Chemical Biology-Based Probes for the Labeling of Targets on Live Cells

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Biology-Based Probes for the Labeling of Targets on Live Cells University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2015 Chemical Biology-Based Probes For The Labeling Of Targets On Live Cells Amanda M. Hussey University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Biochemistry Commons, Molecular and Cellular Neuroscience Commons, and the Organic Chemistry Commons Recommended Citation Hussey, Amanda M., "Chemical Biology-Based Probes For The Labeling Of Targets On Live Cells" (2015). Doctoral Dissertations. 429. https://doi.org/10.7275/7151287.0 https://scholarworks.umass.edu/dissertations_2/429 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. CHEMICAL BIOLOGY-BASED PROBES FOR THE LABELING OF TARGETS ON LIVE CELLS A Dissertation Presented by AMANDA M. HUSSEY Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2015 Department of Chemistry © Copyright by Amanda M. Hussey 2015 All Rights Reserved CHEMICAL BIOLOGY BASED-PROBES FOR THE LABELING OF TARGETS ON LIVE CELLS A Dissertation Presented by AMANDA M. HUSSEY Approved as to style and content by: __________________________________ James J. Chambers, Chair __________________________________ Richard W. Vachet, Member __________________________________ Nathan A. Schnarr, Member __________________________________ Peter Chien, Member __________________________________ Craig T. Martin, Department Head Department of Chemistry DEDICATION To my family and friends. Thank you all. ACKNOWLEDGMENTS I would like to thank my advisor James Chambers for his guidance, patience, and advice over the past six years. To my committee members, Professors Nate Schnarr, Richard Vachet, and Peter Chien, thank you for your advice and insight. I would like to thank Rosie Combs-Bachmann, Nate Johnson, and Dr. Devaiah Vytla for their work on and all of the conversations about nanoprobe 1. I would like to thank Dr. Steve McCarron for his work on nanoprobe 3 and for all the conversations we had. I would also like to thank Adam Gann for his work in synthesizing and testing the photogenerated diazonium probes and for all of the conversations bounce ideas back and forth about nanoprobes. I would also like to thank the other members of the Chambers lab Dr. Kathryne Medeiros and Devon McCarthy and the former members of the Schnarr lab Drs. Gitanjeli Prasad, Jon Amoroso, Lawrence Borketey, and Tsung-Yi Lin for their advice and lively conversation. I would like to thank all the ladies (present and former) in the GWIS peer mentoring group I was in every other Wednesday for most of my Ph.D. Rosie, Angela, Maria, Brittany, Sid, Lisa, Sam, Satamita, Andrea, Debra, and Kate, you have listened and shared so much with me and I am forever grateful. This group was a large part of helping me get through my Ph.D. Thank you. I would like to thank my family for supporting me through this journey. I would like to thank all of my friends that I have made here in the past six years. You guys have been awesome, thank you for the great times and even greater memories. I would finally like to thank my amazing and extremely supportive fiancé Benjamin Johnson. Thank you for reassuring me that I can do this, for listening to all of my complaining, and for being there when I needed you. v ABSTRACT CHEMICAL BIOLOGY-BASED PROBES FOR THE DETECTION OF RECEPTORS ON LIVE CELLS SEPTEMBER 2015 AMANDA M. HUSSEY B.S., UNIVERSITY OF THE SCIENCES IN PHILADELPHIA Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor James J. Chambers Proper detection is the key to studying any processes on the cellular scale. Nowhere is this more evident than in the tight space which confines the synaptic cleft. Being able to ascertain the location of receptors on live neurons is fundamental to our understanding of not only how these receptors interact and move inside the cell but also how neurons function. Most detection methods rely on significantly altering the receptor; both tagging with a fluorescent protein or targeting the receptor by a fluorescent reporter in the form of a small molecule causes significant difficulties. These localization techniques often result in forced dimerization, unnatural movement, and at worst inactivation of the receptor. Small molecule organic dyes provide a potential advantage because they can be structurally functionalized to target the protein of interest in a non-perturbing fashion which allows for information to be gathered about the targeted receptor. The work I initiated in the Chambers lab first focused on using a ligand directed fluorophore connected via a photo-labile linker. Through the use of epifluorescence microscopy, I determined that this probe targets glutamate receptors, however questions about subtype inclusion could not be addressed. vi The pharmacophore that our first probe is based on could be much more promiscuous than is presently appreciated in the field of neurobiology. Thus, we designed a new series of probes to allow for covalent modification and affinity purification of endogenous receptors. The second generation of probes set out to answer the questions left by the first. Purified proteins were subjected to SDS-PAGE analysis and could be applied to proteomic identification of receptors. In addition to ligand directed probes, we have also initiated a project on a new, bimolecular photoaffinity probe in which the new methodology continues to develop. The initial studies were performed to ensure that our new strategy is able to be used in biological systems. vii TABLE OF CONENTS Page ACKNOWLEDGMENTS ...................................................................................................v ABSTRACT ....................................................................................................................... vi LIST OF FIGURES…………………………………………………………………………….....xi LIST OF SCHEMES……………………………………………………………………………..xii CHAPTER 1. INTRODUCTION ...........................................................................................................1 1.1 Neuronal Structure ......................................................................................................................................... 1 1.1.2 Synaptic Communication and Plasticity ...................................................................................... 2 1.1.3 Long Term Potentiation..................................................................................................................... 3 1.1.4 Long Term Depression ...................................................................................................................... 5 1.1.5 Glutamate Receptors .......................................................................................................................... 6 1.1.6 Kainate Receptors ............................................................................................................................... 8 1.1.7 NMDARs ............................................................................................................................................... 8 1.1.8 AMPARs ................................................................................................................................................ 9 1.1.9 Calcium Permeability in AMPARs ............................................................................................. 11 1.1.10 Calcium Permeable AMPA Receptors in Excitatory Disease .......................................... 12 1.1.11 Polyamine Toxins as Tools in Neurobiology ......................................................................... 13 1.2 Imaging Techniques .................................................................................................................................... 15 1.2.1 Genetic Imaging Techniques ........................................................................................................ 16 1.2.2 Fluorescent Proteins ........................................................................................................................ 17 1.2.3 Enzymatically Active Tags ........................................................................................................... 17 1.2.4 Small, peptide-based tags .............................................................................................................. 18 1.2.5 Antibodies ........................................................................................................................................... 20 1.2.6 Non-Genetic Imaging Techniques .............................................................................................. 20 1.2.7 Quantum Dots .................................................................................................................................... 21 1.2.8 Ligand-Based Detection ................................................................................................................. 21 1.2.9 Peptide-Based Ligand Delivery .................................................................................................... 22 1.3 Bioorthogonal Chemistry ..........................................................................................................................
