Department of Theore(Cal Physics

Total Page:16

File Type:pdf, Size:1020Kb

Department of Theore(Cal Physics Department of Theore1cal Physics Faculty Members Type to enter text Mustansir Barma Welcome to the Department of Theore1cal Physics at TIFR, Mumbai. Rajeev Bhalerao We are interested in the theore1cal descrip1on of our universe over Kedar Damle a huge energy range, from fundamental Planck scale of 1028 eV in Basudeb Dasgupta - string theory to ultra-low energy scales of 10 13 eV in cold atomic gases Saumen DaKa and everything in between. The research ac1vity in the department has Deepak Dhar four broad focus areas: condensed maKer and sta1s1cal physics, Amol Dighe cosmology and astro-par1cle physics, high energy physics, string theory Rajiv Gavai and mathema1cal physics. Our research interests overlap across these Sourendu Gupta areas. Rishi Khatri 2014-02-19Subhabrata Majumdar 19:13:33 1/1 Unnamed Doc (#1) Gautam Mandal We try to find new laws of nature as well as novel manifesta1ons of Nilmani Mathur known laws. We try to find exact solu1ons, and develop approxima1ons Shiraz Minwalla as well as numerical techniques to understand the complex Sreerup Raychaudhuri phenomena occurring in the universe. For a peek into this fascina1ng Tuhin Roy world, keep reading ..... and visit our website at Rajdeep Sensarma Rishi Sharma www.theory.1fr.res.in K. Sridhar Department of Theore1cal Physics, Vikram Tripathi Tata Ins1tute of Fundamental Research Sandip Trivedi Homi Bhabha Road, Colaba Mumbai 400005 More is different -- P. W. Anderson Condensed MaKer and Sta1s1cal Physics Welcome to the theore1cal condensed We aKempt to extend the use of maKer and sta1s1cal physics group in sta1s1cal physics model to other the department. We have two broad disciplines to build models of stock focus areas: applica1on of classical sta1s1cal mechanics models to diverse markets, biological growth and physical phenomena , and explana1on protein folding etc. Non-equilibrium of the emergent proper1es of strongly models of aggrega1on and chipping interac1ng quantum many-body have been studied to model systems. A Pattern produced molecular transport in cells. by Eulerian walkers A system of many interac1ng par1cles can exhibit qualita1vely different behavior from a single or a few par1cles. Interac1ons can lead to emergent phenomena like magne1sm, superconduc1vity or superfluidity etc. where the behavior of the system changes suddenly as parameters like temperature or magne1c field are varied. Condensed maKer theory provides the tools to understand the sta1c and dynamic proper1es of these systems. If the interac1ons between the par1cles are stronger than their kine1c energy,the theore1cal descrip1on becomes immensely complicated. For high temperature superconductors, the well known pillars of solid state physics like band theory, Fermi liquid theory and BCS theory of superconduc1vity, all fail and we have to search for new This simple picture of a compe11on between kine1c and interac1on Some topics we work on: energies is complicated by the presence of frustra1on, which leads to degeneracies in the system. We are interested in understanding • Realis1c models of the glassy state with broken ergodicity. how these systems explore the phase space. • Equilibrium (solid-fluid) and non-equilibrium (jamming) phase transi1ons in systems with hard core repulsion. • Propor1onate growth in animals, protein- folding, global climate as non equilibrium steady state of periodically driven systems. • Agent based models of markets and opinion formaon. Spin orbit coupling • Physics of high Tc superconductors. Magne1c response of MoK insulators with in cold