Sulfur Dioxide

Total Page:16

File Type:pdf, Size:1020Kb

Sulfur Dioxide Right to Know Hazardous Substance Fact Sheet Common Name: SULFUR DIOXIDE Synonyms: Sulfurous Oxide; Sulfur Oxide CAS Number: 7446-09-5 Chemical Name: Sulfur Dioxide RTK Substance Number: 1759 Date: June 2000 Revision: May 2010 DOT Number: UN 1079 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Sulfur Dioxide is a colorless gas with a strong, irritating odor, Hazard Summary that is often shipped as a liquid under pressure. It is used as a Hazard Rating NJDOH NFPA bleaching agent, refrigerant, and solvent, and occurs as an off- HEALTH - 3 gas from smelters and electrical power plants. FLAMMABILITY - 0 REACTIVITY - 0 f ODOR THRESHOLD = 0.3 to 5 ppm POISONOUS GASES ARE PRODUCED IN FIRE f Odor thresholds vary greatly. Do not rely on odor alone to CONTAINERS MAY EXPLODE IN FIRE determine potentially hazardous exposures. DOES NOT BURN Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f Sulfur Dioxide is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, f Sulfur Dioxide can affect you when inhaled and by passing NIOSH, DEP, IARC, NFPA and EPA. through the skin. f Contact can irritate and burn the skin and eyes with possible eye damage. f Direct contact with the liquid may cause frostbite. f Inhaling Sulfur Dioxide can irritate the nose and throat. f Inhaling Sulfur Dioxide can irritate the lungs. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. f Repeated exposure can cause loss of sense of smell, SEE GLOSSARY ON PAGE 5. headache, nausea and dizziness. FIRST AID Eye Contact Workplace Exposure Limits f Immediately flush with large amounts of water for at least 15 OSHA: The legal airborne permissible exposure limit (PEL) is minutes, lifting upper and lower lids. Remove contact 5 ppm averaged over an 8-hour workshift. lenses, if worn, while flushing. Seek medical attention. Skin Contact NIOSH: The recommended airborne exposure limit (REL) is f Immerse affected part in warm water. Seek medical 2 ppm averaged over a 10-hour workshift and 5 ppm, attention. not to be exceeded during any 15-minute work period. Inhalation f Remove the person from exposure. ACGIH: The threshold limit value (TLV) is 0.25 ppm averaged f Begin rescue breathing (using universal precautions) if over an 8-hour workshift. breathing has stopped and CPR if heart action has stopped. f Transfer promptly to a medical facility. f Medical observation is recommended for 24 to 48 hours after f The above exposure limits are for air levels only. When skin overexposure, as pulmonary edema may be delayed. contact also occurs, you may be overexposed, even though air levels are less than the limits listed above. EMERGENCY NUMBERS Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802 SULFUR DIOXIDE Page 2 of 6 Determining Your Exposure Other Effects f Repeated exposure can cause loss of sense of smell, f Read the product manufacturer’s Material Safety Data headache, nausea, vomiting and dizziness. Sheet (MSDS) and the label to determine product f Sulfur Dioxide can irritate the lungs. Repeated exposure ingredients and important safety and health information may cause bronchitis to develop with coughing, phlegm, about the product mixture. and/or shortness of breath. f For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website Medical (www.nj.gov/health/eoh/rtkweb) or in your facility’s RTK Medical Testing Central File or Hazard Communication Standard file. For frequent or potentially high exposure (half the TLV or greater), the following are recommended before beginning f You have a right to this information under the New Jersey work and at regular times after that: Worker and Community Right to Know Act and the Public Employees Occupational Safety and Health (PEOSH) Act f Lung function tests if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you Any evaluation should include a careful history of past and are a private worker. present symptoms with an exam. Medical tests that look for damage already done are not a substitute for controlling f The New Jersey Right to Know Act requires most exposure. employers to label chemicals in the workplace and requires public employers to provide their employees with Request copies of your medical testing. You have a legal right information concerning chemical hazards and controls. to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020). The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Mixed Exposures Standard (N.J.A.C. 12:100-7) require employers to provide f Smoking can cause heart disease, lung cancer, similar information and training to their employees. emphysema, and other respiratory problems. It may worsen respiratory conditions caused by chemical exposure. Even if This Fact