Hypothesis Testing, Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Hypothesis Testing, Part 2 Hypothesis testing, part 2 With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal 1 CATEGORICAL IV, NUMERIC DV 2 Independent samples, one IV # Conditions Normal/Parametric Non-parametric Exactly 2 T-test Mann-Whitney U, bootstrap 2+ One-way ANOVA Kruskal-Wallis, bootstrap 3 Is your data normal? • Skewness: asymmetry • Kurtosis: “peakedness” rel. to normal – Both: within +- 2SE(s/u) is OK • Or use Shapiro-Wilk (null = normal) • Or look at Q-Q plot 4 T-test • Already talked about • Assumptions: normality, equal variances, independent samples – Can use Levene to test equal variance assumption • Post-test: check residuals for assumption fit – For a t-test this is the same pre or post – For other tests you check residual vs. fit post 5 One way ANOVA • H0: m1 = m2 = m3 • H1: at least one doesn’t match • NOT H1: m1 != m2 != m3 • Assumptions: normality, common variance, independent errors • Intuition: F statistic – Variance between / Variance within – Under (exact null), F=1; F >> 1 rejects null 6 One-way ANOVA • F = MSb / MSw 2 • MSw = sum [sum[ (diff from mean) ]] / dfw – dfw = N-k, where k = number of conditions – Sum over all conditions; sum per condition 2] • MSb = sum [(diff from grand mean) / dfb – dfb = k-1 – Every observation goes in the sum 7 (example from Vibha Sazawal) 8 9 F-distribution rejected 10 Now what? (Contrasts) • So we rejected the null. What did we learn? – What *didn’t* we learn? – At least one is different ... Which? All? – This is called an “omnibus test” • To answer our actual research question, we usually need pairwise contrasts 11 The trouble with contrasts • Contrasts mess with your Type I bounds – One test: 95% confident – Three tests: 85.7% confident – 5 conditions, all pairs: 4 + 3 + 2 + 1 = 10 tests: 59.9% – UH OH 12 Planned vs. post hoc • Planned: You have a theory. – Really, no cheating – You get n-1 pairwise comparisons for free – In theory, should not be control vs. all, but prob. OK – NO COMPARISONS unless omnibus passes • Post-hoc – Anything unplanned – More than n-1 – Requires correction! – Doesn’t necessarily require omnibus first 13 Correction • Adjust {p-values, alpha} to compensate for multiple testing post-hoc • Bonferroni (most conservative) – Assume all possible pairs: m = k(k-1)/m (comb.) – alphac = alpha / m – Once you have looked, implication is you did all the comparisons implicitly! • Holm-Bonferroni is less conservative – Stepwise adjusting alpha as you go • Dunnett for specifically all vs. control, others 14 Independent samples, one IV # Conditions Normal/Parametric Non-parametric Exactly 2 T-test Mann-Whitney U, bootstrap 2+ One-way ANOVA Kruskal-Wallis, bootstrap 15 Non-parametrics: MWU and K-W • Good for non-normal data, likert data (ordinal, not actually numeric) • Assumptions: independent, at least ordinal • Null: P(X > Y) = P(Y > X) where X,Y are observations from the 2 distributions (MWU) – If assume same distribution shape, continuous then this can can be seen as comparing medians 16 MWU and K-W continued • Essentially: rank order all data (both conditions) – Total ranks for condition 1, compare to “expected” – Various procecures to correct for ties 17 Bootstrap • Resampling technique(s) • Intuition: – Create “null” distribution by e.g. subtracting means so mA = mB = 0 • Now you have shifted samples A-hat and B-hat – Combine these to make a null distribution – Draw sample of size N, with replacement • Do it 1000 (or 10k) times – Use this to determine critical value (alpha = 0.05) – Compare this critical value to your real data for test 18 Paired samples, one IV # Conditions Normal/Parametric Non-parametric Exactly 2 Paired T-test Wilcoxon signed-rank 2+ 2-way ANOVA w/ Friedman subJect random factor Mixed models (later) 19 Paired T-test • Two samples per participant item • Test subtracts them • Then uses one-sample T-test with H0: m = 0 and H1: m != 0 • Regular T-test assumptions, plus: does subtraction make sense here? 20 Wilcoxon S.R. / Friedman • H0: difference btwn pairs is symmetric around 0 • H1: … or not • Excludes no-change items • Essentially: rank by abs. difference; compare signs * ranks • (Friedman = 3+ generalization) 21 One numeric IV, numeric DV SIMPLE LINEAR REGRESSION 22 Simple linear regression • E(Y|x) = b0 + b1x … looks at populations – Population mean at this value of x • Key H0: b1 != 0 – b0 usually not important for significance (obv. important in model fit) • b1 : slope à change in Y per unit X • Best fit: Least squares, or maximum likelihood – LSq: minimize sum of squares of residuals – ML: max prob. of seeing this data with this model 23 Assumptions, caveats • Assumes: – linearity in Y ~ X – normally distributed error for each x, with constant variance at all x – Error measuring X is small compared to var. Y (fixed X) • Independent errors! – Serial correlation, data that is grouped, etc. (later) • Don’t interpret widely outside available x vals • Can transform for linearity! – Log(Y), sqrt(y), 1/y, y^2 24 Assumption/residual checking • Before: Use scatterplot for plausible linearity • After: residual vs. fit – Residual on Y vs. predicted on X – Should be relatively even distributed around 0 (linear) – Should have relatively even v. spread (eq. var) • After: quantile-normal of residuals 25 Model interpretation • Interpret b1, interpret the p-value • CI: if it crosses 0, it’s not significant • R2: fraction of total variation accounted for – Intutively: explained variance / total variance – Explained = var(Y) – residual errors • F2 = R2 / (1 – R R2); SML: 0.02, 0.15, 0.35 (cohen) 26 Robustness • Brittle to linearity, independent errors • Somewhat brittle to fixed-X • Fairly robust to equal variance • Quite robust to normality 27 CATEGORICAL OUTCOMES 28 One Cat. IV, Cat. DV, independent • Contingency tables: how many people in each combination of categories 29 Chi-square test of independence • H0: distribution of Var1 is the same at every level of Var2 (and vice versa) – Null dist. Approaches X^2 when sample size grows – Heuristic: no cells < 5 – Can use FET instead • Intuition: – Sum over rows/columns: (observed – expected)^2 / expected – Expected: marginal % * count in other margin 30 Paired 2x2 tables • Use McNemar’s test – Contigency table: matches and mismatches for each option. • H0: marginals are the same Cond1: Yes Cond 1: No Cond2: Yes a b a + b Cond2: No c d c + d a + c b + d N • Essentially a X^2 test on the agreement – Test stat: (b-c)^2 / (b+c) 31 Paired, continued • Cochran’s Q: extended for more than two conditions • Other similar extensions for related tasks 32 Critiques • Choose a paper that has one (or more) empirical experiments as a central contribution – Doesn’t have to be human subjects, but can be – Does have to have enough description of experiment • 10-12 minute presentation • Briefly: research questions, necessary background • Main: describe and critique methods – Experimental design, data collection, analysis – Good, bad, ugly, missing • Briefly, results? 33 Logistic regression (logit) • Numeric IV, binary DV (or ordinal) • log( E(Y)/ (1-E(Y)) ) == log ( Pr (Y=1) / Pr (Y=0)) = b0 + b1x • Log odds of success = linear function – Odds: 0 to inf., 1 is the middle – e.g.: odds = 5 = 5:1 … for five successes, one fail – Log odds: -inf to inf w/ 0 in the middle: good for regression • Modeled as binomial distribution 34 Interpreting logistic regression • Take exp(coef) to get interpretable odds. • For each unit increase in x, odds increase b1 times – Note that this can make small coefs important! • Use e.g., Homer-Lemeshow test for goodness of fit – null == data fit the model – But not a lot of power! 