atoms • interes1ng magne1c proper1es. Effect of spin and charge impuri1es on spin Materials in the laboratory inevitably have a lot of dirt and we study • liquids and topological insulators. the effects of spin and charge impuri1es on the proper1es of novel • Detailed phenomenology of diluted magne1c states like quantum spin liquids and topological insulators and its semiconductors and granular superconductors connec1on with the well known Kondo effect in metals. • Phenomenology of graphene and related materials. We also study the proper1es of ultracold atomic gases, where • Search for novel equilibrium and non- models relevant to other condensed maKer system can be designed equilibrium states with ultracold atomic gases. with easily tunable parameters. In these systems, we also study • Development of techniques to understand non-equilibrium dynamics of strongly interac1ng quantum real 1me response of strongly interac1ng systems. many-body systems, a field which has opened up in recent years. Members: Mustansir Barma Deepak Dhar Kedar Damle Rajdeep Sensarma Vikram Tripathi Cosmology and Astropar1cle Physics Cosmological research has entered its golden age. Long abounding in theories but lacking enough data, over the last quarter century it has entered the realm of ‘precision science’. The area has seen emergence of the so called ’Standard Cosmological Model’, where the structure, evolu1on and nature of the universe and all its contents are beau1fully described by few parameters which are now being determined with increasing precision. And yet, the more we unravel, the more mysteries we find - the mystery of dark maKer and dark energy, the paradigm of infla1on, the violent explosions and energe1cs, the mind-boggling large structures and the onset and end of the dark ages in our universe. Even knowledge of our own Milky Way has to be embedded in our knowledge of the cosmos. Cosmology is an area of science that assimilates ideas from all branches of physics – for example, general theory of rela1vity, which tells us how the universe grows in size or how light is lensed by maKer, quantum field theory in the early universe, nuclear physics describing how different elements came into being, plasma physics and fluid mechanics, which governs the interac1on of photons and maKer, to Newtonian gravity which determines local dynamics in galaxies and cluster of galaxies. The field is also unique in the connec1on it makes between the very large and the very small – for example, one way to search for the invisible dark maKer that cons1tutes roughly one quarter of our universe is to do par1cle physics experiments like those at the LHC. In fact, there are massive surveys some of which are taking place now and some are being planned to start in the future, like Planck, DES, EUCLID, LSST, SKA, etc with aim of understanding our universe. Cosmology and Astropar1cle Physics is the newest sub-area of research in the department and is poised for rapid growth. Its present members include Subhabrata Majumdar and Rishi Khatri, who work on both theore1cal and observa1onal cosmology. Sandip Trivedi is interested in cosmology from perspec1ve of string theory. Amol Dighe and Basudeb Dasgupta are interested in astropar1cle physics: the implica1ons of the standard model of par1cle physics for astronomical systems. The main research areas in CAP are mo1vated by the vision which tries to address the following big ques1ons • What are dark maKer and dark energy? • What causes cosmic infla1on ? • What goes on inside galaxies? • When did the universe end its dark ages and how? The(space(density(of(clusters(with(redshi7( • How has the universe evolved