Metabolic Engineering for Production of Small Molecule Drugs: Challenges and Solutions
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Enzyme Activity and Assays Introductory Article
Enzyme Activity and Assays Introductory article Robert K Scopes, La Trobe University, Bundoora, Victoria, Australia Article Contents . Factors that Affect Enzymatic Analysis Enzyme activity refers to the general catalytic properties of an enzyme, and enzyme assays . Initial Rates and Steady State Turnover are standardized procedures for measuring the amounts of specific enzymes in a sample. Measurement of Enzyme Activity . Measurement of Protein Concentration Factors that Affect Enzymatic Analysis . Methods for Purifying Enzymes . Summary Enzyme activity is measured in vitro under conditions that often do not closely resemble those in vivo. The objective of measuring enzyme activity is normally to determine the exactly what the concentration is (some preparations of amount of enzyme present under defined conditions, so unusual substrates may be impure, or the exact amount that activity can be compared between one sample and present may not be known). This is because the rate another, and between one laboratory and another. The measured varies with substrate concentration more rapidly conditions chosen are usually at the optimum pH, as the substrate concentration decreases, as can be seen in ‘saturating’ substrate concentrations, and at a temperature Figure 1. In most cases an enzyme assay has already been that is convenient to control. In many cases the activity is established, and the substrate concentration, buffers and measured in the opposite direction to that of the enzyme’s other parameters used previously should be used again. natural function. Nevertheless, with a complete study of There are many enzymes which do not obey the simple the parameters that affect enzyme activity it should be Michaelis–Menten formula. -
In Vivo Evaluation of Ixabepilone (BMS247550), a Novel Epothilone B Derivative, Against Pediatric Cancer Models Jennifer K
Cancer Therapy: Preclinical In vivo Evaluation of Ixabepilone (BMS247550), A Novel Epothilone B Derivative, against Pediatric Cancer Models Jennifer K. Peterson,1Chandra Tucker,1Edward Favours,1PamelaJ. Cheshire,1Jeremy Creech,1 Catherine A. Billups,2 Richard Smykla,3 Francis Y.F. Lee,3 and Peter J. Houghton1 Abstract Purpose:Vinca alkaloids, agents that cause depolymerization of microtubules, are highly active in treatment of many pediatric cancers. In contrast, taxanes, agents that stabilize microtubules, are far less effective against the same cancer types.The purpose of the current study was to evaluate the antitumor activity of ixabepilone, an epothilone B derivative representing a new class of microtubule-stabilizing antimitotic agent in a wide variety of pediatric solid tumor models. Experimental Design: Ixabepilone was administered i.v. every 4 days for three doses to scid mice bearing s.c. human rhabdomyosarcoma (three lines), neuroblastoma (four),Wilms’ tumors (six), osteosarcoma (four), or brain tumors (seven).Tumor diameters were measured weekly, and tumor growth or regressions were determined. Pharmacokinetic studies were done following a single administration of drug at the maximum tolerated dose (MTD) level (10 mg/kg). Results: At the MTD (10 mg/kg), ixabepilone induced objective responses (all tumors in a group achieved z50% volume regression) in three of three rhabdomyosarcoma lines, three of five neuroblastomas, six of seven Wilms’ tumor models, two of six osteosarcoma, and four of eight brain tumor models. However, the dose-response curve was steep with only 2 of 19 tumors models regressing (z50%) at 4.4 mg/kg. In comparison, paclitaxel administered at the MTD on the same schedule failed to induce objective regressions of three tumor lines that were highly sensitive to treatment with ixabepilone. -
2701.Full-Text.Pdf
Cancer Therapy: Clinical The Effect of Ketoconazole on the Pharmacokinetics and Pharmacodynamics of Ixabepilone: A First in Class Epothilone B Analogue in Late-Phase Clinical Development Sanjay Goel,1Marvin Cohen,4 S. Nilgu« n C¸ o« mezoglu,4 Lionel Perrin,5 Franc¸ois Andre¤ ,5 DavidJayabalan, 1Lisa Iacono,4 Adriana Comprelli,4 Van T. Ly,4 Donglu Zhang,4 Carrie Xu,4 W. Griffith Humphreys,4 Hayley McDaid,1, 2 Gary Goldberg,1, 3 Susan B. Horwitz,1, 2 andSridhar Mani 1 Abstract Purpose:To determine if ixabepilone is a substrate for cytochrome P450 3A4 (CYP3A4) and if its metabolism by this cytochrome is clinically important, we did a clinical drug interaction study in humans using ketoconazole as an inhibitor of CYP3A4. Experimental Design: Human microsomes were usedto determine the cytochrome P450 enzyme(s) involvedin the metabolism of ixabepilone. Computational docking (CYP3A4) studies were done for epothilone B and ixabepilone. A follow-up clinical study was done in patients with cancer to determine if 400 mg/d ketoconazole (inhibitor of CYP3A4) altered the pharmacokinet- ics, drug-target interactions, and pharmacodynamics of ixabepilone. Results: Molecular modeling and human microsomal studies predicted ixabepilone to be a good substrate for CYP3A4. In patients, ketoconazole coadministration resulted in a maximum ixabepi- lone dose administration to 25 mg/m2 when comparedwith single-agent therapy of 40 mg/m 2. Coadministration of ketoconazole with ixabepilone resulted in a 79% increase in AUC0-1.The relationship of microtubule bundle formation in peripheral blood mononuclear cells to plasma ixabepilone concentration was well described by the Hill equation. Microtubule bundle formation in peripheral bloodmononuclear cells correlatedwith neutropenia. -