35 MULTIVARIATE 36 Multiple regression • Linear/logistic regression with more variables! – At least one numeric, 0+ categorical • Still: fixed x, normal errors w/ equal variance, independent errors (linear) • Linear relationship in E(Y) and one x, when other inputs held constant – Effects of each x are independent! • Still check q-n of residuals, residual vs. fit 37 Model selection • Which covariates to keep? (more on this in a bit) 38 Adding categorical vars • Indicator variables (everything is 0 or 1) • Need one fewer indicator than conditions – One condition is true; or none are true (baseline) – Coefs are *relative to baseline*! • Model selection: keep all or none for one factor • Called “ANCOVA” when at least one each numeric + categorical 39 Interaction • What if your covariates *aren’t* independent? • E(Y) = b0 + b1x1 + b2x2 + b12x1x2 – Slope for x1 is diff. for each value of x2 • Superadditive: all in same direction, interaction makes effects stronger • Subadditive: interaction is in opposite direction • For indicator vars, all or none 40 Model selection! • Which covariates to keep? • From theory • Keep interaction only if it’s significant? – If keep interaction, should keep corresponding mains • ”Adjusted” R^2? – Regular R^2 always higher w/ more covars • BIC and AIC – Take model likelihood and penalize for more params – Abs value not interpretable; lower is better • All combinations? Stepwise? 41 Know they exist; look them up if relevant THINGS WE ARE ONLY GOING TO MENTION BRIEFLY 42 Multi-way ANOVA • >1 cat IVs, 1 numeric DV • Normality, equal variance, indep. Errors • With interaction: every combo of factor levels has its own population mean • Without interaction (additive): change in one var consistent as all fixed vals for others • Works basically like standard ANOVA, etc. 43 Mixed models regression • Explicitly model correlations in data • Fixed effects: affect outcome for everyone • Random effects: deviations per data item, don’t want to model individually • Simplest example: repeated measures – Y ~ b0 + b1x1 + b2x2 …. + random ID intercept – Each participant has their own intercept adjustment 44 POWER ANALYSIS 45 What is power? • Null distribution: designed so that we’d only see a test statistic this extreme 5% of the time • This bounds type I but not type II • Power = 1 – type II error rate • Heuristic: 80% is “good enough” 46 Alternative scenarios • One null, but infinitely many alternatives! • Alternative distribution: given some n, underlying variance, underlying diff.
Recommended publications
  • Learn About ANCOVA in SPSS with Data from the Eurobarometer (63.1, Jan–Feb 2005)
    Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) © 2015 SAGE Publications, Ltd. All Rights Reserved. This PDF has been generated from SAGE Research Methods Datasets. SAGE SAGE Research Methods Datasets Part 2015 SAGE Publications, Ltd. All Rights Reserved. 1 Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) Student Guide Introduction This dataset example introduces ANCOVA (Analysis of Covariance). This method allows researchers to compare the means of a single variable for more than two subsets of the data to evaluate whether the means for each subset are statistically significantly different from each other or not, while adjusting for one or more covariates. This technique builds on one-way ANOVA but allows the researcher to make statistical adjustments using additional covariates in order to obtain more efficient and/or unbiased estimates of groups’ differences. This example describes ANCOVA, discusses the assumptions underlying it, and shows how to compute and interpret it. We illustrate this using a subset of data from the 2005 Eurobarometer: Europeans, Science and Technology (EB63.1). Specifically, we test whether attitudes to science and faith are different in different countries, after adjusting for differing levels of scientific knowledge between these countries. This is useful if we want to understand the extent of persistent differences in attitudes to science across countries, regardless of differing levels of information available to citizens. This page provides links to this sample dataset and a guide to producing an ANCOVA using statistical software. What Is ANCOVA? ANCOVA is a method for testing whether or not the means of a given variable are Page 2 of 14 Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) SAGE SAGE Research Methods Datasets Part 2015 SAGE Publications, Ltd.