over 1me? • What are the signatures of early universe physics Cosmology(with(clusters( that can be probed? • What role does neutrinos play in our universe? Some specific topics that are of current interest are: •The informa1on hidden in the spectral distor1ons of the cosmic microwave background • Es1ma1ng the parameters of the standard model of cosmology by combining probes of cosmic microwave background (CMB), supernovae (SNe) , baryon acous1c oscilla1ons (BAO) and galaxy clusters. •Involvement in surveys to probe dark maKer and dark energy. The data from these surveys are also used to understand the growth of structures seeded by ini1al perturba1ons on a smooth universe due to Infla1on. Thus connec1ons are made between the very early and late universe. The large scale structure that one finds from the survey data can also be used to look for devia1ons from Einstein’s theory of gravity. •Topics at the interface of string theory and cosmology include cosmological string compac1fica1ons and the role of AdS/CFT in understanding the resolu1on of cosmological singulari1es. • Since visible maKer trace the dark universe, considerable effort is given to study the synergies between cosmology and visible traces, their physics, energe1cs, structure and evolu1on. These can be connected to studies of the distor1on of the CMB at small scales. •Topics in astro-par1cle physics including neutrino mass constraints from cosmological surveys and the role of neutrinos in the spectacular supernova explosion, baryogenesis and nucleosynthesis. Members: Basudeb Dasgupta Members: Amol Dighe Subhabrata Majumdar Sandip TrivediAmol Dighe Rishi Khatri Subhabrata Majumdar Sandip Trivedi High Energy Physics Par1cle physics is the study of the basic structure of maKer using the language of rela1vis1c quantum field theories. These theories then predict exo1c par1cles and their proper1es, the outcomes of a variety of high-energy collider experiments such as at the LHC, the RHIC and the FAIR, as well as of high-energy cosmic phenomena such as in supernovae, neutron stars and the hot environment of the early universe. The building of models, as well as explora1on of their implica1ons are pursued in the department. The interac1ons of various kinds of maKer are organized by the symmetry of the interac1on. The standard model of par1cle physics combines the strong with the
Recommended publications
  • Third Mumbai Area Physics Meet
    THIRD MUMBAI AREA PHYSICS MEET ON COMPLEX SYSTEMS (A one-day symposium on Nonlinear Dynamics and Nonequilibrium Statistical Mechanics) Scientific Advisory Committee Mumbai Area Physics Meet is a series of symposia, the first one was held in the Department of Physics, University of H. M. Antia (TIFR) Mumbai on 25th August 2014 with ENERGY as its theme Pushan Ayyub (TIFR) and the second one was on ASTROPHYSICS organized in Sudeshna Banerjee (TIFR) TIFR, Colaba on 28th March 2015. Mustansir Barma (TIFR-CIS, Hyderabad) Ameeya Bhagwat (CBS) This is the third one with the theme Complex Systems. Samrath Chaplot (BARC) Evidently, most of the phenomena around us are nonlinear Rajeev Gavai (TIFR) and/ or out of equilibrium leading to complex emergent Sourendu Gupta (TIFR) behaviour. The examples of such systems appear in fields S. N. Mishra (TIFR) ranging from astrophysics, atmospheric physics to Anuradha Misra (MU) biological physics. The purpose of this meeting is to bring Devendra Ojha (TIFR) together researchers from Mumbai and its surroundings C. V. Tomy (IITB) working in Nonlinear Dynamics, Nonequilibrium Statistical Sandip Trivedi (TIFR) Mechanics and related areas and also to expose college Urjit Yajnik (IITB) faculty