HAWKING RADIATION AND BLACK HOLE THERMODYNAMICS ∗ Don N. Page † Institute for Theoretical Physics Department of Physics, University of Alberta Edmonton, Alberta, Canada T6G 2J1 (2004 September 3; additional section added 2004 December 31 ‡) Abstract An inexhaustive review of Hawking radiation and black hole thermody- namics is given, focusing especially upon some of the historical aspects as seen from the biased viewpoint of a minor player in the field on and off for the past thirty years. arXiv:hep-th/0409024v3 31 Dec 2004 ∗Alberta-Thy-18-04, hep-th/0409024, review article solicited for a celebratory Focus Issue on Relativity, “Spacetime 100 Years Later,” to be published in New Journal of Physics. †Internet address:
[email protected] ‡On this date the author reached an age which is an integer divisor of the number of references. 1 1 Historical Background Black holes are perhaps the most perfectly thermal objects in the universe, and yet their thermal properties are not fully understood. They are described very accurately by a small number of macroscopic parameters (e.g., mass, angular mo- mentum, and charge), but the microscopic degrees of freedom that lead to their thermal behavior have not yet been adequately identified. Strong hints of the thermal properties of black holes came from the behavior of their macroscopic properties that were formalized in the (classical) four laws of black hole mechanics [1], which have analogues in the corresponding four laws of thermodynamics: The zeroth law of black hole mechanics is that the surface gravity κ of a stationary black hole is constant over its event horizon [2, 1].