Opportunities for Catalysis in the 21St Century
Opportunities for Catalysis in The 21st Century A Report from the Basic Energy Sciences Advisory Committee BASIC ENERGY SCIENCES ADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT Opportunities for Catalysis in the 21st Century May 14-16, 2002 Workshop Chair Professor J. M. White University of Texas Writing Group Chair Professor John Bercaw California Institute of Technology This page is intentionally left blank. Contents Executive Summary........................................................................................... v A Grand Challenge....................................................................................................... v The Present Opportunity .............................................................................................. v The Importance of Catalysis Science to DOE.............................................................. vi A Recommendation for Increased Federal Investment in Catalysis Research............. vi I. Introduction................................................................................................ 1 A. Background, Structure, and Organization of the Workshop .................................. 1 B. Recent Advances in Experimental and Theoretical Methods ................................ 1 C. The Grand Challenge ............................................................................................. 2 D. Enabling Approaches for Progress in Catalysis ..................................................... 3 E. Consensus Observations and Recommendations.................................................. -
Metabolic Engineering of Microorganisms for the Overproduction of Fatty Acids Ting Wei Tee Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Metabolic engineering of microorganisms for the overproduction of fatty acids Ting Wei Tee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Chemical Engineering Commons Recommended Citation Tee, Ting Wei, "Metabolic engineering of microorganisms for the overproduction of fatty acids" (2013). Graduate Theses and Dissertations. 13516. https://lib.dr.iastate.edu/etd/13516 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Metabolic engineering of microorganisms for the overproduction of fatty acids by Ting Wei Tee A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of Doctor of Philosophy Major: Chemical Engineering Program of Study Committee: Jacqueline V. Shanks, Major Professor Laura R. Jarboe R. Dennis Vigil David J. Oliver Marna D. Nelson Iowa State University Ames, Iowa 2013 Copyright © Ting Wei Tee, 2013. All rights reserved. ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ................................................................................................ v ABSTRACT ....................................................................................................................... -
Metabolic Engineering and Synthetic Biology-CHEN 4803 Chemical and Biological Engineering Fall 2016 Syllabus
Metabolic Engineering and Synthetic Biology-CHEN 4803 Chemical and Biological Engineering Fall 2016 Syllabus Importance of Course: Metabolic Engineering describes the field of study concerned with applying genetic engineering tools to alter flux through native or newly introduced metabolic pathways in biological systems. Synthetic Biology includes similar objectives but is more broadly focused on applications enabled more generally by advances in DNA synthesis and sequencing technologies. Together these fields are of central importance to efforts to produce chemicals, fuels, and materials via bioprocessing as well as a much broader range of emerging commercial applications; such as biosensing, consumer biotechnology, the microbiome, novel pharmaceuticals, etc. Objectives: With your help, make this the class you find most interesting and useful for your future career. See Course Learning Goals at the end of this syllabus for specifics. Expectations: I expect you to attend all classes and be on time. I expect you to be responsible for your learning in this class. However, I also expect you to come to me with difficult to answer questions. The major responsibility for learning must be by doing the assigned readings and being actively engaged in class discussions, workshops, and interactive presentations. Course Information Instructor: Dr. Anushree Chatterjee, Assistant Professor, Chemical and Biological Engineering, [email protected] Class Meetings: MWF, 11:30 AM-12:20 PM, BIOT A104 Textbook: None specific, though we will be following some parts of Metabolic Engineering: Principles and Methodologies by Gregory N. Stephanopoulus, Aristos A. Aristidou, and Jens Nielsen. Readings: Will be posted on D2L Course webpage or provided as handouts in class. -
Enabling Direct Compression Tablet Development Of