and students to this broad and interesting subject. Speakers Mustansir Barma (TIFR-CIS, Hyderabad) Organized by: Department of Physics, Kedar Damle (TIFR) Ramniranjan Jhunjhunwala College, Dibyendu Das (IITB Physics) Ghatkopar(W), Mumbai 400 086 Deepak Dhar (IISER, Pune) Shankar Ghosh (TIFR) Date: Saturday, 8th April 2017 Sudhir Jain (BARC) Mahendra Khandkar (Pillai College, Panvel) Aniruddha Pandit (ICT, Matunga) Punit Parmananda (IITB Physics) Anirban Sain (IITB Physics) For Registration: Visit https://sites.google.com/view/tmapm2017/registration or contact [email protected].
    [Show full text]
  • IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof
    dm{f©H$ à{VdoXZ Annual Report 2015-16 ¼ããäÌãÓ¾ã ãä¶ã¹ã¥ã †Ìãâ Êãà¾ã „ÞÞã¦ã½ã ½ãÖ¦Ìã ‡ãŠñ †‡ãŠ †ñÔãñ Ìãõ—ãããä¶ã‡ãŠ ÔãâÔ©ãã¶ã ‡ãŠãè Ô©ãã¹ã¶ãã ãä•ãÔã½ãò ‚㦾ãã£ãìãä¶ã‡ãŠ ‚ã¶ãìÔãâ£ãã¶ã Ôããä֦㠂㣾ãã¹ã¶ã †Ìãâ ãäÍãàã¥ã ‡ãŠã ¹ãî¥ãùã Ôãñ †‡ãŠãè‡ãŠÀ¥ã Öãñý ãä•ã—ããÔãã ¦ã©ãã ÀÞã¶ã㦽ã‡ãŠ¦ãã Ôãñ ¾ãì§ãŠ ÔãÌããó§ã½ã Ôã½ãã‡ãŠÊã¶ã㦽ã‡ãŠ ‚㣾ãã¹ã¶ã ‡ãñŠ ½ã㣾ã½ã Ôãñ ½ããõãäÊã‡ãŠ ãäÌã—ãã¶ã ‡ãŠãñ ÀãñÞã‡ãŠ ºã¶ãã¶ããý ÊãÞããèÊãñ †Ìãâ Ôããè½ããÀãäÖ¦ã / ‚ãÔããè½ã ¹ã㟿ã‰ãŠ½ã ¦ã©ãã ‚ã¶ãìÔãâ£ãã¶ã ¹ããäÀ¾ããñ•ã¶ãã‚ããò ‡ãñŠ ½ã㣾ã½ã Ôãñ œãñ›ãè ‚ãã¾ãì ½ãò Öãè ‚ã¶ãìÔãâ£ãã¶ã àãñ¨ã ½ãò ¹ãÆÌãñÍãý Vision & Mission Establish scientific institution of the highest caliber where teaching and education are totally integrated with state-of-the- art research Make learning of basic sciences exciting through excellent integrative teaching driven by curiosity and creativity Entry into research at an early age through a flexible borderless curriculum and research projects Annual Report 2015-16 Governance Correct Citation Board of Governors IISER Pune Annual Report 2015-16 Chairperson Pune, India Prof. T.V. Ramakrishnan (till 03/12/2015) Emeritus Professor of Physics, DAE Homi Bhabha Professor, Department of Physics, Indian Institute of Science, Bengaluru Published by Dr. K. Venkataramanan (from 04/12/2015) Director and President (Engineering and Construction Projects), Dr.
    [Show full text]
  • ICTS POSTER Outside Bangalore
    T A T A I N S T I T U T E O F F U N D A M E N T A L R E S E A R C H A HOMI BHABHA BIRTH CENTENARY & ICTS INAUGURAL EVENT International Centre Theoretical Sciences science without bo28 Decemberun 2009d29 -a 31 Decemberri e2009s Satish Dhawan Auditorium Faculty Hall Indian Institute of Science, Bangalore. www.icts.res.in/program/icts-ie INVITED SPEAKERS / PANELISTS INCLUDE FOUNDATION STONE CEREMONY Siva Athreya ISI, Bangalore OF ICTS CAMPUS Naama Barkai Weizmann Institute The foundation stone will be unveiled by Manjul Bhargava Princeton University Prof. C N R Rao, FRS 4:00 pm, 28 December 2009 Édouard Brézin École Normale Supérieure Amol Dighe TIFR Michael Green DAMTP, Cambridge Chandrashekhar Khare UCLA Yamuna Krishnan NCBS-TIFR Lyman Page Princeton University Jaikumar Radhakrishnan TIFR C. S. Rajan TIFR Sriram Ramaswamy IISc G. Rangarajan IISc C. N. R. Rao JNCASR Subir Sachdev Harvard University K. Sandeep CAM-TIFR Sriram Shastry UC Santa Cruz PUBLIC LECTURES Ashoke Sen HRI J. N. Tata Auditorium, IISc (FREE AND OPEN TO ALL) Anirvan Sengupta Rutgers University K. R. Sreenivasan Abdus Salam ICTP Michael Atiyah University of Edinburgh Andrew Strominger Harvard University Truth and Beauty in Mathematics and Physics 5:30 pm, 27 December 2009 Raman Sundrum Johns Hopkins University Ajay Sood IISc David Gross KITP, Santa Barbara The Role of Theory in Science Tarun Souradeep IUCAA 5:30 pm, 28 December 2009 Eitan Tadmor University of Maryland Albert Libchaber Rockefeller University Sandip Trivedi TIFR The Origin of Life: from Geophysics to Biology? Mukund Thattai NCBS-TIFR 5:30 pm, 30 December 2009 S.
