Computing with Quantum Knots

Total Page:16

File Type:pdf, Size:1020Kb

Computing with Quantum Knots 56 SCIENTIFIC AMERICAN A PRIL 2006 COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. BY BRAIDING WORLD LINES (trajectories) of special particles, one can perform a quantum computation that is impossible for any ordinary (classical) computer. The particles live in a fluid known as a two-dimensional electron gas. Computing with Quantum Knots A machine based on bizarre particles called anyons that represents a calculation as a set of braids in spacetime might be a shortcut to practical quantum computation uantum computers promise to perform calculations be- lieved to be impossible for ordinary computers. Some of those calculations are of Qgreat real-world importance. For example, certain widely used encryption methods could be cracked given a computer capable of breaking a large number into its component factors within a reasonable length of time. Virtually all encryption methods used for highly sensitive data are vulnerable to one quantum algorithm or another. The extra power of a quantum computer comes about because it operates on information represented as qubits, or quantum bits, instead of bits. An ordinary classical bit can be either a 0 or a 1, and standard microchip architectures enforce that dichotomy rigorously. A qubit, in contrast, can be in a so-called superposition state, which entails proportions of 0 and 1 coexisting together. One can think of the possible qubit states as points on a sphere. The north pole is a classical 1, the south pole a 0, and all the points in between are all the possible superpositions of 0 and 1 [see “Rules for a Complex Quantum World,” by Michael A. Nielsen; Scien- tific American, November 2002]. The freedom that qubits have to roam across the entire sphere helps to give quantum computers their unique capabilities. Unfortunately, quantum computers seem to be extremely difficult to build. The qubits are typically expressed as certain quantum properties of trapped particles, GEORGE RETSECK By Graham P. Collins such as individual atomic ions or electrons. But their superposition states are ex- www.sciam.com SCIENTIFIC AMERICAN 57 COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. ceedingly fragile and can be spoiled by squashing and bending but not by cut- are instead quasiparticles—excitations the tiniest stray interactions with the ting or joining. It embraces such subjects in a two-dimensional electronic system ambient environment, which includes as knot theory. Small perturbations do that behave a lot like the particles and all the material making up the computer not change a topological property. For antiparticles of high-energy physics. itself. If qubits are not carefully isolated example, a closed loop of string with a And as a further complication, the qua- from their surroundings, such distur- knot tied in it is topologically different siparticles are of a special type called bances will introduce errors into the from a closed loop with no knot [see anyons, which have the desired mathe- computation. box on opposite page]. The only way to matical properties. Most schemes to design a quantum change the closed loop into a closed Here is a what a computation might computer therefore focus on finding loop plus knot is to cut the string, tie the look like: first, create pairs of anyons ways to minimize the interactions of the knot and then reseal the ends of the and place them along a line [see box on qubits with the environment. Research- string together. Similarly, the only way page 60]. Each anyon pair is rather like ers know that if the error rate can be to convert a topological qubit to a dif- a particle and its corresponding antipar- reduced to around one error in every ferent state is to subject it to some such ticle, created out of pure energy. 10,000 steps, then error-correction pro- violence. Small nudges from the envi- Next, move pairs of adjacent anyons cedures can be implemented to compen- ronment will not do the trick. around one another in a carefully deter- At first sight, a topological quantum computer does not seem much like a computer at all. sate for decay of individual qubits. Con- At first sight, a topological quantum mined sequence. Each anyon’s world structing a functional machine that has computer does not seem much like a line forms a thread, and the movements a large number of qubits isolated well computer at all. It works its calculations of the anyons as they are swapped this enough to have such a low error rate is a on braided strings—but not physical way and that produce a braiding of all daunting task that physicists are far strings in the conventional sense. Rath- the threads. The quantum computation from achieving. er, they are what physicists refer to as is encapsulated in the particular braid so A few researchers are pursuing a very world lines, representations of particles