ENABLING DIRECT COMPRESSION TABLET DEVELOPMENT OF CELECOXIB THROUGH SOLID STATE ENGINEERING A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Kunlin Wang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Changquan Calvin Sun, Advisor August 2020 © Kunlin Wang 2020 Acknowledgements Life as a Ph.D. student is a journey filled with gratitude. For my 5 years of Ph.D. study as well as 2 years of undergraduate research at the Sun Lab, the first person I would like to thank is my advisor, Prof. Changquan Calvin Sun. During my undergraduate research in my junior and senior years, he has been a good guide and scientist who triggered my interest in pharmaceutical materials science and lead my way to pursuing a Ph.D. degree in Pharmaceutics. During my graduate study, Dr. Sun has been a great mentor in science as well as a supporter who inspire me for attitude and solutions towards life’s problems. My appreciation also goes to my committee members, Dr. Raj Suryanarayanan, Dr. Timothy Wiedmann, and Dr. Andreas Stein for reviewing my dissertation, offering insightful comments and suggestions, and serving on my Ph. D. exam committees. I have learned the power of logical thinking and analysis from Dr. Sury; the significance of practical thinking from Dr. Wiedmann and the power of getting the big picture from Dr. Stein from a different perspective. I am extremely grateful not only for their time and patience, but for their trust in me as they offer me support in my development as a scientist. -
Recitation Section 4 Answer Key Biochemistry—Energy and Glycolysis
MIT Department of Biology 7.014 Introductory Biology, Spring 2005 Recitation Section 4 Answer Key February 14-15, 2005 Biochemistry—Energy and Glycolysis A. Why do we care In lecture we discussed the three properties of a living organism: metabolism, regulated growth, and replication. Today we will focus on metabolism and biosynthesis. 1. It was said in lecture that chemical reactions are the basis of life. Why do we say that? Being alive implies being able to change your state in response to a change in internal or environmental conditions. We discussed previously that any change in the observable characteristics of a cell begins as and is propagated by molecular interactions. Molecular interactions propagate the signal by changing the state of molecules, i.e. by reactions. 2. Why is metabolism required for life? A cell is subject to all laws of chemistry and physics, including the first and second law of thermodynamics. Changing the state of molecules dissipates energy along the way, so getting or making new energy is essential to life. The energy is then used for many purposes, including making the building blocks and precursors and then using them to build macromolecules that make up cells—biosynthesis. 3. Can an entity that performs no chemical reactions be considered “alive?” In general, no. But there are special cases of the cells that do not perform reactions right at the moment, but have the potential to perform reactions if they encounter particular conditions. Some examples of such cells are spores in nature or frozen permanents in laboratory. If they experience certain conditions, such as availability of food for spores, or defrosting and food source for frozen permanents, these cells will again perform metabolism. -
Production of Succinic Acid by E.Coli from Mixtures of Glucose
2005:230 CIV MASTER’S THESIS Production of Succinic Acid by E. coli from Mixtures of Glucose and Fructose ANDREAS LENNARTSSON MASTER OF SCIENCE PROGRAMME Chemical Engineering Luleå University of Technology Department of Chemical Engineering and Geosciences Division of Biochemical and Chemical Engineering 2005:230 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 05/230 - - SE Abstract Succinic acid, derived from fermentation of renewable feedstocks, has the possibility of replacing petrochemicals as a building block chemical. Another interesting advantage with biobased succinic acid is that the production does not contribute to the accumulation of CO2 to the environment. The produced succinic acid can therefore be considered as a “green” chemical. The bacterium used in this project is a strain of Escherichia coli called AFP184 that has been metabolically engineered to produce succinic acid in large quantities from glucose during anaerobic conditions. The objective with this thesis work was to evaluate whether AFP184 can utilise fructose, both alone and in mixtures with glucose, as a carbon source for the production of succinic acid. Hydrolysis of sucrose yields a mixture of fructose and glucose in equal ratio. Sucrose is a common sugar and the hydrolysate is therefore an interesting feedstock for the production of succinic acid. Fermentations with an initial sugar concentration of 100 g/L were conducted. The sugar ratios used were 100 % fructose, 100 % glucose and a mixture with 50 % fructose and glucose, respectively. The fermentation media used was a lean, low- cost media based on corn steep liquor and a minimal addition of inorganic salts. Fermentations were performed with a 12 L bioreactor and the acid and sugar concentrations were analysed with an HPLC system. -
2.4 the Breakdown Chemical Reactions Bonds Break and Form During Chemical Reactions