    [Show full text]
  • Tata Institute of Fundamental Research Prof
    Annual Report 1988-89 Tata Institute of Fundamental Research Prof. M. G. K. Menon inaugurating the Pelletron Accelerator Facility at TIFR on December 30, 1988. Dr. S. S. Kapoor, Project Director, Pelletron Accelerator Facility, explaining salient features of \ Ion source to Prof. M. G. K. Menon, Dr. M. R. Srinivasan, and others. Annual Report 1988-89 Contents Council of Management 3 School of Physics 19 Homi Bhabha Centre for Science Education 80 Theoretical Physics l'j Honorary Fellows 3 Theoretical A strophysics 24 Astronomy 2') Basic Dental Research Unit 83 Gravitation 37 A wards and Distinctions 4 Cosmic Ray and Space Physics 38 Experimental High Energy Physics 41 Publications, Colloquia, Lectures, Seminars etc. 85 Introduction 5 Nuclear and Atomic Physics 43 Condensed Matter Physics 52 Chemical Physics 58 Obituaries 118 Faculty 9 Hydrology M Physics of Semi-Conductors and Solid State Electronics 64 Group Committees 10 Molecular Biology o5 Computer Science 71 Administration. Engineering Energy Research 7b and Auxiliary Services 12 Facilities 77 School of Mathematics 13 Library 79 Tata Institute of Fundamental Research Homi Bhabha Road. Colaba. Bombav 400005. India. Edited by J.D. hloor Published by Registrar. Tata Institute of Fundamental Research Homi Bhabha Road, Colaba. Bombay 400 005 Printed bv S.C. Nad'kar at TATA PRESS Limited. Bombay 400 025 Photo Credits Front Cover: Bharat Upadhyay Inside: Bharat Upadhyay & R.A. A chary a Design and Layout by M.M. Vajifdar and J.D. hloor Council of Management Honorary Fellows Shri J.R.D. Tata (Chairman) Prof. H. Alfven Chairman. Tata Sons Limited Prof. S. Chandrasekhar Prof.
    [Show full text]
  • Annual Report
    THE INSTITUTE OF MATHEMATICAL SCIENCES C. I. T. Campus, Taramani, Chennai - 600 113. ANNUAL REPORT Apr 2003 - Mar 2004 Telegram: MATSCIENCE Fax: +91-44-2254 1586 Telephone: +91-44-2254 2398, 2254 1856, 2254 2588, 2254 1049, 2254 2050 e-mail: offi[email protected] ii Foreword I am pleased to present the progress made by the Institute during 2003-2004 in its many sub-disciplines and note the distinctive achievements of the members of the Institute. As usual, 2003-2004 was an academically productive year in terms of scientific publications and scientific meetings. The Institute conducted the “Fifth SERC School on the Physics of Disordered Systems”; a two day meeting on “Operator Algebras” and the “third IMSc Update Meeting: Automata and Verification”. The Institute co-sponsored the conference on “Geometry Inspired by Physics”; the “Confer- ence in Analytic Number Theory”; the fifth “International Conference on General Relativity and Cosmology” held at Cochin and the discussion meeting on “Field-theoretic aspects of gravity-IV” held at Pelling, Sikkim. The Institute faculty participated in full strength in the AMS conference in Bangalore. The NBHM Nurture Programme, The Subhashis Nag Memorial Lecture and The Institute Seminar Week have become an annual feature. This year’s Nag Memorial Lecture was delivered by Prof. Ashoke Sen from the Harish-Chandra Research Institute, Allahabad. The Institute has also participated in several national and international collaborative projects: the project on “Automata and concurrency: Syntactic methods for verification”, the joint project of IMSc, C-DAC and DST to bring out CD-ROMS on “The life and works of Srini- vasa Ramanujan”, the Xth plan project “Indian Lattice Gauge Theory Initiative (ILGTI)”, the “India-based neutrino observatory” project, the DRDO project on “Novel materials for applications in molecular electronics and energy storage devices” the DFG-INSA project on “The spectral theory of Schr¨odinger operators”, and the Indo-US project on “Studies in quantum statistics”.