Sheet is a summary of available information you have smoked for a long time, stopping now will reduce regarding the health hazards that may result from exposure. your risk of developing health problems. Duration of exposure, concentration of the substance and other factors will affect your susceptibility to any of the potential Conditions Made Worse By Exposure effects described below. f People with chronic lung disease (bronchitis, emphysema) may have their condition become worse after exposure to Sulfur Dioxide. Health Hazard Information Acute Health Effects The following acute (short-term) health effects may occur immediately or shortly after exposure to Sulfur Dioxide: f Contact can irritate and burn the skin and eyes with possible eye damage. f Direct contact with the liquid may cause frostbite. f Inhaling Sulfur Dioxide can irritate the nose and throat. f Inhaling Sulfur Dioxide can irritate the lungs causing coughing and/or shortness of breath. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath. Chronic Health Effects The following chronic (long-term) health effects can occur at some time after exposure to Sulfur Dioxide and can last for months or years: Cancer Hazard f While Sulfur Dioxide has been tested, it is not classifiable as to its potential to cause cancer. Reproductive Hazard f Sulfur Dioxide may decrease fertility in males and females. SULFUR DIOXIDE Page 3 of 6 Workplace Controls and Practices f Where exposure to cold equipment, vapors, or liquid may occur, employees should be provided with insulated gloves Very toxic chemicals, or those that are reproductive hazards or and special clothing designed to prevent the freezing of body sensitizers, require expert advice on control measures if a less tissues. toxic chemical cannot be substituted. Control measures f All protective clothing (suits, gloves, footwear, headgear) include: (1) enclosing chemical processes for severely should be clean, available each day, and put on before work. irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control Eye Protection exposures to skin and eye irritants. For further information on f Wear non-vented, impact resistant goggles when working workplace controls, consult the NIOSH document on Control with fumes, gases, or vapors. Banding at www.cdc.gov/niosh/topics/ctrlbanding/. f Wear indirect-vent, impact and splash resistant goggles when working with liquids. The following work practices are also recommended: f Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances. f Label process containers. f Provide employees with hazard information and training. Respiratory Protection f Monitor airborne chemical concentrations. Improper use of respirators is dangerous. Respirators f Use engineering controls if concentrations exceed should only be used if the employer has implemented a written recommended exposure levels. program that takes into account workplace conditions, f Provide eye wash fountains and emergency showers. requirements for worker training, respirator fit testing, and f Wash or shower if skin comes in contact with a hazardous material. medical exams, as described in the OSHA Respiratory f Always wash at the end of the workshift. Protection Standard (29 CFR 1910.134). f Change into clean clothing if clothing becomes contaminated. f Where the potential exists for exposure over 0.25 ppm, use f Do not take contaminated clothing home. a NIOSH approved full facepiece respirator with an acid gas f Get special training to wash contaminated clothing. cartridge which is specifically approved for Sulfur Dioxide. f Do not eat, smoke, or drink in areas where chemicals are Increased protection is obtained from full facepiece being handled, processed or stored. powered-air purifying respirators. f Wash hands carefully before eating, smoking, drinking, f Leave the area immediately if (1) while wearing a filter or applying cosmetics or using the toilet. cartridge respirator you can smell, taste, or otherwise detect Sulfur Dioxide, (2) while wearing particulate filters abnormal In addition, the following may be useful or required: resistance to breathing is experienced, or (3) eye irritation occurs while wearing a full facepiece respirator. Check to f Specific actions are required for this chemical by OSHA. make sure the respirator-to-face seal is still good. If it is, Refer to the OSHA Compressed Gases Standard (29 CFR replace the filter or cartridge. If the seal is no longer good, 1910.101). you may need a new respirator. f Where possible, transfer Sulfur Dioxide from cylinders or f Consider all potential sources of exposure in your workplace. other containers to process containers in an enclosed You may need a combination of filters, prefilters or cartridges system.
