Fuel Injection System

Total Page:16

File Type:pdf, Size:1020Kb

Fuel Injection System 11/22/2016 1 11/22/2016 2 WHY GASOLINE INJECTION? • To have uniform distribution of fuel in a multicylinder engine. • To improve volumetric efficiency. • To reduce or eliminate detonation. 11/22/2016 3 Electronic Fuel Injection (EFI) system main components Modern gasoline injection systems use: 1. Solenoid Operated Fuel Injectors 2. An Electronic Control Unit (ECU) 3. Sensors 11/22/2016 4 1. Fuel Injectors The fuel injector is a solenoid switch that’s either on (fuel flows) or off (fuel doesn’t flow). (Courtesy Kawasaki Motor Corp., U.S.A.) 11/22/2016 5 11/22/2016 6 Typical sensors for an electronic fuel injection system • Exhaust gas or oxygen sensor - • Engine temperature sensor - • Air flow sensor - • Air-inlet temperature sensor - • Throttle position sensor - • Manifold pressure sensor - • Camshaft position sensor - • Knock sensor - 11/22/2016 7 Electronic fuel injection system 11/22/2016 8 Types of Injection Systems Injection Systems can be classified into: • Gasoline direct injection into the cylinder (GDI) • Port injection • Manifold injection Another Classification of Injection Systems Multi-Point Injection (MPI) (a) Gasoline direct injection into the cylinder (GDI). (b) Port injection. Single-Point Injection (SPI) (c) Throttle body injection 11/22/2016 9 a. Gasoline Direct Injection (GDI) Engine (Stratified- Charge Engines) • Fuel is injected directly into the cylinder during the intake stroke or the compression stroke • High pressure injector required, 5-10 MPa • Need bowl in piston design to direct the fuel spray towards the spark plug 11/22/2016 10 a. Gasoline Direct Injection (GDI) Engine (Stratified- Charge Engines) During intake stroke air enters the cylinder Near the end of the compression stroke fuel is injected and directed by the piston head bowl towards the spark plug The mixture at the spark plug is “rich” in fuel thus easy to ignite but the amount of fuel injected results in an overall “lean” fuel-air mixture Lowers heat transfer to the walls but increases thermal cyclic load on the spark plug, and standard catalytic converter doesn’t work 11/22/2016 11 a. Gasoline Direct Injection (GDI) Engine (Stratified- Charge Engines) Benefits of GDI system Engine that combines the best features of SI and CI engines: • Operate at optimum compression ratio (12-15) for efficiency by injecting fuel directly into engine during compression (avoiding knock associated with SI engines with premixed charge) • Control engine power by fuel added (no throttling no pumping work) • Increasing the engine volumetric efficiency. • Create easily ignitable fuel-air mixture at the spark plug and a leaner fuel-air mixture in the rest of the cylinder. • Lean burn results in lower emissions and higher energy efficiency 11/22/2016 12 a. Gasoline Direct Injection (GDI) Engine (Stratified- Charge Engines) Benefits of GDI system • Manifold wetting is eliminated due to the fuel being injected' into or close to the cylinder and need not flow through the manifold. • Formation of ice on the throttle plate is eliminated (Carburetor Icing). 11/22/2016 13 a. Gasoline Direct Injection (GDI) Engine (Stratified- Charge Engines) Example: Mitsubishi GDI engine achieves complete combustion with an air-fuel ratio of 40:1 compared to 15:1 for conventional engines This results in a 20% improvement in overall fuel efficiency and CO2 production, and reduces NOx emissions by 95% with special catalyst 11/22/2016 14 b. Port Injection (Semi direct injection) Multi-point Fuel Injection (MPFI) system 11/22/2016 15 Multi point fuel injectors 11/22/2016 16 c. Single-Point Fuel Injection (SPFI) system Throttle Body Injection System 11/22/2016 17 Fuel Injection System Air intake manifold Throttle Fuel tank 200 KPa During start-up the components are cold so fuel evaporation is very slow, as a result additional fuel is added through a second injecting valve 11/22/2016 18 11/22/2016 19 11/22/2016 20 c. Throttle body for air flow control 11/22/2016 21 Problems associated with injection systems • High maintenance cost, • Difficulty in servicing, • Possibility of malfunction of some sensors. 11/22/2016 22 11/22/2016 23 Injection in diesel engines Diesel Indirect-Injection (IDI) Process Diesel Direct-Injection (DI) Process 11/22/2016 24 .
