Interactive Visualization Methods for Mobile Device Applications

Total Page:16

File Type:pdf, Size:1020Kb

Interactive Visualization Methods for Mobile Device Applications Interactive Visualization Methods for Mobile Device Applications Von der Fakultat¨ Informatik, Elektrotechnik und Informationstechnik der Universitat¨ Stuttgart zur Erlangung der Wurde¨ eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Joachim Diepstraten aus Leonberg Hauptberichter: Prof. Dr. T. Ertl Mitberichter: Prof. Dr. T. Strothotte Tag der mundlichen¨ Prufung:¨ 24.1.2006 Institut fur¨ Visualisierung und Interaktive Systeme der Universitat¨ Stuttgart 2005 ii iii To the two special persons I have met in my life iv Contents Lists ix List of Tables . ix List of Figures . xi List of Color Figures . xv Abstract xvii Zusammenfassung xviii 1 Introduction 1 2 3D Graphic APIs for Mobile Devices 5 2.1 Graphics Hardware . 5 2.1.1 Geometry Transfer and Primitives . 6 2.1.2 Vertex Processing . 7 2.1.3 Fragment Processing . 7 2.1.4 Frame buffer Operations . 7 2.2 The OpenGL ES API . 8 j 2.3 The Direct3D Mobile API . 9 2.4 Performance Analysis . 10 2.4.1 Software Rendering Library: Gerbera . 11 2.4.2 Software Rendering Library: Vincent . 13 2.4.3 Software Rendering Library: Klimt . 14 2.4.4 Conclusion . 15 vi CONTENTS 3 Remote Rendering Methods 17 3.1 Classification . 17 3.1.1 Render Remote . 17 3.1.2 Render Local . 18 3.1.3 Shared Visualization or Immediate-mode Rendering . 18 3.2 Different Render Remote Solutions . 18 3.3 An Image-based Remote Rendering Solution for Mobile Devices . 21 3.3.1 Dynamic Linking . 22 3.3.2 Library Architecture . 22 3.3.3 Evaluation of the previous Solution . 23 3.4 Improvements and Accelerations . 24 3.4.1 Data Rate Reduction . 25 3.4.2 Software Compression . 25 3.4.3 Using Different Rendering Styles to Increase Compression Ratios . 28 3.4.4 Motion Handling . 30 3.4.5 Latency Reduction . 30 3.4.6 Hardware Compression/Decompression . 31 3.5 An Alternative Remote Rendering Method . 35 3.5.1 Basic Concept . 36 3.5.2 Implementation . 38 3.5.3 Results . 41 3.5.4 Open Issues . 44 4 Rendering Transparent Surfaces 45 4.1 Transparency in Computer Graphics: General . 45 4.2 Transparency in Technical Illustrations . 46 4.2.1 Direct Transparency Methods for Line Drawings . 48 4.2.2 Direct Transparency Methods for Color Illustrations . 50 4.2.3 Indirect Method: Explosion Illustrations . 61 4.2.4 Indirect method: Cutaway illustrations . 62 4.2.5 Hybrid Method: Ghosting illustrations . 76 4.3 An Extension to Graphics Hardware . 78 CONTENTS vii 4.3.1 Architecture . 78 4.3.2 A Simulator for Vragments . 80 4.3.3 Benefits of Vragments . 81 4.3.4 Open Issues of Vragments . 85 4.3.5 Conclusion . 86 4.4 Transparency and Reflections in Cel Animation . 86 4.4.1 Analysis of Reflection Types . 88 4.4.2 Analysis of Transparency Types . 90 4.4.3 Implementation . 91 4.4.4 Results . 97 4.5 Improving the Rendering of Transparent Surfaces in Computer Graphics . 98 4.5.1 Transparency Models . 99 4.5.2 Proposal of a New Model . 103 4.5.3 Comparison of Models . 104 4.5.4 Implementation . 106 5 Three-dimensional Graphical User Interface for Mobile Devices 109 5.1 Why Three-dimensional Graphical User Interfaces? . 109 5.1.1 2D versus 3D on Desktop Computers . 110 5.1.2 2D versus 3D on Mobile Devices . 115 5.2 Design of a Platform Independent 3D GUI toolkit . 116 5.2.1 General . 116 5.2.2 Camera Control . 117 5.2.3 Occlusion of Windows . 117 5.2.4 Lighting . 119 5.2.5 Antialiasing . 