SESSION 4 Permutations Combinations Polynomials

Total Page:16

File Type:pdf, Size:1020Kb

SESSION 4 Permutations Combinations Polynomials SESSION 4 Permutations Combinations Polynomials Updated April 2014 Updated April 2014 Mathematics 30-1 Learning Outcomes Permutations and Combinations General Outcome: Develop algebraic and numeric reasoning that involves combinatorics. Specific Outcome 1: Apply the fundamental counting principle to solve problems. - Count the total number of possible choices that can be made, using graphic organizers such as lists and tree diagrams. - Explain, using examples, why the total number of possible choices is found by multiplying rather than adding the number of ways the individual choices are made. - Solve a simple counting problem by applying the Fundamental Counting Principle. Fundamental Counting Principle If one task can be performed in a ways, a second task in b ways, and a third task in c way, and son on, then all of the tasks can be performed in ways. To arrange n objects, write down n blanks (spaces). Fill in each blank with the number of possible objects which could be place in that space. Then multiply. It restrictions have been placed on any of the blanks, ALWAYS deal with those restrictions (spaces) first. Updated April 2014 Example 1 – How many 3 letter words can be created, if a) No repetitions are allowed? b) If repetitions are allowed? Example 2 -- You are given the word SASKATOON. a) How many arrangements are there of all of the letters in the word SASKATOON? . b) How many arrangements are there of all the letters in the word SASKATOON, if the arrangement must start with an S? . Example 3 – Amy wants to make a sandwich. She can only pick ONE ITEM from EACH of the following categories: bread type, meat options and vegetable choice. Given the choices supplied below, determine the total number of options Amy has. Bread type – Wheat or Italian Meat options – turkey, ham, beef Vegetable choice – tomatoes, lettuce, cucumbers and pickles Updated April 2014 Example 4 – A dresser has four knobs. If you have 6 different colors of paint available, how many different ways can you paints the knobs? Example 5 – The number the distinguishable arrangements of the word KITCHEN, if the vowels must stay together, is A. B. C. 7P2 5P5 D. Updated April 2014 Specific Outcome 2: Determine the number of permutations of n elements taken r at a time to solve problems. - Understand permutation problems that involve repetition or like elements and constraints - Determine, in factorial notation, the number of permutations of n different elements taken n at time, to solve problems - Determine, using a variety of strategies, the number of permutations of n different elements, taken r at a time, to solve problems - Explain why n must be greater than or equal to r in the notation nPr - Solve equations that involve nPr notation, such as nP2 = 30 - Understand single 2-dimensional pathways can be used as an application of repetition of like elements - You are not expected to understand circular or ring permutations - You should understand handshakes questions Factorial notation is an abbreviation for products of successive positive integers. ( )( ) A permutation is an arrangement of objects in a definite order. The number of permutations of n different objects taken r at a time is given by the following formula. ( ) Deal with restrictions (constraints) first. A set of n objects containing a identical objects of one kind, b identical objects of another kind, and so on, can be arranged in ways. Some problems may have more than one case. When this happens, establish cases that, when taken together, cover all the possibilities. Calculate the number of arrangements for each case and then add the values of all cases to obtain the total number of arrangements. Updated April 2014 Example 1 -- To accessorize her outfit, Jane will choose 1 of 4 handbags, 1 of 5 hats, and 1 of 3 coats. How many different outfits can Jane create by changing these accessories? A. 3 B. 12 C. 60 D. 220 Example 2 -- How many different passwords can be made from all the letters in the word CALCULUS? A. 2500 B. 5040 C. 6720 D. 40320 1. If all the letters in the word PENCILS are used, the number of arrangements with all the vowels together is _____________? Example 3 -- What is the solution set for r given 7 Cr = 21? A. {2} B. {3} C. {2, 5} D. {3, 4} Example 4 – The number of three digit or four digit even numbers that can be formed from the numbers 2, 3, 5, 6 and 7 is A. 72 B. 120 C. 144 D. 5040 Updated April 2014 2. If a customer purchases 3 video games, 2 Sports games and 1 Classic game, the total number of way he can select the