formed. The final states of the anyons, different way to build a quantum com- as they move through time and space. which embody the result of the computa- puter. In their approach the delicate (Imagine that the length of one of these tion, are determined by the braid and quantum states depend on what are strings represents a particle’s movement not by any stray electric or magnetic in- known as topological properties of a through time and that its thickness rep- teraction. And because the braid is topo- physical system. Topology is the math- resents the particle’s physical dimen- logical—nudging the threads a little bit ematical study of properties that are un- sions.) Moreover, even the particles in- this way and that does not change the changed when an object is smoothly de- volved are unlike the electrons and pro- braiding—it is inherently protected from formed, by actions such as stretching, tons that one might first imagine. They outside disturbances. The idea of using anyons to carry out computations in this Overview/Quantum Braids fashion was proposed in 1997 by Alexei Y. Kitaev, now at Microsoft. ■ Quantum computers promise to greatly exceed the abilities of classical Michael H. Freedman, now at Mi- computers, but to function at all, they must have very low error rates. crosoft, lectured at Harvard University Achieving the required low error rates with conventional designs is far beyond in the fall of 1988 on the possibility of current technological capabilities. using quantum topology for computa- ■ An alternative design is the so-called topological quantum computer, which tion. These ideas, published in a research would use a radically different physical system to implement quantum paper in 1998, built on the discovery computation. Topological properties are unchanged by small perturbations, that certain mathematical quantities leading to a built-in resistance to errors such as those caused by stray known as knot invariants were associ- interactions with the surrounding environment. ated with the quantum physics of a two- ■ Topological quantum computing would make use of theoretically postulated dimensional surface evolving in time. If excitations called anyons, bizarre particlelike structures that are possible in an instance of the physical system could a two-dimensional world. Experiments have recently indicated that anyons be created and an appropriate measure- exist in special planar semiconductor structures cooled to near absolute zero ment carried out, the knot invariant and immersed in strong magnetic fields. would be approximately computed auto- matically instead of via an inconvenient- 58 SCIENTIFIC AMERICAN A PRIL 2006 COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. TOPOLOGY AND KNOTS Topology of a closed loop (a) is unaltered if the string is pushed by moving around the string. Instead one must cut the string, tie the around to form another shape (b) but is different from that of knot and rejoin the ends. Consequently, the topology of the loop a closed loop with a knot tied in it (c). The knot cannot be formed just is insensitive to perturbations that only push the string around. a b c = = ly long calculation on a conventional it at various velocities, and so on. For when two particles are swapped. You computer. Equally diffi cult problems of example, a particle is most likely to be might say that their wave functions are more real-world importance would have found in a region where the wave func- multiplied by a factor of plus one. similar shortcuts. tion has a large amplitude. Deep mathematical reasons require Although it all sounds like wild theo- A pair of electrons is described by a that quantum particles in three dimen- rizing quite removed from reality, recent joint wave function, and when the two sions must be either fermions or bosons. experiments in a fi eld known as frac- electrons are exchanged, the resulting In two dimensions, another possibility tional quantum Hall physics have put joint wave function is minus one times arises: the factor might be a complex the anyon scheme on firmer footing. the original. That changes peaks of the phase. A complex phase can be thought Further experiments have been proposed wave into troughs, and vice versa, but it of as an angle. Zero degrees corresponds to carry out the rudiments of a topolog- has no effect on the amplitude of the to the number one; 180 degrees is minus ical quantum computation. oscillations. In fact, it does not change one. Angles in-between are complex any measurable quantity of the two numbers. For example, 90 degrees cor- Anyons electrons considered by themselves. responds to i, the square root of minus as previously mentioned, a to- What it does change is how the elec- one. As with a factor of minus one, mul- pological quantum computer braids trons might interfere with other elec- tiplying a wave function by a phase has world lines by swapping the positions of trons.