119 5.2.6 Text Output . 120 5.2.7 Text Input . 120 5.2.8 Event Handling . 121 5.2.9 Geometry Management . 122 5.3 Results . 124 5.4 Open Issues . 127 viii Table of contents 6 Summary 129 6.1 Conclusion . 129 6.2 Summary . 131 6.3 Outlook . 133 A Color plates 135 B Bibliography 145 Lists List of Tables 2.1 Functions and features removed from OpenGL ES in the different rendering j pipeline stages compared to OpenGL. 11 2.2 Rendering performance of Gerbera for the different scenarios. 12 2.3 Rendering performance of Vincent for the different scenarios. 14 2.4 Rendering performance of Klimt for the different scenarios. 14 3.1 Frame rates for different scenarios. Left: 802.11b WLAN, right: Fast Ethernet. 27 3.2 Comparison of different image data size when using different rendering styles and lossless compression. 30 3.3 Comparison of the efficiency between Method I and Method II for getting the 2D line data. 41 3.4 Frame rates achieved on different mobile clients with different screen resolutions. 42 3.5 Amount of time spent on the server for each task of the two different test scenarios. 43 4.1 Performance measurements of the OpenGL implementation . 60 4.2 Performance measurements of the new Direct3D9 pixel shader 2 implementation of Method II. 61 4.3 Performance measurements for the Lancia engine model in frames per second. The tests were carried out with the OpenGL Geforce3 specific implementation. 75 4.4 Performance measurements in frames per second. The tests were carried out with the Direct3D9 pixel shader 2.0 implementation. 75 4.5 Performance measurements for two different scenarios. 98 5.1 Policy and dependency of different size parameters between parent, current, and child widget. 124 x List of Tables List of Figures 2.1 Current GPU programming model. 6 2.2 A schematic overview of the OpenGL ES pipeline. 9 j 2.3 Overview of the different OpenGL ES profile concerning footprint, performance, j and power consumption. 10 2.4 Overview of Vincent's runtime code generation method. 13 3.1 Remote visualization using the standard X display forwarding mechanism. 19 3.2 Overview of the remote rendering architecture as described by Engel et al. [ESE00]. 20 3.3 Overview of the SGI Vizserver remote rendering architecture. 20 3.4 Overview of the GLX architecture. 21 3.5 System architecture as described by Stegmaier et al. [SME02]. (1) The applica- tion issues a GLX request which is sent to the render server. (2) The application issues OpenGL calls, which are handled by the render device. (3) The library reads the contents of the frame buffer and (4) sends it to the interaction server using XPutImage request. (5) XEvents are sent from the interaction server to the application. 23 3.6 System architecture from Stegmaier et al. [SME02] used together with VNC. 23 3.7 Revised two-component architecture of the generic remote visualization system with custom image compression. 25 3.8 Visual quality comparison between a jpeg compressed rendered image (right) and the same image uncompressed (left). 26 3.9 Visual quality comparison between different compression techniques. (a) loss- less lzo, (b) block-based CCC, (c) transformation-based BTPC. 27 3.10 Example scenario taken to compare different data sizes. (a) per-pixel Blinn & Phong rendering (b) cool & warm shading (c) cel shading. 29 3.11 Visual explanation of the CCC algorithm. Upper part shows how the bit mask is generated. Lower part shows the encoding of the two colors for each 4x4 pixel block. ..