games is ______. Example 5 – Six Math 30-1 students (Abby, Brayden, Christine, Dallas, Ethan and Fran) are going to stand in a line. How many ways can they stand if: a) Fran must be in the third position? b) Brayden must be second and Ethan third? c) Dallas can’t be on either end of the line? d) Boys and girls alternate, with a boy starting the line? e) The first three positions are boys, the last three are girls? f) The row starts with two boys? g) The row starts with exactly two boys? h) Abby must be in the second position and a boy must be in the third? Updated April 2014 Example 6 -- The number of pathways, from A to C, passing through B, is ________. A. 6 B. 12 C. 18 D. 36 Updated April 2014 Example 7 -- If the only allowed directions are North and East, then the number of allowable paths from Point A to Point B, is A. 30 B. 60 C. 75 D. 90 Updated April 2014 Specific Outcome 3: Determine the number of combinations of n different elements take r at a time to solve problems. - Explain, using examples, the difference between a permutation and a combination - Determine the number of way that a subset of k elements can be selected from a set of n different elements - Determine the number of combinations of n different elements taken r at a time to solve problems - Explain why n must be greater than or equal to r in the notation nCr or ( ) - Explain, using examples, why nCr = nCn-r or ( ) ( ) - Be able to use both nCr and ( ) to solve problems A combination is a selection of objects in which the order of selection is not important, since the objects will not be arranged. ( ) ( ) When determining the number of possibilities in a situation, if order matters, it is a permutation. If order does not matter, it is a combination. Handshakes, committees, and teams playing each other are all combination problems. Updated April 2014 Example 1 -- How many different ways could 4 members be selected from a cheerleading squad with 12 members? Example 2 – There are 12 teams in a soccer league, and each team must play each other twice in a tournament. The number of games that will be played in total is: A. 6P2 B. 12C2 C. 12P2 D. 12C2 Example 3 – The number of committees consisting of 4 men and 5 women that can be formed from 10 men and 13 women is A. 10C4 13C5 B. 10P4 13P5 C. 22C9 D. 22P9 Example 4 – At a car dealership, the manager wants to line up 10 cars of the same model in the parking lot. There are 3 red cars, 2 blue cars, and 5 green cars. If all 10 cars are lined up in a row, facing forward, determine the number of possible car arrangements if the blue cars cannot be together. Example 5 – There are 12 people in line for a movie. If Shannon, Jeff and Chris are friends and will always stand together, the total number of possible arrangements for the entire line is A. B. C. 12P3 D. 12C3 Updated April 2014 Use the following information to answer the next question. ___________________________________________________________________________ If 14 different types of fruit are available, how many different fruit salads could be made using exactly 5 types of fruit? Student 1 Kevin used to solve the problem. Student 2 Ron suggested using 14P5. Student 3 Michelle solved the problem using 14C9. Student 4 Emma thought that 5P14 would give the correct answer. Student 5 John decided to use ( ). ___________________________________________________________________________ Example 6 -- The correct solution would be obtained by student number _____ and student number _____. Example 7 – If there are 36 handshakes in total, how many people were at the meeting? Updated April 2014 Example 8 -- How many different 4-letter arrangements are possible using any 2 letters from the word SPRING and any 2 letters from the word MATH? 1. If nPr = 6720 and nCr = 56, then the value of r is ____________. Updated April 2014 Specific Outcome 4: Expand powers of a binomial in a variety of ways, including using the binomial theorem (restricted to exponents that are natural numbers). - Be able to show the relationship/patterns between the rows of Pascal’s triangle and the numerical coefficients of the terms in the expansion of a n binomial (x+y) - Explain how to determine the subsequent row in Pascal’s triangle, given any row - Relate the coefficients of the terms in the expansion of (x+y)n to the (n+1) row in Pascal’s triangle - Explain, using examples, how the coefficients of the terms in the expansion of (x+y)n are determined by combinations - Expand, using the binomial theorem, (x+y)n and determine a specific term in the expansion A combination is a selection of objects in which the order of selection is not important, since the objects will not be arranged.