    [Show full text]
  • Statistical Analysis in JASP
    Copyright © 2018 by Mark A Goss-Sampson. All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the purposes of research, education or private study. CONTENTS PREFACE .................................................................................................................................................. 1 USING THE JASP INTERFACE .................................................................................................................... 2 DESCRIPTIVE STATISTICS ......................................................................................................................... 8 EXPLORING DATA INTEGRITY ................................................................................................................ 15 ONE SAMPLE T-TEST ............................................................................................................................. 22 BINOMIAL TEST ..................................................................................................................................... 25 MULTINOMIAL TEST .............................................................................................................................. 28 CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST............................................................................................. 30 MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. ..........................................................................
    [Show full text]
  • Supporting Information Supporting Information Corrected September 30, 2013 Fredrickson Et Al
    Supporting Information Supporting Information Corrected September 30, 2013 Fredrickson et al. 10.1073/pnas.1305419110 SI Methods Analysis of Differential Gene Expression. Quantile-normalized gene Participants and Study Procedure. A total of 84 healthy adults were expression values derived from Illumina GenomeStudio software recruited from the Durham and Orange County regions of North were transformed to log2 for general linear model analyses to Carolina by community-posted flyers and e-mail advertisements produce a point estimate of the magnitude of association be- followed by telephone screening to assess eligibility criteria, in- tween each of the 34,592 assayed gene transcripts and (contin- cluding age 35 to 64 y, written and spoken English, and absence of uous z-score) measures of hedonic and eudaimonic well-being chronic illness or disability. Following written informed consent, (each adjusted for the other) after control for potential con- participants completed online assessments of hedonic and eudai- founders known to affect PBMC gene expression profiles (i.e., monic well-being [short flourishing scale, e.g., in the past week, how age, sex, race/ethnicity, BMI, alcohol consumption, smoking, often did you feel... happy? (hedonic), satisfied? (hedonic), that minor illness symptoms, and leukocyte subset distributions). Sex, your life has a sense of direction or meaning to it? (eudaimonic), race/ethnicity (white vs. nonwhite), alcohol consumption, and that you have experiences that challenge you to grow and become smoking were represented
    [Show full text]
  • Type I and Type III Sums of Squares Supplement to Section 8.3
    Type I and Type III Sums of Squares Supplement to Section 8.3 Brian Habing – University of South Carolina Last Updated: February 4, 2003 PROC REG, PROC GLM, and PROC INSIGHT all calculate three types of F tests: • The omnibus test: The omnibus test is the test that is found in the ANOVA table. Its F statistic is found by dividing the Sum of Squares for the Model (the SSR in the case of regression) by the SSE. It is called the Test for the Model by the text and is discussed on pages 355-356. • The Type III Tests: The Type III tests are the ones that the text calls the Tests for Individual Coefficients and describes on page 357. The p-values and F statistics for these tests are found in the box labeled Type III Sum of Squares on the output. • The Type I Tests: The Type I tests are also called the Sequential Tests. They are discussed briefly on page 372-374. The following code uses PROC GLM to analyze the data in Table 8.2 (pg. 346-347) and to produce the output discussed on pages 353-358. Notice that even though there are 59 observations in the data set, seven of them have missing values so there are only 52 observations used for the multiple regression. DATA fw08x02; INPUT Obs age bed bath size lot price; CARDS; 1 21 3 3.0 0.951 64.904 30.000 2 21 3 2.0 1.036 217.800 39.900 3 7 1 1.0 0.676 54.450 46.500 <snip rest of data as found on the book’s companion web-site> 58 1 3 2.0 2.510 .