Recommended publications
  • Release Notes for X11R6.8.2 the X.Orgfoundation the Xfree86 Project, Inc
    Release Notes for X11R6.8.2 The X.OrgFoundation The XFree86 Project, Inc. 9February 2005 Abstract These release notes contains information about features and their status in the X.Org Foundation X11R6.8.2 release. It is based on the XFree86 4.4RC2 RELNOTES docu- ment published by The XFree86™ Project, Inc. Thereare significant updates and dif- ferences in the X.Orgrelease as noted below. 1. Introduction to the X11R6.8.2 Release The release numbering is based on the original MIT X numbering system. X11refers to the ver- sion of the network protocol that the X Window system is based on: Version 11was first released in 1988 and has been stable for 15 years, with only upwardcompatible additions to the coreX protocol, a recordofstability envied in computing. Formal releases of X started with X version 9 from MIT;the first commercial X products werebased on X version 10. The MIT X Consortium and its successors, the X Consortium, the Open Group X Project Team, and the X.OrgGroup released versions X11R3 through X11R6.6, beforethe founding of the X.OrgFoundation. Therewill be futuremaintenance releases in the X11R6.8.x series. However,efforts arewell underway to split the X distribution into its modular components to allow for easier maintenance and independent updates. We expect a transitional period while both X11R6.8 releases arebeing fielded and the modular release completed and deployed while both will be available as different consumers of X technology have different constraints on deployment. Wehave not yet decided how the modular X releases will be numbered. We encourage you to submit bug fixes and enhancements to bugzilla.freedesktop.orgusing the xorgproduct, and discussions on this server take place on <[email protected]>.
    [Show full text]
  • THINC: a Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices
    THINC: A Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices Ricardo A. Baratto Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 c 2011 Ricardo A. Baratto This work may be used in accordance with Creative Commons, Attribution-NonCommercial-NoDerivs License. For more information about that license, see http://creativecommons.org/licenses/by-nc-nd/3.0/. For other uses, please contact the author. ABSTRACT THINC: A Virtual and Remote Display Architecture for Desktop Computing and Mobile Devices Ricardo A. Baratto THINC is a new virtual and remote display architecture for desktop computing. It has been designed to address the limitations and performance shortcomings of existing remote display technology, and to provide a building block around which novel desktop architectures can be built. THINC is architected around the notion of a virtual display device driver, a software-only component that behaves like a traditional device driver, but instead of managing specific hardware, enables desktop input and output to be intercepted, manipulated, and redirected at will. On top of this architecture, THINC introduces a simple, low-level, device-independent representation of display changes, and a number of novel optimizations and techniques to perform efficient interception and redirection of display output. This dissertation presents the design and implementation of THINC. It also intro- duces a number of novel systems which build upon THINC's architecture to provide new and improved desktop computing services. The contributions of this dissertation are as follows: • A high performance remote display system for LAN and WAN environments.
    [Show full text]
  • Linux on the Road
    Linux on the Road Linux with Laptops, Notebooks, PDAs, Mobile Phones and Other Portable Devices Werner Heuser <wehe[AT]tuxmobil.org> Linux Mobile Edition Edition Version 3.22 TuxMobil Berlin Copyright © 2000-2011 Werner Heuser 2011-12-12 Revision History Revision 3.22 2011-12-12 Revised by: wh The address of the opensuse-mobile mailing list has been added, a section power management for graphics cards has been added, a short description of Intel's LinuxPowerTop project has been added, all references to Suspend2 have been changed to TuxOnIce, links to OpenSync and Funambol syncronization packages have been added, some notes about SSDs have been added, many URLs have been checked and some minor improvements have been made. Revision 3.21 2005-11-14 Revised by: wh Some more typos have been fixed. Revision 3.20 2005-11-14 Revised by: wh Some typos have been fixed. Revision 3.19 2005-11-14 Revised by: wh A link to keytouch has been added, minor changes have been made. Revision 3.18 2005-10-10 Revised by: wh Some URLs have been updated, spelling has been corrected, minor changes have been made. Revision 3.17.1 2005-09-28 Revised by: sh A technical and a language review have been performed by Sebastian Henschel. Numerous bugs have been fixed and many URLs have been updated. Revision 3.17 2005-08-28 Revised by: wh Some more tools added to external monitor/projector section, link to Zaurus Development with Damn Small Linux added to cross-compile section, some additions about acoustic management for hard disks added, references to X.org added to X11 sections, link to laptop-mode-tools added, some URLs updated, spelling cleaned, minor changes.