Recommended publications
  • Graphing and Solving Polynomial Equations
    GRAPHING AND SOLVING POLYNOMIAL EQUATIONS Unit Overview In this unit you will graph polynomial functions and describe end behavior. You will solve polynomial equations by factoring and using a graph with synthetic division. You will also find the real zeros of polynomial functions and state the multiplicity of each. Finally, you will write a polynomial function given sufficient information about its zeros. Graphs of Polynomial Functions The degree of a polynomial function affects the shape of its graph. The graphs below show the general shapes of several polynomial functions. The graphs show the maximum number of times the graph of each type of polynomial may cross the x-axis. For example, a polynomial function of degree 4 may cross the x-axis a maximum of 4 times. Linear Function Quadratic Function Degree 1 Degree 2 Cubic Function Quartic Function Degree 3 Degree 4 Quintic Function Degree 5 Notice the general shapes of the graphs of odd degree polynomial functions and even degree polynomial functions. The degree and leading coefficient of a polynomial function affects the graph’s end behavior. End behavior is the direction of the graph to the far left and to the far right. The chart below summarizes the end behavior of a Polynomial Function. Degree Leading Coefficient End behavior of graph Even Positive Graph goes up to the far left and goes up to the far right. Even Negative Graph goes down to the far left and down to the far right. Odd Positive Graph goes down to the far left and up to the far right.
    [Show full text]
  • Fundamental Units and Regulators of an Infinite Family of Cyclic Quartic Function Fields
    J. Korean Math. Soc. 54 (2017), No. 2, pp. 417–426 https://doi.org/10.4134/JKMS.j160002 pISSN: 0304-9914 / eISSN: 2234-3008 FUNDAMENTAL UNITS AND REGULATORS OF AN INFINITE FAMILY OF CYCLIC QUARTIC FUNCTION FIELDS Jungyun Lee and Yoonjin Lee Abstract. We explicitly determine fundamental units and regulators of an infinite family of cyclic quartic function fields Lh of unit rank 3 with a parameter h in a polynomial ring Fq[t], where Fq is the finite field of order q with characteristic not equal to 2. This result resolves the second part of Lehmer’s project for the function field case. 1. Introduction Lecacheux [9, 10] and Darmon [3] obtain a family of cyclic quintic fields over Q, and Washington [22] obtains a family of cyclic quartic fields over Q by using coverings of modular curves. Lehmer’s project [13, 14] consists of two parts; one is finding families of cyclic extension fields, and the other is computing a system of fundamental units of the families. Washington [17, 22] computes a system of fundamental units and the regulators of cyclic quartic fields and cyclic quintic fields, which is the second part of Lehmer’s project. We are interested in working on the second part of Lehmer’s project for the families of function fields which are analogous to the type of the number field families produced by using modular curves given in [22]: that is, finding a system of fundamental units and regulators of families of cyclic extension fields over the rational function field Fq(t). In [11], we obtain the results for the quintic extension case.