Recommended publications
  • Quantum Topology and Categorification Seminar, Spring 2017
    QUANTUM TOPOLOGY AND CATEGORIFICATION SEMINAR, SPRING 2017 ARUN DEBRAY APRIL 25, 2017 These notes were taken in a learning seminar in Spring 2017. I live-TEXed them using vim, and as such there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Michael Ball for finding and fixing a typo. CONTENTS Part 1. Quantum topology: Chern-Simons theory and the Jones polynomial 1 1. The Jones Polynomial: 1/24/171 2. Introduction to quantum field theory: 1/31/174 3. Canonical quantization and Chern-Simons theory: 2/7/177 4. Chern-Simons theory and the Wess-Zumino-Witten model: 2/14/179 5. The Jones polynomial from Chern-Simons theory: 2/21/17 13 6. TQFTs and the Kauffman bracket: 2/28/17 15 7. TQFTs and the Kauffman bracket, II: 3/7/17 17 Part 2. Categorification: Khovanov homology 18 8. Khovanov homology and computations: 3/21/17 18 9. Khovanov homology and low-dimensional topology: 3/28/17 21 10. Khovanov homology for tangles and Frobenius algebras: 4/4/17 23 11. TQFT for tangles: 4/11/17 24 12. The long exact sequence, functoriality, and torsion: 4/18/17 26 13. A transverse link invariant from Khovanov homology: 4/25/17 28 References 30 Part 1. Quantum topology: Chern-Simons theory and the Jones polynomial 1. THE JONES POLYNOMIAL: 1/24/17 Today, Hannah talked about the Jones polynomial, including how she sees it and why she cares about it as a topologist. 1.1. Introduction to knot theory.
    [Show full text]
  • Classical Topology and Quantum States∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server SU-4240-716 February 2000 Classical Topology and Quantum States∗ A.P. Balachandran Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA Abstract Any two infinite-dimensional (separable) Hilbert spaces are unitarily isomorphic. The sets of all their self-adjoint operators are also therefore unitarily equivalent. Thus if all self-adjoint operators can be observed, and if there is no further major axiom in quantum physics than those formulated for example in Dirac’s ‘Quantum Mechanics’, then a quantum physicist would not be able to tell a torus from a hole in the ground. We argue that there are indeed such axioms involving observables with smooth time evolution: they contain commutative subalgebras from which the spatial slice of spacetime with its topology (and with further refinements of the axiom, its CK− and C∞− structures) can be reconstructed using Gel’fand - Naimark theory and its extensions. Classical topology is an attribute of only certain quantum observables for these axioms, the spatial slice emergent from quantum physics getting progressively less differentiable with increasingly higher excitations of energy and eventually altogether ceasing to exist. After formulating these axioms, we apply them to show the possibility of topology change and to discuss quantized fuzzy topologies. Fundamental issues concerning the role of time in quantum physics are also addressed. ∗Talk presented at the Winter Institute on Foundations of Quantum Theory and Quantum Op- tics,S.N.Bose National Centre for Basic Sciences,Calcutta,January 1-13,2000.
    [Show full text]
  • MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 3
    MATTERS OF GRAVITY Number 3 Spring 1994 Table of Contents Editorial ................................................... ................... 2 Correspondents ................................................... ............ 2 Gravity news: Open Letter to gravitational physicists, Beverly Berger ........................ 3 A Missouri relativist in King Gustav’s Court, Clifford Will .................... 6 Gary Horowitz wins the Xanthopoulos award, Abhay Ashtekar ................ 9 Research briefs: Gamma-ray bursts and their possible cosmological implications, Peter Meszaros 12 Current activity and results in laboratory gravity, Riley Newman ............. 15 Update on representations of quantum gravity, Donald Marolf ................ 19 Ligo project report: December 1993, Rochus E. Vogt ......................... 23 Dark matter or new gravity?, Richard Hammond ............................. 25 Conference Reports: Gravitational waves from coalescing compact binaries, Curt Cutler ........... 28 Mach’s principle: from Newton’s bucket to quantum gravity, Dieter Brill ..... 31 Cornelius Lanczos international centenary conference, David Brown .......... 33 Third Midwest relativity conference, David Garfinkle ......................... 36 arXiv:gr-qc/9402002v1 1 Feb 1994 Editor: Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] 1 Editorial Well, this newsletter is growing into its third year and third number with a lot of strength. In fact, maybe too much strength. Twelve articles and 37 (!) pages. In this number, apart from the ”traditional” research briefs and conference reports we also bring some news for the community, therefore starting to fulfill the original promise of bringing the gravity/relativity community closer together. As usual I am open to suggestions, criticisms and proposals for articles for the next issue, due September 1st. Many thanks to the authors and the correspondents who made this issue possible.