    [Show full text]
  • Mathematical Physics and String Theory
    TIFR Annual Report 2001-02 THEORETICAL PHYSICS String Theory and Mathematical Physics Tachyon Condensation and Black Hole Entropy Condensation of tahcyons in closed string theory was analyzed and its connection with the computation of the black hole entropy was pointed out. The entropy computed in this manner was found to be in precise agreement with the the Bekenstein-Hawking Entropy. [Atish Dabholkar] Tachyon Potential and C-function A tachyon potential with the appropriate critical points was proposed in terms of an effective c-function of the worldsheet theory and it was determined as a solution of certain integrable equations. [Atish Dabholkar and C. Vafa of Harvard University] D-branes in PP-wave Backgrounds Dirichlet branes in the background of a PP wave were constructed and the open string spectrum was in agreement with the gauge theory spectrum. [Atish Dabholkar and Sharoukh Parvizi] Loop Equation and Wilson Line Correlators in Non-commutative Gauge Theories Loop equations for correlators of Wilson line operators in non-commutative gauge theories were derived. Unlike what happens for closed Wilson loops, the joining term survives in the planar equations. This fact was used to obtain a NEW loop equation which relates the correlation function of an arbitrary number of Wilson lines to a set of closed Wilson loops, obtained by joining the individual Wilson lines together by a series of well-defined cutting and joining manipulations. For closed loops, we showed that the non-planar contributions do not have a smooth limit in the limit of vanishing non-commutativity and hence the equations do not reduce to their commutative counterparts [Avinash Dhar and Y.
    [Show full text]
  • Annual Report
    THE INSTITUTE OF MATHEMATICAL SCIENCES C. I. T. Campus, Taramani, Chennai - 600 113. ANNUAL REPORT Apr 2015 - Mar 2016 Telegram: MATSCIENCE Telephone: +91-44-22543100,22541856 Fax:+91-44-22541586 Website: http://www.imsc.res.in/ e-mail: offi[email protected] Foreword The Institute of Mathematical Sciences, Chennai has completed 53 years and I am pleased to present the annual report for 2015-2016 and note the strength of the institute and the distinctive achievements of its members. Our PhD students strength is around 170, and our post-doctoral student strength is presently 59. We are very pleased to note that an increasing number of students in the country are ben- efiting from our outreach programmes (for instance, Enriching Mathematics Education, FACETS 2015, Physics Training and Talent Search Workshop) and we are proud of the efforts of our faculty, both at an individual and at institutional level in this regard. IMSc has started a monograph series last year, with a plan to publish at least one book every year. A book entitled “Problems in the Theory of Modular Forms” as ‘IMSc Lecture Notes - 1’ has been published this year Academic productivity of the members of the Institute has remained high. There were several significant publications reported in national and international journals and our faculty have authored a few books as well. Five students were awarded Ph.D., and three students have submitted their Ph.D. theses. Four students were awarded M.Sc. by Research, and two students have submitted their master’s theses under the supervision of our faculty.
    [Show full text]
  • SYMPHY 2011 Saturday, January 15, 2011 PROGRAM 08:30 Distribution of Symposium Material and Lunch Coupons for Registered Partici
    SYMPHY 2011 Saturday, January 15, 2011 PROGRAM 08:30 Distribution of symposium material and lunch coupons for registered participants Session 1 Chair: Sushant Raut Time Title Speaker 09:00 ZnO nanowires: Fabrication and utilization in Ajay Kushwaha electronic devices 09:20 Standard Model of particle physics with four chiral Debasish Borah generations 09:40 Study of laser action in functionalized opal Photonic Sunita Kedia crystal 10:00 Ab initio real space approach to electronic structure Ravindra Shinde calculations in solids 10:20 TEA BREAK Session 2 Chair: TBA Time Title Speaker 10:40 Probing Lorentz invariance at EeV energy Reetanjali Moharana 11:00 Activities in the low temperature physics group Anil Kumar Yadav 11:20 Resonances in heavy ion collision experiments at Prabhat Pujahari Relativistic Heavy Ion Collider at Brookhaven National Laboratory 11:40 Spectroscopic studies of large sheets of grapheme D S Sutar oxide and reduced grapheme oxide monolayers prepared by Langmuir-Blodgett technique 12:00 Invited Talk: Prof. Deepak Dhar (TIFR, Mumbai): Pattern formation in growing sandpiles 13:00 Lunch (Gulmohar Cafeteria) Session 3 Chair: Pawan Kumar Time Title Speaker 14:30 The physics potential of a 2540 km superbeam long Suprabh Prakash baseline experiment 14:50 Magneto-plasmonic Fe3O4@Ag core-shell Jeotikanta Mohapatra nanoparticles for multimodal contrast agent 15:10 Generalized Parton Distributions in longitudinal and Ravi Manohar transverse position space 15:30 Research aspects of carbon nanotubes Neha Kulshrestha 15:50 Coarsening in polycrystalline material using Santidan Biswas Quaternions 16:10 NMR research at Physics department, IIT Bombay Tushar K Dey 16:30 Invited talk: Prof.