Recommended publications
  • Enhanced Heterogeneous Uptake of Sulfur Dioxide on Mineral Particles Through Modification of Iron Speciation During Simulated Cloud Processing
    Atmos. Chem. Phys., 19, 12569–12585, 2019 https://doi.org/10.5194/acp-19-12569-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing Zhenzhen Wang1, Tao Wang1, Hongbo Fu1,2,3, Liwu Zhang1, Mingjin Tang4, Christian George5, Vicki H. Grassian6, and Jianmin Chen1 1Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China 2Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China 3Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China 4State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 5University of Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626, Villeurbanne, France 6Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA Correspondence: Hongbo Fu ([email protected]) and Jianmin Chen ([email protected]) Received: 7 May 2019 – Discussion started: 5 June 2019 Revised: 7 August 2019 – Accepted: 5 September 2019 – Published: 9 October
    [Show full text]
  • Source Test Method ST-20 SULFUR DIOXIDE, SULFUR TRIOXIDE
    Source Test Method ST-20 SULFUR DIOXIDE, SULFUR TRIOXIDE, SULFURIC ACID MIST (Adopted January 20, 1982) REF: Regulations 6-320, 6-330, 9-1-302, 9-1-304 thru 310, 10-1-301, 12-6-301 1. APPLICABILITY 1.1 This method is used to quantify emissions of s ulfur dioxide, sulfur trioxide and sulfuric acid mist. It determines compliance with Regulations 6-320 and 6-330 for SULFUR TRIOXIDE and SULFURIC ACID MIST, and 9-1-302, 9- 1-304 thru 310 and 10-1-301 and 12-6-301 for SULFUR DIOXIDE. 1.2 This method, modified with a glass fiber disc filter as the back-up SO 3 filter, has been given alternate status by the EPA to EPA Method 8. It may be used to determine compliance with oxides of sulfur regulations under Regulation 9. 2. PRINCIPLE 2.1 Sulfuric acid mist, sulfur trioxide and sulfur dioxide are collected in a single extractive sampling train. Acid mist is trapped in a quartz wool plug in the sample probe and is subsequently analyzed with an acid-base titration. Sulfur trioxide is absorbed in an 80% isopropyl alcohol (IPA)/water solution with a quartz wool back-up filter and is analyzed using analytical procedure Lab-12. Sulfur dioxide is absorbed in an aqueous hydrogen peroxide solution and is analyzed using analytical procedure Lab-12. 3. RANGE 3.1 The minimum measurable concentration using this method listed below are: 3 3.1.1 Acid mist - 0.0002 gr/ft as H2SO4 3.1.2 Sulfur trioxide - 7 ppm 3.1.3 Sulfur dioxide - 7 ppm 3.2 The maximum measurable concentrations using this method listed below are: 3.2.1 Acid mist - undetermined 3.2.2 Sulfur trioxide - 350 ppm 3.2.3 Sulfur dioxide - 2.5 % 4.