    [Show full text]
  • Analysis of Covariance with Heterogeneity of Regression and a Random Covariate Christopher J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Psychology ETDs Electronic Theses and Dissertations Fall 11-15-2018 Analysis of Covariance with Heterogeneity of Regression and a Random Covariate Christopher J. McLouth University of New Mexico - Main Campus Follow this and additional works at: https://digitalrepository.unm.edu/psy_etds Part of the Psychology Commons Recommended Citation McLouth, Christopher J.. "Analysis of Covariance with Heterogeneity of Regression and a Random Covariate." (2018). https://digitalrepository.unm.edu/psy_etds/271 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Psychology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. i Christopher J. McLouth Candidate Psychology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Timothy E. Goldsmith, PhD, Chairperson Harold D. Delaney, PhD Davood Tofighi, PhD Li Li, PhD ii ANALYSIS OF COVARIANCE WITH HETEROGENEITY OF VARIANCE AND A RANDOM COVARIATE by CHRISTOPHER J. MCLOUTH B.A., Psychology, University of Michigan, 2008 M.S., Psychology, University of New Mexico, 2013 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy in Psychology The University of New Mexico Albuquerque, New Mexico December, 2018 iii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Harold Delaney, for his wisdom, thoughtful guidance, and unwavering support and encouragement throughout this process.
    [Show full text]
  • Logistic Regression
    Module 4 - Multiple Logistic Regression Objectives Understand the principles and theory underlying logistic regression Understand proportions, probabilities, odds, odds ratios, logits and exponents Be able to implement multiple logistic regression analyses using SPSS and accurately interpret the output Understand the assumptions underlying logistic regression analyses and how to test them Appreciate the applications of logistic regression in educational research, and think about how it may be useful in your own research Start Module 4: Multiple Logistic Regression Using multiple variables to predict dichotomous outcomes. You can jump to specific pages using the contents list below. If you are new to this module start at the overview and work through section by section using the 'Next' and 'Previous' buttons at the top and bottom of each page. Be sure to tackle the exercise and the quiz to get a good understanding. 1 Contents 4.1 Overview 4.2 An introduction to Odds and Odds Ratios Quiz A 4.3 A general model for binary outcomes 4.4 The logistic regression model 4.5 Interpreting logistic equations 4.6 How good is the model? 4.7 Multiple Explanatory Variables 4.8 Methods of Logistic Regression 4.9 Assumptions 4.10 An example from LSYPE 4.11 Running a logistic regression model on SPSS 4.12 The SPSS Logistic Regression Output 4.13 Evaluating interaction effects 4.14 Model diagnostics 4.15 Reporting the results of logistic regression Quiz B Exercise 2 4.1 Overview What is Multiple Logistic Regression? In the last two modules we have been concerned with analysis where the outcome variable (sometimes called the dependent variable) is measured on a continuous scale.
    [Show full text]
  • Read This Paper If You Want to Learn Logistic Regression
    Original Articles Read this paper if you want to learn logistic regression DOI 10.1590/1678-987320287406en Antônio Alves Tôrres FernandesI , Dalson Britto Figueiredo FilhoI , Enivaldo Carvalho da RochaI , Willber da Silva NascimentoI IPostgraduate Program in Political Science, Federal University of Pernambuco, Recife, PE, Brazil. ABSTRACT Introduction: What if my response variable is binary categorical? This paper provides an intuitive introduction to logistic regression, the most appropriate statistical technique to deal with dichotomous dependent variables. Materials and Methods: we esti- mate the effect of corruption scandals on the chance of reelection of candidates running for the Brazilian Chamber of Deputies using data from Castro and Nunes (2014). Specifically, we show the computational implementation in R and we explain the substantive in- terpretation of the results. Results: we share replication materials which quickly enables students and professionals to use the proce- dures presented here for their studying and research activities. Discussion: we hope to facilitate the use of logistic regression and to spread replication as a data analysis teaching tool. KEYWORDS: regression; logistic regression; replication; quantitative methods; transparency. Received in October 19, 2019. Approved in May 7, de 2020. Accepted in May 16, 2020. I. Introduction1 1Replication materials he least squares linear model (OSL) is one of the most used tools in Polit- available at: ical Science (Kruger & Lewis-Beck, 2008). As long as its assumptions <https://osf.io/nv4ae/>. This are respected, the estimated coefficients from a random sample give the paper benefitted from the T comments of professor Jairo best linear unbiased estimator of the population’s parameters (Kennedy, 2005).