    [Show full text]
  • 2011-2012 SBP Courses 13-14
    7/15/13 Subject Board of Physics Subject Board of Physics Home Admissions Guidelines About Courses Members SBP Course for Academic Year 2011-2012 SBP Courses 13-14 Please Note Autumn 2013 Autumn 2013 Timetable In all e-mail addresses add @tifr.res.in unless otherwise mentioned. Courses offered earlier To access any course material posted by the instructor, please click on the link. Legends : Read carefully @ : Mandatory for 1st year students with B.Sc degree. $ : Mandatory for 1st year students joining with M.Sc degree. Conact Us & : Mandatory for 2nd year students with B.Sc degree. Ms. Shraddha Narkar Office : Subject Board for Physics # : Mandatory for 2nd year students with M.Sc. degree joining Department of Astronomy & Astrophysics. Room No: P07 Tata Institute of Fundamental * : Students joining with M.Sc. degree are encouraged to take DROP TESTS for these Research courses. The drop test is held at the beginning of the semester. If you are interested in Homi Bhabha Road, Colaba, taking a drop test for any course kindly contact the Graduate Course Coordinator or Mumbai 400005. send a mail to sbp [at] theory.tifr.res.in Telephone : +91-22-22782388 Email1 : gcc [at] tifr.res.in Autumn 2011 Courses Email2 : sbp.tifr [at] gmail.com Core Courses Course Instructor Email Quantum Mechanics I @ Nilmani Mathur nilmani@theory Mathematical Methods @$* Saumen Datta saumen@theory Electrodynamics $&* Amol Dighe amol@theory Exp. Physics + Lab @$ G. R. Kumar, S. S. Prabhu grk, prabhu Classical Mechanics @ Sourendu Gupta sgupta@theory Electronics @ A. Thamizavel thamizh Atomic and Molecular Physics & V. Prabhudesai vaibhav Astronomy and Astrophysics &# Gopa Kumar gopu Nuclear Physics & V.
    [Show full text]
  • Conformal $ N $-Point Functions in Momentum Space
    Conformal n-point functions in momentum space Adam Bzowski∗ Department of Physics and Astronomy, Uppsala University, 751 08 Uppsala, Sweden. Paul McFaddeny School of Mathematics, Statistics & Physics, Newcastle University, Newcastle NE1 7RU, U.K. Kostas Skenderisz STAG Research Center & Mathematical Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K. We present a Feynman integral representation for the general momentum-space scalar n-point function in any conformal field theory. This representation solves the conformal Ward identities and features an arbitrary function of n(n − 3)=2 variables which play the role of momentum-space conformal cross-ratios. It involves (n − 1)(n − 2)=2 integrations over momenta, with the momenta running over the edges of an (n − 1)-simplex. We provide the details in the simplest non-trivial case (4-point functions), and for this case we identify values of the operator and spacetime dimensions for which singularities arise leading to anomalies and beta functions, and discuss several illustrative examples from perturbative quantum field theory and holography. I. MOTIVATION recent efforts, all the necessary prerequisites are now in place. Firstly, the momentum-space 3-point functions The structure of correlation functions in a conformal of general scalar and tensorial operators are known, in- field theory (CFT) is highly constrained by conformal cluding the cases where anomalies and beta functions symmetry. It has been known since the work of Polyakov arise as a result of renormalization [34{46]. Secondly, [1,2] that the most general 4-point function of scalar momentum-space studies of the 4-point function have yielded special classes of solutions to the conformal Ward primary operators ∆j , each of dimension ∆j, takes the form O identities [15, 32, 47{51].