    [Show full text]
  • Shaffique Adam a Self-Consistent Theory for Graphene Transport
    A self-consistent theory for graphene transport Shaffique Adam Collaborators: Sankar Das Sarma, Piet Brouwer, Euyheon Hwang, Michael Fuhrer, Enrico Rossi, Ellen Williams, Philip Kim, Victor Galitski, Masa Ishigami, Jian-Hao Chen, Sungjae Cho, and Chaun Jang. Schematic 1. Introduction - Graphene transport mysteries - Need for a hirarchy of approximations - Sketch of self-consistent theory: discussion of ansatz and its predictions 2. Characterizing the Dirac Point - What the Dirac point really looks like - Comparison of self-consistent theory and energy functional minimization results 3. Quantum to classical crossover 4. Effective medium theory 5. Comparison with experiments Introduction to graphene transport mysteries High Density Low Density Hole carriers Electron carriers E electrons kx ky holes n Figure from Novoselov et al. (2005) Vg n Fuhrer group (unpublished) 2006 ∝ - Constant (and high) mobility over a wide range of density. Dominant scattering mechanism? - Minimum conductivity plateau ? - Mechanism for conductivity without carriers? What could be going on? Graphene - Honeycomb lattice: Dirac cone with trigonal warping, - Disorder: missing atoms, ripples, edges, impurities (random or correlated) - Interactions: screening, exchange, correlation, velocity/disorder renormalization - Phonons - Localization: quantum interference - Temperature - ... Exact solution is impossible -> reasonable hierarchy of approximations Any small parameters? - For transport, we can use a low energy effective theory i.e. Dirac Hamiltonian. Corrections,
    [Show full text]
  • Topological Quantum Computation Zhenghan Wang
    Topological Quantum Computation Zhenghan Wang Microsoft Research Station Q, CNSI Bldg Rm 2237, University of California, Santa Barbara, CA 93106-6105, U.S.A. E-mail address: [email protected] 2010 Mathematics Subject Classification. Primary 57-02, 18-02; Secondary 68-02, 81-02 Key words and phrases. Temperley-Lieb category, Jones polynomial, quantum circuit model, modular tensor category, topological quantum field theory, fractional quantum Hall effect, anyonic system, topological phases of matter To my parents, who gave me life. To my teachers, who changed my life. To my family and Station Q, where I belong. Contents Preface xi Acknowledgments xv Chapter 1. Temperley-Lieb-Jones Theories 1 1.1. Generic Temperley-Lieb-Jones algebroids 1 1.2. Jones algebroids 13 1.3. Yang-Lee theory 16 1.4. Unitarity 17 1.5. Ising and Fibonacci theory 19 1.6. Yamada and chromatic polynomials 22 1.7. Yang-Baxter equation 22 Chapter 2. Quantum Circuit Model 25 2.1. Quantum framework 26 2.2. Qubits 27 2.3. n-qubits and computing problems 29 2.4. Universal gate set 29 2.5. Quantum circuit model 31 2.6. Simulating quantum physics 32 Chapter 3. Approximation of the Jones Polynomial 35 3.1. Jones evaluation as a computing problem 35 3.2. FP#P-completeness of Jones evaluation 36 3.3. Quantum approximation 37 3.4. Distribution of Jones evaluations 39 Chapter 4. Ribbon Fusion Categories 41 4.1. Fusion rules and fusion categories 41 4.2. Graphical calculus of RFCs 44 4.3. Unitary fusion categories 48 4.4. Link and 3-manifold invariants 49 4.5.