    [Show full text]
  • Understanding Pigments: the Third Step to Higher Quality And
    Understanding Pigments: The Third Mark Harber October, 2000 Step to Higher Quality and Consistency Putting great color in your product is part of the pigments. However, they are less opaque and systems approach for resolving issues of sub- would have to be used at higher loading levels to standard properties and appearance. achieve similar whiteness and opacity. This article on pigments is the third in a four-part Titanium Dioxide is used in the majority of the series about the interrelationship of the material products made by the cast polymer industry. Tita- components used in marble and solid surface nium Dioxide-based colors include most whites, manufacturing. These AOC-authored articles re- pastels, earth tones and off-whites such as bone, spond to the challenge that the cast polymer in- ivory, beige or biscuit. As noted in Table 1, non- dustries aspire to higher standards of quality and white synthetic oxides are combined with Titani- consistency. Because resolving cast polymer is- um Dioxide to create pastels and earth tones for sues requires a systems approach, other articles cultured marble and solid surface applications. in this series address resins, gel coats and pro- cessing. All articles begin with background infor- Phthalocyanine pigments, or "Phthalos," impart mation on the main subject matter, followed by deep colors such as the automotive "Hunter ten related issues and guidelines. Green" of a sport utility vehicle or the high strength Blue used in ballpoint pens. Because A BACKGROUND ON COLORANTS they are so deep when used by themselves, In their natural state, cast polymer resins meet a Phthalo Blue and Phthalo Green are normally variety of performance requirements but are lack- blended with other pigments, many times Titani- ing in the color that draws the customer to the um Dioxide.
    [Show full text]
  • Sulfur Safety Data Sheet SDS No: 6192 According to Federal Register / Vol
    Sulfur Safety Data Sheet SDS No: 6192 According To Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations Revision Date: 10/23/2018 Date of Issue: 08/30/2012 Version: 1.0 SECTION 1: IDENTIFICATION 1.1. Product Identifier Product Form: Mixture Product Name: Sulfur Synonyms: Brimstone, Sulfur 1.2. Intended Use of the Product Hydrogen sulfide may be present in trace quantities (by weight) in molten sulfur but may accumulate to toxic or flammable concentrations in enclosed spaces such as molten sulfur storage pits, tanks, or tanker/railcar headspaces. Hydrogen sulfide is not considered a hazard associated with solid sulfur. 1.3. Name, Address, and Telephone of the Responsible Party Customer Hess Tower 1501 McKinney Houston, TX 77010 T:(713) 496-4000 When calling the main operator ask for the EHS Safety Department. All Hess SDSs are also available via the Hess.com website. 1.4. Emergency Telephone Number Emergency Number : (800) 424-9300 CHEMTREC (24 hours) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the Substance or Mixture GHS-US Classification Flam. Sol. 2 H228 Skin Irrit. 2 H315 Aquatic Acute 2 H401 Comb. Dust Full text of hazard classes and H-statements : see Section 16. 2.2. Label Elements GHS-US Labeling Hazard Pictograms (GHS-US) : GHS02 GHS07 Signal Word (GHS-US) : Warning Hazard Statements (GHS-US) : May form combustible dust concentrations in air. H228 - Flammable solid. H315 - Causes skin irritation. H401 - Toxic to aquatic life. Precautionary Statements (GHS-US) : P210 - Keep away from heat, sparks, open flames, hot surfaces. - No smoking. P240 - Ground/Bond container and receiving equipment.
    [Show full text]
  • Safety Data Sheet Acc
    Page 1/10 Safety Data Sheet acc. to OSHA HCS Printing date 03/24/2019 Version Number 2 Reviewed on 03/24/2019 * 1 Identification · Product identifier · Trade name: Acrylamide · Part number: RCC-203 · CAS Number: 79-06-1 · EC number: 201-173-7 · Index number: 616-003-00-0 · Application of the substance / the mixture Reagents and Standards for Analytical Chemical Laboratory Use · Details of the supplier of the safety data sheet · Manufacturer/Supplier: Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051 USA · Information department: Telephone: 800-227-9770 e-mail: [email protected] · Emergency telephone number: CHEMTREC®: 1-800-424-9300 2 Hazard(s) identification · Classification of the substance or mixture GHS06 Skull and crossbones Acute Tox. 3 H301 Toxic if swallowed. GHS08 Health hazard Muta. 1B H340 May cause genetic defects. Carc. 1B H350 May cause cancer. Repr. 2 H361 Suspected of damaging fertility or the unborn child. STOT RE 1 H372 Causes damage to organs through prolonged or repeated exposure. GHS07 Acute Tox. 4 H312 Harmful in contact with skin. Acute Tox. 4 H332 Harmful if inhaled. Skin Irrit. 2 H315 Causes skin irritation. Eye Irrit. 2A H319 Causes serious eye irritation. Skin Sens. 1 H317 May cause an allergic skin reaction. · Label elements · GHS label elements The substance is classified and labeled according to the Globally Harmonized System (GHS). (Contd. on page 2) US 48.1.26 Page 2/10 Safety Data Sheet acc. to OSHA HCS Printing date 03/24/2019 Version Number 2 Reviewed on 03/24/2019 Trade name: Acrylamide (Contd.
