformal field theories in d = 3; 4; 5; 6. This captures all information about the spectrum that is protected, under continuous de- formations of the theory, purely by group theory. We compute our Index in N = 4 SYM at weak coupling using gauge theory and at strong coupling using supergravity and find perfect agreement at large N. We also compute this Index for supergravity 7 4 on AdS4 × S and AdS7 × S and for the recently constructed Chern Simons matter theories.
    [Show full text]
  • Scientific Meeting
    Scientific Meeting Albert Einstein famously spent the last thirty years of his life seeking to unify the laws of nature. He was the first scientist who seriously advocated and pursued this objective. To Einstein, the goal was to unify the laws of electricity and magnetism, discovered in the 19th century, with the laws of gravity, as he himself had formulated them in General Relativity. Nowadays, the quest for unification continues, but on a broader front. From a contemporary perspective, the weak interactions and the strong or nuclear force are coequal partners with electromagnetism and gravitation. The need to incorporate these additional forces is a fundamental part of the story that was unclear in Einstein’s day. In our time, experimental clues about unification of fundamental forces come from accelerator experiments, from underground laboratories, and from astronomical observations. On the theoretical side, string theory has emerged as a candidate for a unified theory of nature, but it remains littleunderstood. The closed meeting at the Bibliotheca Alexandrina will draw together participants from around the world to discuss the quest for a unified understanding of the laws of nature. With a program consisting of talks by specialists from many countries, along with extensive time for discussions, the goal will be to discuss where we are now and where we should aim to go in the coming years in seeking to fulfill Einstein’s dream. Speakers Ali CHAMSEDDINE Cumrun VAFA Edward WITTEN Eliezer RABINOVICI Gerardus 't HOOFT Hirosi OOGURI Jacob SONNENSCHEIN John ILIOPOULOSl Mohsen ALISHAHIHA Mohamed S. ELNASCHIE Michael GREEN Murray GELL-MAN Nima ARKANI HAMED Ofer AHARONY Rajesh GOPAKUMAR Shiraz MINWALLA Tadashi TAKAYANAGI Scientific Meeting Program Date Time Session Tentative Speakers 9:00 – 10:00 Registration Dr.
    [Show full text]