    [Show full text]
  • Quantum Topology and Quantum Computing by Louis H. Kauffman
    Quantum Topology and Quantum Computing by Louis H. Kauffman Department of Mathematics, Statistics and Computer Science 851 South Morgan Street University of Illinois at Chicago Chicago, Illinois 60607-7045 [email protected] I. Introduction This paper is a quick introduction to key relationships between the theories of knots,links, three-manifold invariants and the structure of quantum mechanics. In section 2 we review the basic ideas and principles of quantum mechanics. Section 3 shows how the idea of a quantum amplitude is applied to the construction of invariants of knots and links. Section 4 explains how the generalisation of the Feynman integral to quantum fields leads to invariants of knots, links and three-manifolds. Section 5 is a discussion of a general categorical approach to these issues. Section 6 is a brief discussion of the relationships of quantum topology to quantum computing. This paper is intended as an introduction that can serve as a springboard for working on the interface between quantum topology and quantum computing. Section 7 summarizes the paper. This paper is a thumbnail sketch of recent developments in low dimensional topology and physics. We recommend that the interested reader consult the references given here for further information, and we apologise to the many authors whose significant work was not mentioned here due to limitations of space and reference. II. A Quick Review of Quantum Mechanics To recall principles of quantum mechanics it is useful to have a quick historical recapitulation. Quantum mechanics really got started when DeBroglie introduced the fantastic notion that matter (such as an electron) is accompanied by a wave that guides its motion and produces interference phenomena just like the waves on the surface of the ocean or the diffraction effects of light going through a small aperture.
    [Show full text]
  • Quantum Gravity: a Primer for Philosophers∗
    Quantum Gravity: A Primer for Philosophers∗ Dean Rickles ‘Quantum Gravity’ does not denote any existing theory: the field of quantum gravity is very much a ‘work in progress’. As you will see in this chapter, there are multiple lines of attack each with the same core goal: to find a theory that unifies, in some sense, general relativity (Einstein’s classical field theory of gravitation) and quantum field theory (the theoretical framework through which we understand the behaviour of particles in non-gravitational fields). Quantum field theory and general relativity seem to be like oil and water, they don’t like to mix—it is fair to say that combining them to produce a theory of quantum gravity constitutes the greatest unresolved puzzle in physics. Our goal in this chapter is to give the reader an impression of what the problem of quantum gravity is; why it is an important problem; the ways that have been suggested to resolve it; and what philosophical issues these approaches, and the problem itself, generate. This review is extremely selective, as it has to be to remain a manageable size: generally, rather than going into great detail in some area, we highlight the key features and the options, in the hope that readers may take up the problem for themselves—however, some of the basic formalism will be introduced so that the reader is able to enter the physics and (what little there is of) the philosophy of physics literature prepared.1 I have also supplied references for those cases where I have omitted some important facts.