    [Show full text]
  • Virtualgl / Turbovnc Survey Results Version 1, 3/17/2008 -- the Virtualgl Project
    VirtualGL / TurboVNC Survey Results Version 1, 3/17/2008 -- The VirtualGL Project This report and all associated illustrations are licensed under the Creative Commons Attribution 3.0 License. Any works which contain material derived from this document must cite The VirtualGL Project as the source of the material and list the current URL for the VirtualGL web site. Between December, 2007 and March, 2008, a survey of the VirtualGL community was conducted to ascertain which features and platforms were of interest to current and future users of VirtualGL and TurboVNC. The larger purpose of this survey was to steer the future development of VirtualGL and TurboVNC based on user input. 1 Statistics 49 users responded to the survey, with 32 complete responses. When listing percentage breakdowns for each response to a question, this report computes the percentages relative to the total number of complete responses for that question. 2 Responses 2.1 Server Platform “Please select the server platform(s) that you currently use or plan to use with VirtualGL/TurboVNC” Platform Number of Respondees (%) Linux/x86 25 / 46 (54%) ● Enterprise Linux 3 (x86) 2 / 46 (4.3%) ● Enterprise Linux 4 (x86) 5 / 46 (11%) ● Enterprise Linux 5 (x86) 6 / 46 (13%) ● Fedora Core 4 (x86) 1 / 46 (2.2%) ● Fedora Core 7 (x86) 1 / 46 (2.2%) ● Fedora Core 8 (x86) 4 / 46 (8.7%) ● SuSE Linux Enterprise 9 (x86) 1 / 46 (2.2%) 1 Platform Number of Respondees (%) ● SuSE Linux Enterprise 10 (x86) 2 / 46 (4.3%) ● Ubuntu (x86) 7 / 46 (15%) ● Debian (x86) 5 / 46 (11%) ● Gentoo (x86) 1 /
    [Show full text]
  • Chapter 1. Origins of Mac OS X
    1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years.
    [Show full text]
  • Wearable Mixed Reality System in Less Than 1 Pound
    Eurographics Symposium on Virtual Environments (2006) Roger Hubbold and Ming Lin (Editors) Wearable Mixed Reality System In Less Than 1 Pound Achille Peternier,1 Frédéric Vexo1 and Daniel Thalmann1 1Virtual Reality Laboratory (VRLab), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland Abstract We have designed a wearable Mixed Reality (MR) framework which allows to real-time render game-like 3D scenes on see-through head-mounted displays (see through HMDs) and to localize the user position within a known internet wireless area. Our equipment weights less than 1 Pound (0.45 Kilos). The information visualized on the mobile device could be sent on-demand from a remote server and realtime rendered onboard. We present our PDA-based platform as a valid alternative to use in wearable MR contexts under less mobility and encumbering constraints: our approach eliminates the typical backpack with a laptop, a GPS antenna and a heavy HMD usually required in this cases. A discussion about our results and user experiences with our approach using a handheld for 3D rendering is presented as well. 1. Introduction also few minutes to put on or remove the whole system. Ad- ditionally, a second person is required to help him/her in- The goal of wearable Mixed Reality is to give more infor- stalling the framework for the first time. Gleue and Daehne mation to users by mixing it with the real world in the less pointed the encumbering, even if limited, of their platform invasive way. Users need to move freely and comfortably and the need of a skilled technician for the maintenance of when wear such systems, in order to improve their expe- their system [GD01].
    [Show full text]
  • MC-1200 Series Linux Software User's Manual
    MC-1200 Series Linux Software User’s Manual Version 1.0, November 2020 www.moxa.com/product © 2020 Moxa Inc. All rights reserved. MC-1200 Series Linux Software User’s Manual The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement. Copyright Notice © 2020 Moxa Inc. All rights reserved. Trademarks The MOXA logo is a registered trademark of Moxa Inc. All other trademarks or registered marks in this manual belong to their respective manufacturers. Disclaimer Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa. Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time. Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication. Technical Support Contact Information www.moxa.com/support Moxa Americas Moxa China (Shanghai office) Toll-free: 1-888-669-2872 Toll-free: 800-820-5036 Tel: +1-714-528-6777 Tel: +86-21-5258-9955 Fax: +1-714-528-6778 Fax: +86-21-5258-5505 Moxa Europe Moxa Asia-Pacific Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230 Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231 Moxa India Tel: +91-80-4172-9088 Fax: +91-80-4132-1045 Table of Contents 1.