Recommended publications
  • Experimental Investigation of HCCI Engine with Ethanol Manifold Injection
    Journal of Basic and Applied Engineering Research Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 4; October, 2014 pp. 16-20 © Krishi Sanskriti Publications http://www.krishisanskriti.org/jbaer.html Experimental Investigation of HCCI Engine with Ethanol Manifold Injection Aswin R.1, Karthick Sundar R.2, Aravindraj S.3, Bhaskar K.4 1,2 Department of Automobile Engineering Rajalakshmi Engineering College, Thandalam, Chennai, India Abstract: In this work the homogeneous charge compression occurs at the boundary of fuel-air mixing, caused by an ignition engine with manifold ethanol injection and diesel in the injection event, to initiate combustion. in-cylinder injection were selected as fuels and test conducted in a single cylinder constant speed diesel engine.HCCI combustion The defining characteristics of HCCI engine is that the incorporates the advantages of both spark ignition engines and compression ignition engines. The effect of pre mixed ratio and ignition occurs at several places at a time which makes the injection timing were studied to determine the performance, fuel/air mixture burn nearly spontaneously. There is no direct emission and combustion characteristics of HCCI engine.In initiator of combustion. This makes the process inherently cylinder pressure crank angle diagram was obtained using AVL challenging to control. However, with advances in piezo electric pressure transducer and AVL crank angle decoder. microprocessors and a physical understanding of the ignition The combustion parameters like peak pressure, combustion process, HCCI can be controlled to achieve gasoline engine- duration, heat release rate, cumulative heat release rate, mass like emissions along with diesel engine like efficiency.
    [Show full text]
  • 05 NG Engine Technology.Pdf
    Table of Contents NG Engine Technology Subject Page New Generation Engine Technology . .5 Turbocharging . .6 Turbocharging Terminology . .6 Basic Principles of Turbocharging . .7 Bi-turbocharging . .10 Air Ducting Overview . .12 Boost-pressure Control (Wastegate) . .14 Blow-off Control (Diverter Valves) . .15 Charge-air Cooling . .18 Direct Charge-air Cooling . .18 Indirect Charge Air Cooling . .18 Twin Scroll Turbocharger . .20 Function of the Twin Scroll Turbocharger . .22 Diverter valve . .22 Tuned Pulsed Exhaust Manifold . .23 Load Control . .24 Controlled Variables . .25 Service Information . .26 Limp-home Mode . .26 Direct Injection . .28 Direct Injection Principles . .29 Mixture Formation . .30 High Precision Injection . .32 HPI Function . .33 High Pressure Pump Function and Design . .35 Pressure Generation in High-pressure Pump . .36 Limp-home Mode . .37 Fuel System Safety . .38 Piezo Fuel Injectors . .39 Injector Design and Function . .40 Injection Strategy . .42 Initial Print Date: 09/06 Revision Date: 03/11 Subject Page Piezo Element . .43 Injector Adjustment . .43 Injector Control and Adaptation . .44 Injector Adaptation . .44 Optimization . .45 HDE Fuel Injection . .46 VALVETRONIC III . .47 Phasing . .47 Masking . .47 Combustion Chamber Geometry . .48 VALVETRONIC Servomotor . .50 Function . .50 Subject Page BLANK PAGE NG Engine Technology Model: All from 2007 Production: All After completion of this module you will be able to: • Understand the technology used on BMW turbo engines • Understand basic turbocharging principles • Describe the benefits of twin Scroll Turbochargers • Understand the basics of second generation of direct injection (HPI) • Describe the benefits of HDE solenoid type direct injection • Understand the main differences between VALVETRONIC II and VALVETRONIC II I 4 NG Engine Technology New Generation Engine Technology In 2005, the first of the new generation 6-cylinder engines was introduced as the N52.