    [Show full text]
  • Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11
    This PDF is available from The National Academies Press at http://www.nap.edu/catalog.php?record_id=13374 Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 ISBN Committee on Acute Exposure Guideline Levels; Committee on 978-0-309-25481-6 Toxicology; National Research Council 356 pages 6 x 9 PAPERBACK (2012) Visit the National Academies Press online and register for... Instant access to free PDF downloads of titles from the NATIONAL ACADEMY OF SCIENCES NATIONAL ACADEMY OF ENGINEERING INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCIL 10% off print titles Custom notification of new releases in your field of interest Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Request reprint permission for this book Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies Copyright © National Academy of Sciences. All rights reserved. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 11 THE NATIONAL ACADEMIES PRESS 500 FIFTH STREET, NW WASHINGTON, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Insti- tute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.
    [Show full text]
  • On the Cycling of Sulfur and Mercury in the St. Louis River Watershed, Northeastern Minnesota
    Page 1 of 91 Final Report On the Cycling of Sulfur and Mercury in the St. Louis River Watershed, Northeastern Minnesota An Environmental and Natural Trust Fund Final Report August 15, 2012 Michael Berndt and Travis Bavin Minnesota Department of Natural Resources 500 Lafayette Rd. St. Paul, MN 55455 Page 2 of 91 Final Report Contents Summary .......................................................................................................................................... 3 Introduction ..................................................................................................................................... 4 Methods ........................................................................................................................................... 5 Sampling Site Selection ................................................................................................................ 5 Chemical Analysis ......................................................................................................................... 6 34 18 Sulfur and Oxygen Isotopes in Dissolved Sulfate (δ SSO4 and δ OSO4)........................................ 7 Stream Gaging .............................................................................................................................. 7 Results .............................................................................................................................................. 7 Watershed Survey .......................................................................................................................
    [Show full text]
  • SO2 Removal by NH3 Gas Injection: Effects of Temperature and Moisture Content
    Ind. Eng. Chem. Res. 1994,33, 1231-1236 1231 SO2 Removal by NH3 Gas Injection: Effects of Temperature and Moisture Content Hsunling Bai' Institute of Environmental Engineering, National Chiao- Tung University, Hsin-Chu, Taiwan, R.O.C. Pratim Biswas and Tim C. Keener Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221 -0071 The removal of SO2 by NH3 gas injection at various temperatures and moisture contents has been studied experimentally. The product compositions of the NH3-SO2-HzO vapor reactions were also reported. A thermodynamic analysis was carried out to predict the SO2 removal as well as the product compositions. Both the experimental results and thermodynamic analysis indicated that SO2 removal and the product compositions are sensitive to the reaction temperature. Moisture content, once in large excess of the stoichiometric requirement, does not have a strong effect on the product compositions but plays an important role in the SO2 removal. Introduction conditions. Stromberger (1984) used X-ray diffraction and identified the product particles to be (NH&S04 Sulfur dioxide removal from flue gases is a goal of many crystals. air pollution engineers. Significant efforts in the develop- ment of new flue gas desulfurization (FGD) technologies Although a number of studies on the removal of SO2 are being made. Major processes related to FGD tech- from flue gases by NH3 injection have been conducted, nologies include water scrubbing, metal ion solutions, there is disagreement on the operating condition (such as catalytic oxidation, dry or semidry adsorption, wet lime temperature) that a high removal efficiency can be or limestone scrubbing, double alkali process, and ammonia obtained.