    [Show full text]
  • X Window System Network Performance
    X Window System Network Performance Keith Packard Cambridge Research Laboratory, HP Labs, HP [email protected] James Gettys Cambridge Research Laboratory, HP Labs, HP [email protected] Abstract havior (or on a local machine, context switches between the application and the X server). Performance was an important issue in the develop- One of the authors used the network visualization tool ment of X from the initial protocol design and contin- when analyzing the design of HTTP/1.1 [NGBS 97]. ues to be important in modern application and extension The methodology and tools used in that analysis in- development. That X is network transparent allows us volved passive packet level monitoring of traffic which to analyze the behavior of X from a perspective seldom allowed precise real-world measurements and compar- possible in most systems. We passively monitor network isons. The work described in this paper combines this packet flow to measure X application and server perfor- passive packet capture methodology with additional X mance. The network simulation environment, the data protocol specific analysis and visualization. Our experi- capture tool and data analysis tools will be presented. ence with this combination of the general technique with Data from this analysis are used to show the performance X specific additions was very positive and we believe impact of the Render extension, the limitations of the provides a powerful tool that could be used in the analy- LBX extension and help identify specific application and sis of other widely used protocols. toolkit performance problems. We believe this analysis With measurement tools in hand, we set about char- technique can be usefully applied to other network pro- acterizing the performance of a significant selection of tocols.
    [Show full text]
  • Mac OS X and PDF: the Real Story
    Mac OS X and PDF The Real Story Leonard Rosenthol Lazerware, Inc. Copyright©1999-2001, Lazerware, Inc. Overview •Mac OS X •PDF • Where’s the overlap? Copyright©1999-2001, Lazerware, Inc. You are here because… • You’re currently working with Mac OS and are interested in what Mac OS X brings to the table. • You’re curious about what Apple’s latest hype is all about. • You’re already awake and had to find something to kill time. • You’re a friend of mine and wanted to heckle Copyright©1999-2001, Lazerware, Inc. How I do things • You should all have copies of the presentation that you received when you walked in. • There is also an electronic copy of this presentation (PDF format, of course!) on my website at http://www.lazerware.com/ • I’ve left time at the end for Q&A, but please feel free to ask questions at any time! Copyright©1999-2001, Lazerware, Inc. Mac OS X Overview Copyright©1999-2001, Lazerware, Inc. Darwin • “Core OS” (Kernel) – Solid Unix foundation • FreeBSD 3.2 & Mach 3.0 • Memory protection, preemptive multitasking, etc. – High performance I/O • Firewire, USB, etc. • Open source Copyright©1999-2001, Lazerware, Inc. Graphics •Quartz – Adobe Imaging Model (PDF) • Includes full anti-aliasing and opacity/transparency • OpenGL – Industry standard 3D engine used by Quake & Maya • QuickTime Copyright©1999-2001, Lazerware, Inc. Graphics Demos - Quartz Copyright©1999-2001, Lazerware, Inc. Graphics Demos – OpenGL Copyright©1999-2001, Lazerware, Inc. Application Frameworks • Classic – Compatibility “box” for existing Mac OS applications. • Carbon – Modern versions of Mac OS applications prepared for Mac OS X.
    [Show full text]
  • Release Notes for Xfree86® 4.8.0 the Xfree86 Project, Inc December 2008
    Release Notes for XFree86® 4.8.0 The XFree86 Project, Inc December 2008 Abstract This document contains information about the various features and their current sta- tus in the XFree86 4.8.0 release. 1. Introduction to the 4.x Release Series XFree86 4.0 was the first official release of the XFree86 4 series. The current release (4.8.0) is the latest in that series. The XFree86 4.x series represents a significant redesign of the XFree86 X server,with a strong focus on modularity and configurability. 2. Configuration: aQuickSynopsis Automatic configuration was introduced with XFree86 4.4.0 which makes it possible to start XFree86 without first creating a configuration file. This has been further improved in subsequent releases. If you experienced any problems with automatic configuration in a previous release, it is worth trying it again with this release. While the initial automatic configuration support was originally targeted just for Linux and the FreeBSD variants, as of 4.5.0 it also includes Solaris, NetBSD and OpenBSD support. Full support for automatic configuration is planned for other platforms in futurereleases. If you arerunning Linux, FreeBSD, NetBSD, OpenBSD, or Solaris, try Auto Configuration by run- ning: XFree86 -autoconfig If you want to customise some things afterwards, you can cut and paste the automatically gener- ated configuration from the /var/log/XFree86.0.log file into an XF86Config file and make your customisations there. If you need to customise some parts of the configuration while leav- ing others to be automatically detected, you can combine a partial static configuration with the automatically detected one by running: XFree86 -appendauto If you areusing a platform that is not currently supported, then you must try one of the older methods for getting started like "xf86cfg", which is our graphical configuration tool.