    [Show full text]
  • A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines
    energies Review A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines T. M. Yunus Khan 1,2 1 Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia; [email protected] 2 Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia Received: 1 August 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: The ever-increasing demand for transport is sustained by internal combustion (IC) engines. The demand for transport energy is large and continuously increasing across the globe. Though there are few alternative options emerging that may eliminate the IC engine, they are in a developing stage, meaning the burden of transportation has to be borne by IC engines until at least the near future. Hence, IC engines continue to be the prime mechanism to sustain transportation in general. However, the scarcity of fossil fuels and its rising prices have forced nations to look for alternate fuels. Biodiesel has been emerged as the replacement of diesel as fuel for diesel engines. The use of biodiesel in the existing diesel engine is not that efficient when it is compared with diesel run engine. Therefore, the biodiesel engine must be suitably improved in its design and developments pertaining to the intake manifold, fuel injection system, combustion chamber and exhaust manifold to get the maximum power output, improved brake thermal efficiency with reduced fuel consumption and exhaust emissions that are compatible with international standards. This paper reviews the efforts put by different researchers in modifying the engine components and systems to develop a diesel engine run on biodiesel for better performance, progressive combustion and improved emissions.
    [Show full text]
  • DEPARTMENT of TRANSPORTATION National
    DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 531 and 533 [Docket No. NHTSA-2008-0069] Passenger Car Average Fuel Economy Standards--Model Years 2008-2020 and Light Truck Average Fuel Economy Standards--Model Years 2008-2020; Request for Product Plan Information AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT). ACTION: Request for Comments SUMMARY: The purpose of this request for comments is to acquire new and updated information regarding vehicle manufacturers’ future product plans to assist the agency in analyzing the proposed passenger car and light truck corporate average fuel economy (CAFE) standards as required by the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act (EISA) of 2007, P.L. 110-140. This proposal is discussed in a companion notice published today. DATES: Comments must be received on or before [insert date 60 days after publication in the Federal Register]. ADDRESSES: You may submit comments [identified by Docket No. NHTSA-2008- 0069] by any of the following methods: • Federal eRulemaking Portal: Go to http://www.regulations.gov. Follow the online instructions for submitting comments. 1 • Mail: Docket Management Facility: U.S. Department of Transportation, 1200 New Jersey Avenue, SE, West Building Ground Floor, Room W12- 140, Washington, DC 20590. • Hand Delivery or Courier: West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE, between 9 am and 5 pm ET, Monday through Friday, except Federal holidays. Telephone: 1-800-647-5527. • Fax: 202-493-2251 Instructions: All submissions must include the agency name and docket number for this proposed collection of information.
    [Show full text]
  • How a Fuel Injection System Works | How a Car Works 10/5/20, 1128 AM How a Fuel Injection System Works
    How a fuel injection system works | How a Car Works 10/5/20, 1128 AM How a fuel injection system works For the engine to run smoothly and efficiently it needs to be provided with the right quantity of fuel /air mixture according to its wide range of demands. A fuel injection system Petrol-engined cars use indirect fuel injection. A fuel pump sends the petrol to the engine bay, and it is then injected into the inlet manifold by an injector. There is either a separate injector for each cylinder or one or two injectors into the inlet manifold. Traditionally, the fuel/air mixture is controlled by the carburettor , an instrument that is by no means perfect. Its major disadvantage is that a single carburettor supplying a four- cylinder https://www.howacarworks.com/basics/how-a-fuel-injection-system-works Page 1 of 7 How a fuel injection system works | How a Car Works 10/5/20, 1128 AM engine cannot give each cylinder precisely the same fuel/air mixture because some of the cylinders are further away from the carburettor than others. One solution is to fit twin-carburettors, but these are difficult to tune correctly. Instead, many cars are now being fitted with fuel-injected engines where the fuel is delivered in precise bursts. Engines so equipped are usually more efficient and more powerful than carburetted ones, and they can also be more economical, as well as having less poisonous emissions . Diesel fuel injection The fuel injection system in petrolengined cars is always indirect, petrol being injected into the inlet manifold or inlet port rather than directly into the combustion chambers .