    [Show full text]
  • Infosys Science Foundation Announces Winners of the Infosys Prize 2010
    PRESS RELEASE Infosys Science Foundation Announces Winners of the Infosys Prize 2010 Winners to be awarded 50 lakh in Recognition of their Outstanding Contributions to Scientific Research Bangalore, India – October 25, 2010: The Infosys Science Foundation today announced the winners of the Infosys Prize 2010 recognizing outstanding contributions to scientific research that have impacted India. The winners across five categories – Mathematical Sciences, Physical Sciences, Engineering and Computer Science, Life Sciences and Social Sciences, were announced by the Trustees of the Infosys Science Foundation, Mr. N R Narayana Murthy, Mr. K Dinesh and Mr. S Gopalakrishnan at a press conference hosted at the Infosys Technologies campus in Bangalore. The winners of the Infosys Prize 2010 were chosen by jury panels comprising of eminent scientists and professors from across the globe. In recognition of their outstanding contributions to scientific research, the winners will receive a cash prize of 50 lakh, a citation certificate and a gold medallion. The award ceremony for the Infosys Prize 2010 will be held on January 6, 2011 in Mumbai, where Dr. Manmohan Singh, Prime Minister of India will present the awards to the winners. The winners of the Infosys Prize 2010 are: Mathematical Sciences Professor Chandrashekhar Khare, Mathematics Department, University of California, Los Angeles (UCLA), Los Angeles Physical Sciences Professor Sandip Trivedi, Theoretical Physics Department, Tata Institute of Fundamental Research (TIFR), Mumbai Engineering and Computer Science Professor Ashutosh Sharma, Chemical Engineering Department, Indian Institute of Technology (IIT), Kanpur Life Sciences Dr. Chetan E. Chitnis, Principal Leader, Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Delhi Social Sciences Sociology Professor Amita Baviskar, Sociology Unit, Institute of Economic Growth (IEG), Delhi Social Anthropology Professor Nandini Sundar, Sociology Department, Delhi School of Economics (DSE), Delhi Speaking at the event, Mr.
    [Show full text]
  • Annual Report
    THE INSTITUTE OF MATHEMATICAL SCIENCES C. I. T. Campus, Taramani, Chennai - 600 113. ANNUAL REPORT Aug 2001 - Jul 2002 Telegram: MATSCIENCE Fax: +91-44-254 1586 Telephone: +91-44-254 2398, 254 1856, 254 2588, 254 1049, 254 2050 e-mail: offi[email protected] ii Foreword I am pleased to present the progress made by the Institute during 2001-2002 in its many sub-disciplines and note the distinctive achievements of the members of the Institute. The construction of additional office space and an auditorium was completed and the new office space has now been occupied. The Auditorium, which has a seating capacity of 190, was named the Ramanujan Auditorium and was inaugurated on June 22nd by Dr. Anil Kakodkar. On behalf of the Institute, I convey my sincere thanks to Dr. R. Chidambaram (the previous Chairman of AEC), Dr. Anil Kakodkar (the present Chairman), and Mrs. Sudha Bhave (Joint Secretary, DAE), for the keen interest shown by them in the progress of this building project and the help and support extended to us at every stage. I am pleased to mention that 2001-2002 was an academically productive year and many interesting events took place. The B. M. Birla Award was given to Dr. Kapil Paranjape for Mathematical Science for the year 1999, and to Dr. Sudeshna Sinha for Physical Sciences for the year 2001. Dr. Kapil Paranjape was awarded a DST-Swarnajayanthi Project on Cycles, Arithmetic and Cryptography. Prof. K. Srinivasa Rao was awarded the Tamil Nadu Scientists Award for the year 2000 by the Tamil Nadu State Council for Science and Technology.
    [Show full text]