    [Show full text]
  • U3SN2: Exploring Cubic Functions & Power Functions
    U3SN2: Exploring Cubic Functions & Power Functions You should learn to: 1. Determine the general behavior of the graph of even and odd degree power functions. 2. Explore the possible graphs of cubic, quartic, and quintic functions, and extend graphical properties to higher-degree functions. 3. Generalize the key characteristics of polynomials. 4. Sketch the graph of any polynomial given key characteristics. � �−� A polynomial function is a function that can be written in the form �(�) = ��� + ��−�� + � ⋯ ��� + ��� + �� where ��, ��−1, …�2, �1, �0 are complex numbers and the exponents are nonnegative integers. The form shown here is called the standard form of a polynomial. Really this means it is a function of the form (�) = ��� + ����� , where n is a non-negative integer. Polynomial functions are continuous (there are no breaks in their graphs) and they only have smooth turns (there are no sharp turns). Polynomial functions also have a domain of all reals. Example 1. Are the following Polynomials? If not, why not? You already know that a second-degree polynomial function is called a quadratic function, and a third- degree polynomial function is called a cubic function. A quartic function is a fourth-degree polynomial function, while a quintic function is a fifth-degree polynomial function. Example 2. Graph and compare the following. y y y x x x � = � yx= 3 yx= 5 y y y x x x yx= 2 yx= 4 y = x6 What if we have a function with more than one power? Will it mirror the even behavior or the odd behavior? y y y x x x � = �5 + �4 � = �3 + �8 � = �2(� + 2) The degree of a polynomial function is the highest degree of its terms when written in standard form.
    [Show full text]
  • Stabilities of Mixed Type Quintic-Sextic Functional Equations in Various Normed Spaces
    Malaya Journal of Matematik, Vol. 9, No. 1, 217-243, 2021 https://doi.org/10.26637/MJM0901/0038 Stabilities of mixed type Quintic-Sextic functional equations in various normed spaces John Micheal Rassias1, Elumalai Sathya2, Mohan Arunkumar 3* Abstract In this paper, we introduce ”Mixed Type Quintic - Sextic functional equations” and then provide their general solution, and prove generalized Ulam - Hyers stabilities in Banach spaces and Fuzzy normed spaces, by using both the direct Hyers - Ulam method and the alternative fixed point method. Keywords Quintic functional equation, sextic functional equation, mixed type quintic - sextic functional equation, generalized Ulam - Hyers stability, Banach space, Fuzzy Banach space, Hyers - Ulam method, alternative fixed point method. AMS Subject Classification 39B52, 32B72, 32B82. 1Pedagogical Department - Mathematics and Informatics, The National and Kapodistrian University of Athens,4, Agamemnonos Str., Aghia Paraskevi, Athens 15342, Greece. 2Department of Mathematics, Shanmuga Industries Arts and Science College, Tiruvannamalai - 606 603, TamilNadu, India. 3Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India. *Corresponding author: 1 [email protected]; 2 [email protected]; 3 [email protected] Article History: Received 11 December 2020; Accepted 24 January 2021 c 2021 MJM. Contents such problems the interested readers can refer the monographs of [1,4,5,8, 18, 22, 24–26, 33, 36, 37, 41, 43, 48]. 1 Introduction.......................................217 The general solution of Quintic and Sextic functional 2 General Solution..................................218 equations 3 Stability Results In Banach Space . 219 f (x + 3y) − 5 f (x + 2y) + 10 f (x + y) − 10 f (x) 3.1 Hyers - Ulam Method.................. 219 + 5 f (x − y) − f (x − 2y) = 120 f (y) (1.1) 3.2 Alternative Fixed Point Method..........
    [Show full text]
  • Polynomial Theorems
    COMPLEX ANALYSIS TOPIC IV: POLYNOMIAL THEOREMS PAUL L. BAILEY 1. Preliminaries 1.1. Basic Definitions. Definition 1. A polynomial with real coefficients is a function of the form n n−1 f(x) = anx + an−1x + ··· + a1x + a0; where ai 2 R for i = 0; : : : ; n, and an 6= 0 unless f(x) = 0. We call n the degree of f. We call the ai's the coefficients of f. We call a0 the constant coefficient of f, and set CC(f) = a0. We call an the leading coefficient of f, and set LC(f) = an. We say that f is monic if LC(f) = 1. The zero function is the polynomial of the form f(x) = 0. A constant function is a polynomial of degree zero, so it is of the form f(x) = c for some c 2 R. The graph of a constant function is a horizontal line. Constant polynomials may be viewed simply as real numbers. A linear function is a polynomial of degree one, so it is of the form f(x) = mx+b for some m; b 2 R with m 6= 0. The graph of such a function is a non-horizontal line. A quadratic function is a polynomial of degree two, of the form f(x) = ax2+bx+c for some a; b; c 2 R with a 6= 0. A cubic function is a polynomial of degree three. A quartic function is a polynomial of degree four. A quintic function is a polynomial of degree five. 1.2. Basic Facts. Let f and g be real valued functions of a real variable.