    [Show full text]
  • And Outboard 2 and 4-Stroke Engines. There Are Plenty of Reasons to Choose Marina Lubricants
    From eni's research department comes the eni i-Sea line of lubricants, designed for all types of pleasure craft, from yachts to dinghies right through to personal watercraft equipped with inboard and outboard 2 and 4-stroke engines. There are plenty of reasons to choose marina lubricants HIGH BIODEGRADABILITY CLEAN ENGINES The special synthetic esters used offer a high The special “ashless” formulation, designed to degree of biodegradability (67% on the OECD reduce the formation of carbon deposits in the 301F test), allowing you to significantly reduce motor, ensures optimal operation and better impact on aquatic life. performance. ENGINE LONGEVITY ANTI-SALINE CORROSION The good cleansing and dispersing properties The special additives developed protect against keep all engine parts in perfect working order, wear and saline corrosion, which are typical of which helps to give it greater longevity. the marine environment, ensuring that the internal components of the engine are fully protected. PROLONGED INTERVALS BETWEEN CHANGES Synthetic bases and antioxidant additives ensure a prolonged interval between changes. RADA outboard G B I E L D I FUEL OECD T Y O I ECONOMY B 301f Lubricants developed specifically for 2 and 4-stroke outboard engines, tested to meet the most demanding CERTIFICATE NMMA international technical FC-W reference standards. (CAT) performance synthetic technology performance CERTIFICATE catalyst compatible NMMA API SM API SL TC-W3 High biolube biodegradability outboard 10W-30 outboard 10W-40 Synthetic biodegradable lubricant - suitable for Synthetic lubricant – suitable for Lubricant for 4-stroke 2-stroke outboard direct injection engines or a catalysed 4-stroke outboard engines.
    [Show full text]
  • Hydrogen Injection in a Dual Fuel Engine Fueled with Low-Pressure Injection of Methyl Ester of Thevetia Peruviana (METP) for Diesel Engine Maintenance Application
    energies Article Hydrogen Injection in a Dual Fuel Engine Fueled with Low-Pressure Injection of Methyl Ester of Thevetia Peruviana (METP) for Diesel Engine Maintenance Application Mahantesh Marikatti 1, N. R. Banapurmath 2, V. S. Yaliwal 1, Y.H. Basavarajappa 3, Manzoore Elahi M Soudagar 4 , Fausto Pedro García Márquez 5,* , MA Mujtaba 4 , H. Fayaz 6, Bharat Naik 7, T.M. Yunus Khan 8 , Asif Afzal 9 and Ahmed I. EL-Seesy 10 1 Department of Mechanical Engineering, SDM College of Engineering and Technology, Dharwad, Karnataka 580002, India; mkmarikatti@rediffmail.com (M.M.); vsyaliwal2000@rediffmail.com (V.S.Y.) 2 Department of Mechanical Engineering, B.V.B. College of Engineering and Technology KLE Technological University, BVB College Campus, Hubli, Karnataka 580021, India; [email protected] 3 Department of Mechanical Engineering, P.E.S. Institute of Technology and Management, Shivamogga 577204, India; [email protected] 4 Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] (M.E.M.S.); [email protected] (M.M.) 5 Ingenium Research Group, University of Castilla-La Mancha, Ciudad Real 13071, Spain 6 Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam; [email protected] 7 Department of Mechanical Engineering, Jain College of Engineering, Belagavi Karnataka 590014, India; [email protected] 8 Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Asir, Saudi Arabia; [email protected] 9 P.