    [Show full text]
  • Sodium Chlorite Sulfur Destruction
    ® Basic Chemicals Sodium Chlorite Sulfur Destruction Application Description: Advantages of Sodium Chlorite/Chlorine Reduced sulfur compounds are a broad Dioxide: class of oxy-sulfur compounds, such as = = sulfite (SO3 ) and thiosulfate (S2O3 ), that Chlorine dioxide reacts the most rapidly have an oxidant demand. These and does not form chlorinated organic compounds are found in the waste streams by-products. of the petroleum, steel, paper and most While chlorine is the least expensive chemical industries. Their high oxidant chemical, it cannot be used when demand can cause eutrophication of natural organic compounds are present due to waters and excessive chlorine demand in the formation of chlorinated organic by- wastewaters treated by POTWs (Publicly products. Owned Treatment Works). When chlorine can't be used, hydrogen peroxide has the lowest chemical costs. Chlorine dioxide effectively oxidizes these species to sulfate ions over a broad pH range (5-9). Below a pH of 4, sodium Affected Industries: chlorite may be used without the generation Chemicals, Food, Iron & Steel, Mining, Oil of chlorine dioxide. Since these compounds Refining, Plastics & Rubber, Pulp & Paper, are usually found in mixtures of various Textiles ratios the required chlorine dioxide dosage must be determined for each application. Further Information More detailed information on sodium Alternatives: chlorite applications is available upon Hydrogen peroxide solution is added by request through the OxyChem Technical a chemical dosing pump. Services Department. Call or write to: Chlorine gas is added by a vacuum eductor system, while sodium OxyChem hypochlorite solution is added by a Technical Service Department chemical dosing pump. PO Box 12283 Wichita, Kansas 67277-2283 800-733-1165 Ext.
    [Show full text]
  • The Chemical Behaviors of Nitrogen Dioxide Absorption in Sulfite Solution
    Article The Chemical Behaviors of Nitrogen Dioxide Absorption in Sulfite Solution Ye Sun, Xiaowei Hong, Tianle Zhu *, Xiaoyan Guo and Deyuan Xie School of Space and Environment, Beihang University, Beijing 100191, China; [email protected] (Y.S.); [email protected] (X.H.); [email protected] (X.G.); [email protected] (D.X.) * Correspondence: [email protected]; Tel.: +86-10-8231-4215 Academic Editor: Agustín Bueno López Received: 14 March 2017; Accepted: 6 April 2017; Published: 12 April 2017 Abstract: The simultaneous removal of nitrogen oxides (NOx) and sulfur dioxide (SO2) by absorption is considered to be one of the most promising technologies for flue gas treatment, and sulfite is the main component of the absorption solution. To understand the chemical behaviors of the NO2 absorption in sulfite solution, the absorption time dependences of concentrations of nitrogen and sulfur compositions in both gas phase and liquid phases were investigated by flue gas analyzer, Ion chromatography (IC), Gas chromatography (GC), and Fourier transform infrared spectrometry (FTIR) methods using a bubbling reactor. The mass equilibrium of the N and S compositions were also studied. The results indicate that sulfite concentration plays a vital role in NO2 absorption. The main absorption products are NO3− and NO2−, and NO2− can be converted into NO3− in the presence of oxygen. Besides, about 4% to 9% by-products of S compositions are formed, and 4% to 11% by-products of N compositions such as NO, N2, N2O5, N2O, and HNO3 in the gas phase were detected in the emissions from the bubbling reactor. On the basis of N and S compositions, a possible pathway of NO2 absorption in sulfite solution was proposed.