    [Show full text]
  • Locating Complex Roots of Quintic Polynomials Michael J
    The Mathematics Enthusiast Volume 15 Article 12 Number 3 Number 3 7-1-2018 Locating Complex Roots of Quintic Polynomials Michael J. Bosse William Bauldry Steven Otey Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/tme Recommended Citation Bosse, Michael J.; Bauldry, William; and Otey, Steven (2018) "Locating Complex Roots of Quintic Polynomials," The Mathematics Enthusiast: Vol. 15 : No. 3 , Article 12. Available at: https://scholarworks.umt.edu/tme/vol15/iss3/12 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TME, vol. 15, no.3, p. 529 Locating Complex Roots of Quintic Polynomials Michael J. Bossé1, William Bauldry, Steven Otey Department of Mathematical Sciences Appalachian State University, Boone NC Abstract: Since there are no general solutions to polynomials of degree higher than four, high school and college students only infrequently investigate quintic polynomials. Additionally, although students commonly investigate real roots of polynomials, only infrequently are complex roots – and, more particularly, the location of complex roots – investigated. This paper considers features of graphs of quintic polynomials and uses analytic constructions to locate the functions’ complex roots. Throughout, hyperlinked dynamic applets are provided for the student reader to experientially participate in the paper. This paper is an extension to other investigations regarding locating complex roots (Bauldry, Bossé, & Otey, 2017). Keywords: Quartic, Quintic, Polynomials, Complex Roots Most often, when high school or college students investigate polynomials, they begin with algebraic functions that they are asked to either factor or graph.
    [Show full text]
  • Answers, Solution Outlines and Comments to Exercises
    A Answers, Solution Outlines and Comments to Exercises Chapter 1 Preliminary Test (page 3) 1. p7. [c2 = a2 + b2 2ab cos C.] (5 marks) − x y dy 2. 4=3 + 16 = 1. [Verify that the point is on the curve. Find slope dx = 12 (at that point) and− the tangent y + 8 = 12(x + 2). (5 marks) Rearrange the equation to get it in intercept form, or solve y = 0 for x-intercept and x = 0 for y-intercept.] (5 marks) 3. One. [Show that g0(t) < 0 t R, hence g is strictly decreasing. Show existence. Show uniqueness.] 8 2 (5 marks) Comment: Graphical solution is also acceptable, but arguments must be rigorous. p 3 2π Rh p 2 2 p 4. 4π(9 2 6) or 16:4π or 51.54 cm . [V = 0 0 2 R r rdrdθ, R = 3; Rh = 3. Sketc−h domain. − (5 marks) R R V = 4π Rh pR2 r2 rdr, substitute R2 r2 = t2. (5 marks) 0 − − pR2 R2 EvaluateR integral V = 4π − h t2dt.] (5 marks) − R 5. (a) (2,1,8). [Consider p~ Rq~ = ~s ~r.] (5 marks) QP~− QR~ − (b) 3=5. [cos Q = · .] (5 marks) QP~ QR~ k k k k (c) p9 (j + 2k). [Vector projection = (QP~ QR^ )QR^ .] (5 marks) 5 · (d) 6p6 square units. [Vector area = QP~ QR~ .] (5 marks) (e) 7x + 2y z = 8. × [Take normal− n in the direction of vector area and n (x q).] (5 marks) Comment: Parametric equation q + α(p q) + β(r· q−) is also acceptable. (f) 14, 4, 2 on yz, xz and xy planes.