    [Show full text]
  • Open FINAL THESIS Submitted.Pdf
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF ENGINEERING SCIENCE AND MECHANICS DESIGN AND IMPLEMENTATION OF AN ELECTRONIC FUEL INJECTION SYSTEM FOR A HYDROGEN INTERNAL COMBUSTION ENGINE IN A HYBRID VEHICLE WADE MCCORKEL Spring 2010 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Engineering Science with honors in Engineering Science Reviewed and approved* by the following: Joel Anstrom Research Associate, Larson Transportation Institute Thesis Supervisor Christine Masters Assistant Professor of Engineering Science and Mechanics Honors Advisor Judith A. Todd P. B. Breneman Department Head Chair Professor, Department of Engineering Science and Mechanics *Signatures are on file in the Schreyer Honors College and the Engineering Science and Mechanics office. ABSTRACT With the current oil crisis looming, the search for an alternative fuel is one of the most pressing issues for modern day society. A realistic option is the use of hydrogen as a fuel in an internal combustion engine. According to Argonne mechanical engineer Steve Ciatti, “Hydrogen-powered internal combustion engines (H2ICEs) are a low-cost, near-term technology. They can be the catalyst to building a hydrogen infrastructure for fuel cells.” Using hydrogen as a combustion fuel can be implemented relatively quickly and successfully. Although the conversion from gasoline to hydrogen is rather simple, optimizing the engine for efficiency is quite challenging. One necessary addition is an electronic fuel injection
    [Show full text]
  • Effects and Advantages of Gasoline Direct Injection System Vishwanath M*, S
    Journal of Chemical and Pharmaceutical SciencesISSN: 0974-2115 Effects and Advantages of Gasoline Direct Injection System Vishwanath M*, S. Madhu Department of Automobile Engineering, Saveetha School of Engineering, Chennai-602 105 *Corresponding author: E-Mail: [email protected] ABSTRACT Gasoline direct injection process is a form of gas give procedure used in current developments of vehicle. The gasoline financial system and the stringent exhaust emission norms has led to the transmission in the gasoline process from carburetor direct injection method. Probably the most predominant international initiative of the automobile industry is to improve an immediate-injection fuel engine. Four technical aspects that make up the groundwork applied sciences in direct injection methods. a) Air waft into the cylinder is improved. b) The form of the piston with curved high controls the combustion by way of mixing the air-gasoline combination. c) The stress of gas injection is accelerated by the excessive strain gas Pump. d) The vaporization and dispersion of the gas spray is managed by means of the excessive stress swirl injector Gasoline financial system will also be acquired by using adjusting air fuel ratio situated on the performing load. It presents a right estimation of the nice of gasoline required at right time and supplies manipulate over combustion. Gasoline in this paper advantages and effects of fuel direct injection procedure is reviewed. KEY WORDS: Gasoline direct injection (GDI), High Pressure Fuel Pump, Carburetor. 1. INTRODUCTION The fundamental goals of the automotive enterprise is to acquire a excessive energy, low precise fuel consumption, low emissions, low noise and higher drive relief cars.