    [Show full text]
  • A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation
    Proceedings of Symposia in Applied Mathematics Volume 68, 2010 A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation Samuel J. Lomonaco, Jr. Abstract. The purpose of these lecture notes is to provide readers, who have some mathematical background but little or no exposure to quantum me- chanics and quantum computation, with enough material to begin reading the research literature in quantum computation, quantum cryptography, and quantum information theory. This paper is a written version of the first of eight one hour lectures given in the American Mathematical Society (AMS) Short Course on Quantum Computation held in conjunction with the Annual Meeting of the AMS in Washington, DC, USA in January 2000. Part 1 of the paper is a preamble introducing the reader to the concept of the qubit Part 2 gives an introduction to quantum mechanics covering such topics as Dirac notation, quantum measurement, Heisenberg uncertainty, Schr¨odinger’s equation, density operators, partial trace, multipartite quantum systems, the Heisenberg versus the Schr¨odinger picture, quantum entanglement, EPR para- dox, quantum entropy. Part 3 gives a brief introduction to quantum computation, covering such topics as elementary quantum computing devices, wiring diagrams, the no- cloning theorem, quantum teleportation. Many examples are given to illustrate underlying principles. A table of contents as well as an index are provided for readers who wish to “pick and choose.” Since this paper is intended for a diverse audience, it is written in an informal style at varying levels of difficulty and sophistication, from the very elementary to the more advanced. 2000 Mathematics Subject Classification.
    [Show full text]
  • Electronic Structure of Full-Shell Inas/Al Hybrid Semiconductor-Superconductor Nanowires: Spin-Orbit Coupling and Topological Phase Space
    Electronic structure of full-shell InAs/Al hybrid semiconductor-superconductor nanowires: Spin-orbit coupling and topological phase space Benjamin D. Woods,1 Sankar Das Sarma,2 and Tudor D. Stanescu1, 2 1Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA 2Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland, 20742-4111, USA We study the electronic structure of full-shell superconductor-semiconductor nanowires, which have recently been proposed for creating Majorana zero modes, using an eight-band ~k · ~p model within a fully self-consistent Schrodinger-Poisson¨ scheme. We find that the spin-orbit coupling induced by the intrinsic radial electric field is generically weak for sub-bands with their minimum near the Fermi energy. Furthermore, we show that the chemical potential windows consistent with the emergence of a topological phase are small and sparse and can only be reached by fine tunning the diameter of the wire. These findings suggest that the parameter space consistent with the realization of a topological phase in full-shell InAs/Al nanowires is, at best, very narrow. Hybrid semiconductor-superconductor (SM-SC) nanowires butions) and ii) the electrostatic effects (by self-consistently have recently become the subject of intense research in the solving a Schrodinger-Poisson¨ problem). We note that these context of the quest for topological Majorana zero modes are crucial issues for the entire research field of SM-SC hy- (MZMs) [1,2]. Motivated by the promise of fault-tolerant brid nanostructures, but they have only recently started to be topological quantum computation [3,4] and following con- addressed, and only within single-orbital approaches [27–30].
    [Show full text]
  • Quantum Computing and Quantum Topology