    [Show full text]
  • Week 7: Multiple Regression
    Week 7: Multiple Regression Brandon Stewart1 Princeton October 22, 24, 2018 1These slides are heavily influenced by Matt Blackwell, Adam Glynn, Justin Grimmer, Jens Hainmueller and Erin Hartman. Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 1 / 140 Where We've Been and Where We're Going... Last Week I regression with two variables I omitted variables, multicollinearity, interactions This Week I Monday: F matrix form of linear regression F t-tests, F-tests and general linear hypothesis tests I Wednesday: F problems with p-values F agnostic regression F the bootstrap Next Week I break! I then ::: diagnostics Long Run I probability ! inference ! regression ! causal inference Questions? Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 2 / 140 1 Matrix Form of Regression 2 OLS inference in matrix form 3 Standard Hypothesis Tests 4 Testing Joint Significance 5 Testing Linear Hypotheses: The General Case 6 Fun With(out) Weights 7 Appendix: Derivations and Consistency 8 The Problems with p-values 9 Agnostic Regression 10 Inference via the Bootstrap 11 Fun With Weights 12 Appendix: Tricky p-value Example Stewart (Princeton) Week 7: Multiple Regression October 22, 24, 2018 3 / 140 The Linear Model with New Notation Remember that we wrote the linear model as the following for all i 2 [1;:::; n]: yi = β0 + xi β1 + zi β2 + ui Imagine we had an n of 4. We could write out each formula: y1 = β0 + x1β1 + z1β2 + u1 (unit 1) y2 = β0 + x2β1 + z2β2 + u2 (unit 2) y3 = β0 + x3β1 + z3β2 + u3 (unit 3) y4 = β0 + x4β1 +
    [Show full text]
  • Lecture Notes #3: Contrasts and Post Hoc Tests 3-1
    Lecture Notes #3: Contrasts and Post Hoc Tests 3-1 Richard Gonzalez Psych 613 Version 2.8 (9/2019) LECTURE NOTES #3: Contrasts and Post Hoc tests Reading assignment • Read MD chs 4, 5, & 6 • Read G chs 7 & 8 Goals for Lecture Notes #3 • Introduce contrasts • Introduce post hoc tests • Review assumptions and issues of power 1. Planned contrasts (a) Contrasts are the building blocks of most statistical tests: ANOVA, regression, MANOVA, discriminant analysis, factor analysis, etc. We will spend a lot of time on contrasts throughout the year. A contrast is a set of weights (a vector) that defines a specific comparison over scores or means. They are used, among other things, to test more focused hy- potheses than the overall omnibus test of the ANOVA. For example, if there are four groups, and we want to make a comparison between the first two means, we could apply the following weights: 1, -1, 0, 0. That is, we could create a new statistic using the linear combination of the four means ^I = (1)Y1 + (-1)Y2 + (0)Y3 + (0)Y4 (3-1) = Y1 − Y2 (3-2) Lecture Notes #3: Contrasts and Post Hoc Tests 3-2 This contrast is the difference between the means of groups 1 and 2 ignoring groups 3 and 4 (those latter two groups receive weights of 0). The contrast ^I is an estimate of the true population value I. In general, the contrast ^I is computed by X aiYi (3-3) where the ai are the weights. You choose the weights depending on what research question you want to test.