DO NOT EDIT--Changes must be made through “File info” CorrectionKey=B 2.4 Chemical Reactions KEY CONCEPT VOCABULARY Life depends on chemical reactions. chemical reaction MAIN IDEAS reactant Bonds break and form during chemical reactions. product Chemical reactions release or absorb energy. bond energy equilibrium activation energy Connect to Your World exothermic When you hear the term chemical reaction, what comes to mind? Maybe you think endothermic of liquids bubbling in beakers. You probably do not think of the air in your breath, but most of the carbon dioxide and water vapor that you breathe out are made by chemical reactions in your cells. MAIN IDEA Bonds break and form during chemical reactions. Plant cells make cellulose by linking simple sugars together. Plant and animal cells break down sugars to get usable energy. And all cells build protein mol- ecules by bonding amino acids together. These are just a few of the chemical reactions in living things. Chemical reactions change substances into different substances by breaking and forming chemical bonds. Although the matter changes form, both matter and energy are conserved in a chemical reaction. Reactants, Products, and Bond Energy Your cells need the oxygen molecules that you breathe in. Oxygen (O2) plays a part in a series of chemical reactions that provides usable energy for your cells. These reactions, which are described in detail in the chapter Cells and Energy, break down the simple sugar glucose (C6H12O6). The process uses oxygen and glucose and results in carbon dioxide (CO2), water (H2O), and usable energy. Oxygen and glucose are the reactants. -
Metabolic Engineering for Unusual Lipid Production in Yarrowia Lipolytica
microorganisms Review Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica Young-Kyoung Park * and Jean-Marc Nicaud Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)1-74-07-16-92 Received: 14 November 2020; Accepted: 2 December 2020; Published: 6 December 2020 Abstract: Using microorganisms as lipid-production factories holds promise as an alternative method for generating petroleum-based chemicals. The non-conventional yeast Yarrowia lipolytica is an excellent microbial chassis; for example, it can accumulate high levels of lipids and use a broad range of substrates. Furthermore, it is a species for which an array of efficient genetic engineering tools is available. To date, extensive work has been done to metabolically engineer Y. lipolytica to produce usual and unusual lipids. Unusual lipids are scarce in nature but have several useful applications. As a result, they are increasingly becoming the targets of metabolic engineering. Unusual lipids have distinct structures; they can be generated by engineering endogenous lipid synthesis or by introducing heterologous enzymes to alter the functional groups of fatty acids. In this review, we describe current metabolic engineering strategies for improving lipid production and highlight recent researches on unusual lipid production in Y. lipolytica. Keywords: Yarrowia lipolytica; oleochemicals; lipids; unusual lipids; metabolic engineering 1. Introduction Microbial lipids are promising alternative fuel sources given growing concerns about climate change and environmental pollution [1–4]. They offer multiple advantages over plant oils and animal fats. For example, the production of microbial lipids does not result in resource competition with food production systems; is largely independent of environmental conditions; can be based on diverse substrates; and allows product composition to be customized based on the desired application [3,4]. -
Medicinova Receives Notice of Allowance for Second Patent Covering MN-166 (Ibudilast) for the Treatment of Glioblastoma
MediciNova Receives Notice of Allowance for Second Patent Covering MN-166 (ibudilast) for the Treatment of Glioblastoma April 20, 2020 LA JOLLA, Calif., April 20, 2020 (GLOBE NEWSWIRE) -- MediciNova, Inc., a biopharmaceutical company traded on the NASDAQ Global Market (NASDAQ:MNOV) and the JASDAQ Market of the Tokyo Stock Exchange (Code Number: 4875), today announced that it has received a Notice of Allowance from the U.S. Patent and Trademark Office for a pending patent application which covers MN-166 (ibudilast) for the treatment of glioblastoma. This new patent has improved therapeutic claims compared to the first patent which covers MN-166 (ibudilast) for the treatment of glioblastoma, which was granted last year, and has a later expiration date than the first patent. Once issued, the patent maturing from this allowed patent application is expected to expire no earlier than February 2039. The allowed claims cover a method of treating a patient diagnosed with glioblastoma or recurrent glioblastoma, wherein the patient expresses methylated MGMT (O6-methylguanine-DNA methyltransferase), using MN-166 (ibudilast) in combination with one or more other therapeutic agents including temozolomide (TMZ), carmustine, bevacizumab, procarbazine, hydroxyurea, irinotecan, lomustine, nimotuzumab, sirolimus, mipsagargin, cabozantinib, onartuzumab, patupilone (epothilone B), and recombinant oncolytic poliovirus (PVS-RIPO). The allowed claims cover a wide range of doses of MN-166 (ibudilast) during an optionally repeating dosing cycle. The allowed claims also cover different types of glioblastoma including classical glioblastoma, proneural glioblastoma, mesenchymal glioblastoma, and neural glioblastoma. Yuichi Iwaki, MD, PhD, President and Chief Executive Officer of MediciNova, Inc., commented, "We are very pleased to receive notice that this new patent will be granted as it offers better coverage than our first patent covering glioblastoma.