    [Show full text]
  • Trajectory Planning for the Five Degree of Freedom Feeding Robot Using Septic and Nonic Functions
    International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 7, July 2020 Trajectory Planning for the Five Degree of Freedom Feeding Robot Using Septic and Nonic Functions Priyam A. Parikh Mechanical Engineering Department, Nimra University, Ahmedabad, India Email: [email protected] Reena Trivedi and Jatin Dave Email: { reena.trivedi, jatin.dave}@nirmauni.ac.in Abstract— In the present research work discusses about Instead of planning the trajectory using Cartesian scheme, trajectory planning of five degrees of freedom serial it is better to get the start point and end point of each joint manipulator using higher order polynomials. This robotic [2]. After getting the joint angles from the operational arm is used to feed semi-liquid food to the physically space, trajectory planning can be done using joint space challenged people having fixed seating arrangement. It is scheme. However trajectory planning in the Cartesian essential to plan a smooth trajectory for proper delivery of food, without wasting it. Trajectory planning can be done in space allows accounting for the presence of any constraint the joint space as well as in the cartesian space. It is difficult along the path of the end-effector, but singular to design trajectory in Cartesian scheme due to configuration and trajectory planning can’t be done with non-existence of the Jacobian matrix. In the present research operational space [3]. In the case of inverse kinematics no work, trajectory planning is done using joint space scheme. joint angle can be computed due to non-existence of the The joint space scheme offers lower and higher order inverse of the Jacobian matrix.
    [Show full text]
  • Graphing and Solving Polynomial Equations
    GRAPHING AND SOLVING POLYNOMIAL EQUATIONS Unit Overview In this unit you will graph polynomial functions and describe end behavior. You will solve polynomial equations by factoring and using a graph with synthetic division. You will also find the real zeros of polynomial functions and state the multiplicity of each. Finally, you will write a polynomial function given sufficient information about its zeros. Graphs of Polynomial Functions The degree of a polynomial function affects the shape of its graph. The graphs below show the general shapes of several polynomial functions. The graphs show the maximum number of times the graph of each type of polynomial may cross the x-axis. For example, a polynomial function of degree 4 may cross the x-axis a maximum of 4 times. Linear Function Quadratic Function Degree 1 Degree 2 Cubic Function Quartic Function Degree 3 Degree 4 Quintic Function Degree 5 Notice the general shapes of the graphs of odd degree polynomial functions and even degree polynomial functions. The degree and leading coefficient of a polynomial function affects the graph’s end behavior. End behavior is the direction of the graph to the far left and to the far right. The chart below summarizes the end behavior of a Polynomial Function. Degree Leading Coefficient End behavior of graph Even Positive Graph goes up to the far left and goes up to the far right. Even Negative Graph goes down to the far left and down to the far right. Odd Positive Graph goes down to the far left and up to the far right.
    [Show full text]
  • Linear and Polynomial Functions
    Linear and Polynomial Functions Math 130 - Essentials of Calculus 11 September 2019 Math 130 - Essentials of Calculus Linear and Polynomial Functions 11 September 2019 1 / 12 Intuitively, rise change in y slope = = : run change in x More concretely, if a line passes though the points (x1; y1) and (x2; y2), then the slope of the line is given by y − y ∆y m = 2 1 = : x2 − x1 ∆x Given the slope of a line, m, and a point it passes though (x1; y1), an equation for the line is y − y1 = m(x − x1): Section 1.3 - Linear Models and Rates of Change Reminder: Slope of a Line The slope of a line is a measure of its “steepness.” Positive indicating upward, negative indicating downward, and the greater the absolute value, the steeper the line. Math 130 - Essentials of Calculus Linear and Polynomial Functions 11 September 2019 2 / 12 More concretely, if a line passes though the points (x1; y1) and (x2; y2), then the slope of the line is given by y − y ∆y m = 2 1 = : x2 − x1 ∆x Given the slope of a line, m, and a point it passes though (x1; y1), an equation for the line is y − y1 = m(x − x1): Section 1.3 - Linear Models and Rates of Change Reminder: Slope of a Line The slope of a line is a measure of its “steepness.” Positive indicating upward, negative indicating downward, and the greater the absolute value, the steeper the line. Intuitively, rise change in y slope = = : run change in x Math 130 - Essentials of Calculus Linear and Polynomial Functions 11 September 2019 2 / 12 ∆y = : ∆x Given the slope of a line, m, and a point it passes though (x1; y1), an equation for the line is y − y1 = m(x − x1): Section 1.3 - Linear Models and Rates of Change Reminder: Slope of a Line The slope of a line is a measure of its “steepness.” Positive indicating upward, negative indicating downward, and the greater the absolute value, the steeper the line.