    [Show full text]
  • Nitrogen Dioxide
    Common Name: NITROGEN DIOXIDE CAS Number: 10102-44-0 RTK Substance number: 1376 DOT Number: UN 1067 Date: May 1989 Revision: April 2000 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Nitrogen Dioxide can affect you when breathed in. * If you think you are experiencing any work-related health * Nitrogen Dioxide may cause mutations. Handle with problems, see a doctor trained to recognize occupational extreme caution. diseases. Take this Fact Sheet with you. * Contact can irritate and burn the skin and eyes with * Exposure to hazardous substances should be routinely possible eye damage. evaluated. This may include collecting personal and area * Breathing Nitrogen Dioxide can irritate the nose and air samples. You can obtain copies of sampling results throat. from your employer. You have a legal right to this * Breathing Nitrogen Dioxide can irritate the lungs causing information under OSHA 1910.1020. coughing and/or shortness of breath. Higher exposures can cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of WORKPLACE EXPOSURE LIMITS breath. OSHA: The legal airborne permissible exposure limit * High levels can interfere with the ability of the blood to (PEL) is 5 ppm, not to be exceeded at any time. carry Oxygen causing headache, fatigue, dizziness, and a blue color to the skin and lips (methemoglobinemia). NIOSH: The recommended airborne exposure limit is Higher levels can cause trouble breathing, collapse and 1 ppm, which should not be exceeded at any even death. time. * Repeated exposure to high levels may lead to permanent lung damage. ACGIH: The recommended airborne exposure limit is 3 ppm averaged over an 8-hour workshift and IDENTIFICATION 5 ppm as a STEL (short term exposure limit).
    [Show full text]
  • Potential Ivvs.Gelbasedre
    US010644304B2 ( 12 ) United States Patent ( 10 ) Patent No.: US 10,644,304 B2 Ein - Eli et al. (45 ) Date of Patent : May 5 , 2020 (54 ) METHOD FOR PASSIVE METAL (58 ) Field of Classification Search ACTIVATION AND USES THEREOF ??? C25D 5/54 ; C25D 3/665 ; C25D 5/34 ; ( 71) Applicant: Technion Research & Development HO1M 4/134 ; HOTM 4/366 ; HO1M 4/628 ; Foundation Limited , Haifa ( IL ) (Continued ) ( 72 ) Inventors : Yair Ein - Eli , Haifa ( IL ) ; Danny (56 ) References Cited Gelman , Haifa ( IL ) ; Boris Shvartsev , Haifa ( IL ) ; Alexander Kraytsberg , U.S. PATENT DOCUMENTS Yokneam ( IL ) 3,635,765 A 1/1972 Greenberg 3,650,834 A 3/1972 Buzzelli ( 73 ) Assignee : Technion Research & Development Foundation Limited , Haifa ( IL ) (Continued ) ( * ) Notice : Subject to any disclaimer , the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 CN 1408031 4/2003 U.S.C. 154 ( b ) by 56 days . EP 1983078 10/2008 (21 ) Appl. No .: 15 /300,359 ( Continued ) ( 22 ) PCT Filed : Mar. 31 , 2015 OTHER PUBLICATIONS (86 ) PCT No .: PCT/ IL2015 /050350 Hagiwara et al. in ( Acidic 1 - ethyl - 3 -methylimidazoliuum fluoride: a new room temperature ionic liquid in Journal of Fluorine Chem $ 371 (c ) ( 1 ), istry vol . 99 ( 1999 ) p . 1-3 ; ( Year: 1999 ). * (2 ) Date : Sep. 29 , 2016 (Continued ) (87 ) PCT Pub . No .: WO2015 / 151099 Primary Examiner — Jonathan G Jelsma PCT Pub . Date : Oct. 8 , 2015 Assistant Examiner Omar M Kekia (65 ) Prior Publication Data (57 ) ABSTRACT US 2017/0179464 A1 Jun . 22 , 2017 Disclosed is a method for activating a surface of metals , Related U.S. Application Data such as self- passivated metals , and of metal -oxide dissolu tion , effected using a fluoroanion -containing composition .
    [Show full text]