    [Show full text]
  • Light Duty Natural Gas Engine Characterization
    Light Duty Natural Gas Engine Characterization THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By David Roger Hillstrom Graduate Program in Mechanical Engineering The Ohio State University 2014 Master's Examination Committee: Professor Giorgio Rizzoni, Advisor Professor Shawn Midlam-Mohler Dr. Fabio Chiara Copyright by David Roger Hillstrom 2014 Abstract The purpose of this project was to characterize the baseline performance of a 2012 Honda Civic Natural Gas vehicle including: designing experiments to generate complete performance maps, executing the experiments, and analyzing the experimental data. In the end, the results yielded a deep understanding of the 1.8 L four cylinder CNG engine’s combustion and air flow performance, as well as a good understanding of steady state engine out emissions. This information is used to isolate inefficiencies in design and propose possible avenues for improvement. The data that was acquired was then used to inform an existing 1-D computational model of the same engine in order to determine if, and where, the model was inaccurate, and determine what steps were necessary to improve it. The resulting test data provides a data based background to the well-understood issues regarding a CNG port-fuel injected vehicle. The volumetric efficiency at low engine speeds was typically around 70%, resulting in an IMEP loss of about 15% compared to the engines peak possible performance. A CNG direct injection system is one possible solution to this problem. Additionally, the engine efficiency and spark timing map demonstrate that, even with the high compression ratio, the vehicle is not currently limited by engine knock.
    [Show full text]
  • Hydrogen Use in Internal Combustion Engine: a Review
    International Journal of Advanced Culture Technology Vol.3 No.2 87-99 (2015) http://dx.doi.org/10.17703/IJACT.2015.3.2.87 IJACT 15-2-10 HYDROGEN USE IN INTERNAL COMBUSTION ENGINE: A REVIEW Vasu Kumar1, Dhruv Gupta2, Naveen Kumar3 1CASRAE, Delhi Technological University, Delhi, India [email protected] 2CASRAE, Delhi Technological University, Delhi, India [email protected] 3CASRAE, Delhi Technological University, Delhi, India [email protected] ABSTRACT Fast depletion of fossil fuels is urgently demanding a carry out work for research to find out the viable alternative fuels for meeting sustainable energy demand with minimum environmental impact. In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms. The use of the hydrogen as fuel in the internal combustion engine represents an alternative use to replace the hydrocarbons fuels, which produce polluting gases such as carbon monoxide (CO), hydro carbon (HC) during combustion. In this paper contemporary research on the hydrogen-fuelled internal combustion engine can be given. First hydrogen-engine fundamentals were described by examining the engine-specific properties of hydrogen and then existing literature were surveyed. Keywords: Internal combustion engine, hydrogen, emissions, alternative fuel 1. INTRODUCTION Diesel engines are the main prime movers for transport, agricultural applications and stationary power generation. But diesel engines are emitting higher NOx and smoke emissions compared with gasoline operated vehicle. Hence it is necessary to find a suitable alternate fuel, which is capable of partial of complete replacement [1].
    [Show full text]
  • Recycled Water Injection in a Turbocharged Gasoline Engine And
    Recycled Water Injection in a Turbocharged Gasoline Engine and Detailed Effects of Water on Auto-Ignition by Jeongyong Choi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in the University of Michigan 2019 Doctoral Committee: Professor André L. Boehman, Co-Chair Associate Research Scientist John Hoard, Co-Chair Professor Venkat Raman Professor Angela Violi Jeongyong Choi [email protected] ORCID iD: 0000-0001-5144-1162 © Jeongyong Choi 2019 Acknowledgments First of all, I must thank to my wife and daughter, Veronica Son and Jia Choi for their support. They gave me constant love, happiness and encouragement during this long journey. I also would like to give my special thanks to my parents and parents-in-law for their endless love and support. I want to express my sincere gratitude to my research advisors, Prof. André Boehman and John Hoard. Because of their consistent research guidance, encouragement and financial support for last several years, I could finish my dissertation and got the faith in my abilities. Next my committee members, Prof. Angela Violi and Prof. Venkat Raman must be thanked for accepting to be on my committee and guiding me. My fellow lab mates, Kwang Hee Yoo and Taehoon Han must be acknowledged as they helped me a lot in better understanding of the experimental setup and the results. Also, I have worked with many undergraduate students and master students. I must thank to them for their great assistance. The financial support from Ford Motor Company as part of the Ford-UM alliance program is gratefully acknowledged.
    [Show full text]