    [Show full text]
  • Polynomial and Power Functions N N 1 2 F (X) = Anx + an 1X − +
    polynomial functions polynomial functions Polynomial Functions MHF4U: Advanced Functions You have seen polynomial functions in previous classes. Common polynomial functions include constant, linear, quadratic and cubic functions. A polynomial function has the form Polynomial and Power Functions n n 1 2 f (x) = anx + an 1x − + ... + a2x + a1x + a0 − J. Garvin where n is a whole number and ak is a coefficient. The degree of the polynomial is the exponent of the greatest power. The leading coefficient is an, and the constant term is a0. J. Garvin— Polynomial and Power Functions Slide 1/17 Slide 2/17 polynomial functions polynomial functions Polynomial Functions Classifying Polynomial Functions Polynomial functions of degree 2 or greater can be drawn Example using a series of smooth, connected curves, as in the example Is the function f (x) = 3x5 x2 + 4x 1 a polynomial − − below. function? f (x) is a polynomial function. It has degree 5, a leading coefficient of 3, and a constant term of 1. − Note that there are no x3 and x4 terms. This is because the coeffients on these terms, a3 and a4, are both zero. J. Garvin— Polynomial and Power Functions J. Garvin— Polynomial and Power Functions Slide 3/17 Slide 4/17 polynomial functions polynomial functions Classifying Polynomial Functions Classifying Polynomial Functions Example Example Is the function f (x) = 2x 5 a polynomial function? 1 − Is the function f (x) = 3x 2 a polynomial function? f (x) is not a polynomial function, but an exponential f (x) is not a polynomial function, but a radical function. function. The exponents in a polynomial function are always whole Don’t be confused when the variable is the exponent.
    [Show full text]
  • A5-1 Polynomial Functions
    M1 Maths A5-1 Polynomial Functions general form and graph shape equation solution methods applications Summary Learn Solve Revise Answers Summary A polynomial function is made of a number of terms. Each term consists of a whole- number power of the independent variable multiplied by a real number. The graph of a polynomial consists of a number of straighter sections called arms separated by more curved sections called elbows. The number of arms is less than or equal to the degree of the polynomial (the highest power of the independent variable). You already know how to solve polynomial equations up to degree 2. In general, higher-degree equations can only be readily solved by graphing. Linear and quadratic functions are the most commonly used polynomials, but higher- degree polynomials have applications in volume, trigonometry etc. Learn General Form You know a bit about linear and quadratic functions. But these are part of a larger family called polynomial functions. Constant functions are of the form y = c Linear functions are of the form y = mx + c Quadratic functions are of the form y = ax2 + bx + c This sequence can be continued . Cubic functions are of the form y = ax3 + bx2 + cx + d Quartic functions are of the form y = ax4 + bx3 + cx2 + dx + e You will probably notice a pattern here. The pattern continues . M1Maths.com A5-1 Polynomial Functions Page 1 Quintic functions are of the form y = ax5 + bx4 + cx3 + dx2 + ex + f Sexual functions are of the form y = ax6 + bx5 + cx4 + dx3 + ex2 + fx + g [Of course sexual function has a completely different meaning in common English – be careful not to confuse the two.] Septic functions are of the form y = ax7 + bx6 + cx5 + dx4 + ex3 + fx2 + gx + h And so on ad infinitum .
    [Show full text]