    [Show full text]
  • Mac OS X Technology Overview
    Mac OS X Technology Overview 2006-06-28 Finder, Safari, Spotlight, Tiger, and Xserve Apple Inc. are trademarks of Apple Inc. © 2004, 2006 Apple Computer, Inc. Adobe, Acrobat, and PostScript are All rights reserved. trademarks or registered trademarks of Adobe Systems Incorporated in the U.S. No part of this publication may be and/or other countries. reproduced, stored in a retrieval system, or transmitted, in any form or by any means, Intel and Intel Core are registered mechanical, electronic, photocopying, trademarks of Intel Corportation or its recording, or otherwise, without prior subsidiaries in the United States and other written permission of Apple Inc., with the countries. following exceptions: Any person is hereby Java and all Java-based trademarks are authorized to store documentation on a trademarks or registered trademarks of Sun single computer for personal use only and Microsystems, Inc. in the U.S. and other to print copies of documentation for countries. personal use provided that the OpenGL is a registered trademark of Silicon documentation contains Apple’s copyright Graphics, Inc. notice. PowerPC and and the PowerPC logo are The Apple logo is a trademark of Apple Inc. trademarks of International Business Use of the “keyboard” Apple logo Machines Corporation, used under license (Option-Shift-K) for commercial purposes therefrom. without the prior written consent of Apple UNIX is a registered trademark of The Open may constitute trademark infringement and Group unfair competition in violation of federal and state laws. Simultaneously published in the United States and Canada. No licenses, express or implied, are granted with respect to any of the technology Even though Apple has reviewed this document, APPLE MAKES NO WARRANTY OR described in this document.
    [Show full text]
  • A Hybrid Client-Server Based Technique for Navigation in Large Terrains Using Mobile Devices
    A Hybrid Client-Server Based Technique for Navigation in Large Terrains Using Mobile Devices Jos´eM. Noguera, Rafael J. Segura, Carlos J. Og´ayar Grupo de Gr´aficos y Geom´atica Universidad de Ja´en Robert Joan-Arinyo Grup d’Inform`atica a l’Enginyeria Universitat Polit`ecnica de Catalunya January 29, 2010 Abstract We describe a hybrid client-server technique for remote adaptive streaming and render- ing of large terrains in resource-limited mobile devices. The technique has been designed to achieve an interactive rendering performance on a mobile device connected to a low- bandwidth wireless network. The rendering workload is split between the client and the server. The terrain area close to the viewer is rendered in real-time by the client using a hierarchical multiresolution scheme. The terrain located far from the viewer is portrayed as view-dependent impostors, rendered by the server on demand and, then sent to the client. The hybrid technique provides tools to dynamically balance the rendering work- load according to the resources available at the client side and to the saturation of the network and server. A prototype has been built and an exhaustive set of experiments covering several platforms, wireless networks and a wide range of viewer velocities has been conducted. Results show that the approach is feasible, effective and robust. Keywords: Terrain navigation, Terrain rendering, Mobile computing, 3D graphics, Soft- ware Portability, Adaptive streaming. 1 Introduction Nowadays, mobile devices with computational capabilities like mobile phones and Personal Digital Assistants (PDA) are ubiquitous. Following the general framework depicted in Fig- ure 1, they are used as interactive guides to real environments, offer features such as Global Positioning Systems (GPS), access to location-based data and, visualization of maps and, terrain rendering.
    [Show full text]