    [Show full text]
  • Logistic Regression to Determine Significant Factors
    LOGISTIC REGRESSION TO DETERMINE SIGNIFICANT FACTORS ASSOCIATED WITH SHARE PRICE CHANGE By HONEST MUCHABAIWA submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject STATISTICS at the UNIVERSITY OF SOUNTH AFRICA SUPERVISOR: MS. S MUCHENGETWA February 2013 i ACKNOWLEDGEMENTS First and foremost, I wish to thank God, the Almighty for giving me strength, discipline, determination, and his grace for allowing me to complete this study. To my supervisor – Ms. S Muchengetwa, Thank you for your guidance, constructive criticism, understanding and patience. Without your support I would not have managed to do this. The study would not have been complete without the assistance of Mrs A Mtezo who helped me to access data from the McGregor BFA website. Your help is greatly appreciated. Last but not least, my gratitude goes to my wife Abigail Witcho, my daughter Nicole and my son Nathan for being patient with me during the course of my studies. i DECLARATION BY STUDENT I declare that the submitted work has been completed by me the undersigned and that I have not used any other than permitted reference sources or materials nor engaged in any plagiarism. All references and other sources used by me have been appropriately acknowledged in the work. I further declare that the work has not been submitted for the purpose of academic examination, either in its original or similar form, anywhere else. Declared on the (date): 28 February 2013 Signed: ___________________________ Name: Honest Muchabaiwa Student Number: 46265147 ii ABSTRACT This thesis investigates the factors that are associated with annual changes in the share price of Johannesburg Stock Exchange (JSE) listed companies.
    [Show full text]
  • Lecture Notes #9: Advanced Regression Techniques II 9-1
    Lecture Notes #9: Advanced Regression Techniques II 9-1 Richard Gonzalez Psych 613 Version 2.8 (Jan 2020) LECTURE NOTES #9: Advanced Regression Techniques II Reading Assignment KNNL chapters 22, 12, and 14 CCWA chapters 8, 13, & 15 1. Analysis of covariance (ANCOVA) We have seen that regression analyses can be computed with either continuous predic- tors or with categorical predictors. If all the predictors are categorical and follow an experimental design, then the regression analysis is equivalent to ANOVA. Analysis of covariance (abbreviated ANCOVA) is a regression that combines both continuous and categorical predictors as main effects in the same equation. The continuous variable is usually treated as the \control" variable, analogous to a blocking factor that we saw in LN4, and is called a \covariate" in the world of regression1. Usually one is not interested in the significance of the covariate itself, but the covariate is included to reduce the error variance. Intuitively, the covariate serves the same role as the blocking variable in the randomized block design. So, this section shows how we mix and match ideas from regression and ANOVA to create new analyses (e.g., in this case testing differences between means in the context of a continuous blocking factor). I'll begin with a simple model. There are two groups and you want to test the difference between the two means. In addition, there is noise in your data and you believe that a portion of the noise can be soaked up by a covariate (i.e., a blocking variable). It makes sense that you want to do a two sample t test, but simultaneously want to correct, or reduce, the variability due to the covariate.
    [Show full text]
  • Statistical Analysis Using Spss
    STATISTICAL ANALYSIS USING SPSS Anne Schad Bergsaker 24. September 2020 BEFORE WE BEGIN... LEARNING GOALS 1. Know about the most common tests that are used in statistical analysis 2. Know the difference between parametric and non-parametric tests 3. Know which statistical tests to use in different situations 4. Know when you should use robust methods 5. Know how to interpret the results from a test done in SPSS, and know if a model you have made is good or not 1 TECHNICAL PREREQUISITES If you have not got SPSS installed on your own device, use remote desktop, by going to view.uio.no. The data files used for examples are from the SPSS survival manual. These files can be downloaded as a single .zip file from the course website. Try to do what I do, and follow the same steps. If you missed a step or have a question, don’t hesitate to ask. 2 TYPICAL PREREQUISITES/ASSUMPTIONS FOR ANALYSES WHAT TYPE OF STUDY WILL YOU DO? There are (in general) two types of studies: controlled studies and observational studies. In the former you run a study where you either have parallel groups with different experimental conditions (independent), or you let everyone start out the same and then actively change the conditions for all participants during the experiment (longitudinal). Observational studies involves observing without intervening, to look for correlations. Keep in mind that these studies can not tell you anything about cause and effect, but simply co-occurence. 3 RANDOMNESS All cases/participants in a data set should as far as it is possible, be a random sample.
    [Show full text]