    Beyond Anyons: From Fractons to Black Holes Zhenghan Wang Microsoft Station Q & UC Santa Barbara Vanderbilt, May 8, 2019 “Periodic Table” of Topological Phases of Matter Classification of enriched topological order (TQFT) in all dimensions Too hard!!! Special cases: 1): short-range entangled (or symmetry protected--SPT) including topological insulators and topological superconductors: X.-G. Wen et al (group cohomology), …, and A. Ludwig et al (random matrix theory) and A. Kitaev (K-theory)---generalized cohomologies,… 2): Low dimensional: spatial dimensions D=1, 2, 3, n=d=D+1 2a: classify 2D topological orders without symmetry 2b: enrich them with symmetry 2c: 3D much more interesting and harder Model Topological Phases of Quantum Matter Local Hilbert Space Local, Gapped Hamiltonian E Two gapped Hamiltonians 퐻1, 퐻2 realize the same topological phase of matter if there exists a continuous path connecting Egap them without closing the gap/a phase transition. A topological phase, to first approximation, is a class of gapped Hamiltonians that realize the same phase. Topological order in a 2D topological phase is encoded by a TQFT or anyon model. Anyons in Topological Phases of Matter Finite-energy topological quasiparticle excitations=anyons b Quasiparticles a, b, c a c Two quasiparticles have the same topological charge or anyon type if they differ by local operators Anyons in 2+1 dimensions described mathematically by a Unitary Modular Tensor Category Anyonic Objects • Anyons: simple objects in unitary modular categories • Symmetry defects:
    [Show full text]
  • Sankar Das Sarma 3/11/19 1 Curriculum Vitae
    Sankar Das Sarma 3/11/19 Curriculum Vitae Sankar Das Sarma Richard E. Prange Chair in Physics and Distinguished University Professor Director, Condensed Matter Theory Center Fellow, Joint Quantum Institute University of Maryland Department of Physics College Park, Maryland 20742-4111 Email: [email protected] Web page: www.physics.umd.edu/cmtc Fax: (301) 314-9465 Telephone: (301) 405-6145 Published articles in APS journals I. Physical Review Letters 1. Theory for the Polarizability Function of an Electron Layer in the Presence of Collisional Broadening Effects and its Experimental Implications (S. Das Sarma) Phys. Rev. Lett. 50, 211 (1983). 2. Theory of Two Dimensional Magneto-Polarons (S. Das Sarma), Phys. Rev. Lett. 52, 859 (1984); erratum: Phys. Rev. Lett. 52, 1570 (1984). 3. Proposed Experimental Realization of Anderson Localization in Random and Incommensurate Artificial Structures (S. Das Sarma, A. Kobayashi, and R.E. Prange) Phys. Rev. Lett. 56, 1280 (1986). 4. Frequency-Shifted Polaron Coupling in GaInAs Heterojunctions (S. Das Sarma), Phys. Rev. Lett. 57, 651 (1986). 5. Many-Body Effects in a Non-Equilibrium Electron-Lattice System: Coupling of Quasiparticle Excitations and LO-Phonons (J.K. Jain, R. Jalabert, and S. Das Sarma), Phys. Rev. Lett. 60, 353 (1988). 6. Extended Electronic States in One Dimensional Fibonacci Superlattice (X.C. Xie and S. Das Sarma), Phys. Rev. Lett. 60, 1585 (1988). 1 Sankar Das Sarma 7. Strong-Field Density of States in Weakly Disordered Two Dimensional Electron Systems (S. Das Sarma and X.C. Xie), Phys. Rev. Lett. 61, 738 (1988). 8. Mobility Edge is a Model One Dimensional Potential (S.
    [Show full text]
  • Table of Contents (Print)
    NEWSPAPER 97 Kinetic energy (vertical) of deuterons after fragmentation of deuterium molecules in a pump-probe experiment, for a given time delay (horizontal) between the pump and the probe pulses. Colors denote the number of deuterons, with orange-yellow being the highest. See article 193001. PHYSICAL REVIEW LETTERS PRL 97 (19), 190201– 199901, 10 November 2006 (280 total pages) Contents Articles published 4 November–10 November 2006 VOLUME 97, NUMBER 19 10 November 2006 General Physics: Statistical and Quantum Mechanics, Quantum Information, etc. Quantum Feedback Control for Deterministic Entangled Photon Generation .......................................... 190201 Masahiro Yanagisawa General Approach to Quantum-Classical Hybrid Systems and Geometric Forces ..................................... 190401 Qi Zhang and Biao Wu Condensation of N Interacting Bosons: A Hybrid Approach to Condensate Fluctuations ............................. 190402 Anatoly A. Svidzinsky and Marlan O. Scully Dipole Polarizability of a Trapped Superfluid Fermi Gas . ............................................................ 190403 A. Recati, I. Carusotto, C. Lobo, and S. Stringari Loschmidt Echo in a System of Interacting Electrons ................................................................ 190404 G. Manfredi and P.-A. Hervieux Detection Scheme for Acoustic Quantum Radiation in Bose-Einstein Condensates . ................................. 190405 Ralf Schu¨tzhold Quantum Stripe Ordering in Optical Lattices . ........................................................................
    [Show full text]