Recommended publications
  • A Guide to Glutamate Receptors
    A guide to glutamate receptors 1 Contents Glutamate receptors . 4 Ionotropic glutamate receptors . 4 - Structure ........................................................................................................... 4 - Function ............................................................................................................ 5 - AMPA receptors ................................................................................................. 6 - NMDA receptors ................................................................................................. 6 - Kainate receptors ............................................................................................... 6 Metabotropic glutamate receptors . 8 - Structure ........................................................................................................... 8 - Function ............................................................................................................ 9 - Group I: mGlu1 and mGlu5. .9 - Group II: mGlu2 and mGlu3 ................................................................................. 10 - Group III: mGlu4, mGlu6, mGlu7 and mGlu8 ............................................................ 10 Protocols and webinars . 11 - Protocols ......................................................................................................... 11 - Webinars ......................................................................................................... 12 References and further reading . 13 Excitatory synapse pathway
    [Show full text]
  • Glycine Activated Ion Channel Subunits Encoded by Ctenophore
    Glycine activated ion channel subunits encoded by PNAS PLUS ctenophore glutamate receptor genes Robert Albersteina, Richard Greya, Austin Zimmeta, David K. Simmonsb, and Mark L. Mayera,1 aLaboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and bThe Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved September 2, 2015 (received for review July 13, 2015) Recent genome projects for ctenophores have revealed the subunits and glutamate to GluN2 subunits for activation of ion presence of numerous ionotropic glutamate receptors (iGluRs) in channel gating (12, 14–17), as well as depolarization to relieve + Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest ion channel block by extracellular Mg2 (18, 19). The initial metazoan ancestors. Sequence alignments and phylogenetic analy- annotation of the M. leidyi genome identified 16 candidate iGluR sis show that these form a distinct clade from the well-characterized genes (4), whereas in the draft genome of P. bachei, 14 iGluRs AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. were annotated as kainate-like receptors (5). In view of growing Although annotated as glutamate and kainate receptors, crystal interest in the molecular evolution of ion channels and receptors, structures of the ML032222a and PbiGluR3 ligand-binding domains and the pivotal role that ctenophores play in our current un- (LBDs) reveal endogenous glycine in the binding pocket, whereas derstanding of nervous system development (20), we initiated a ligand-binding assays show that glycine binds with nanomolar af- structural and functional characterization of glutamate receptors finity; biochemical assays and structural analysis establish that glu- expressed in both species.
    [Show full text]
  • Regulation of Extracellular Arginine Levels in the Hippocampus in Vivo
    Regulation of Extracellular Arginine Levels in the Hippocampus In Vivo by Joanne Watts B.Sc. (Hons) r Thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science, University of London The School of Pharmacy University of London ProQuest Number: 10105113 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10105113 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Nitric oxide (NO) has emerged as an ubiquitous signaling molecule in the central nervous system (CNS). NO is synthesised from molecular oxygen and the amino acid L-arginine (L- ARG) by the enzyme NO synthase (NOS), and the availability of L-ARG has been implicated as the limiting factor for NOS activity. Previous studies have indicated that L- ARG is localised in astrocytes in vitro and that the in vitro activation of non-N-methyl-D- aspartate (NMDA) receptors, as well as the presence of peroxynitrite (ONOO ), led to the release of L-ARG. Microdialysis was therefore used in this study to investigate whether this held true in vivo.
    [Show full text]
  • Interplay Between Gating and Block of Ligand-Gated Ion Channels
    brain sciences Review Interplay between Gating and Block of Ligand-Gated Ion Channels Matthew B. Phillips 1,2, Aparna Nigam 1 and Jon W. Johnson 1,2,* 1 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; [email protected] (M.B.P.); [email protected] (A.N.) 2 Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA * Correspondence: [email protected]; Tel.: +1-(412)-624-4295 Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020 Abstract: Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function. Keywords: ligand-gated ion channel; channel block; channel gating; nicotinic acetylcholine receptor; ionotropic glutamate receptor; AMPA receptor; kainate receptor; NMDA receptor 1. Introduction Neuronal information processing depends on the distribution and properties of the ion channels found in neuronal membranes.
    [Show full text]
  • Cellular Trafficking of Nicotinic Acetylcholine Receptors
    npg Acta Pharmacol Sin 2009 Jun; 30 (6): 656–662 Review Cellular trafficking of nicotinic acetylcholine receptors Paul A ST JOHN* Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, AZ 85724, USA Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular loca- tion and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs. Keywords: membrane traffic; protein traffic; biosynthesis; endocytosis; endoplasmic reticulum-associated degradation Acta Pharmacologica Sinica (2009) 30: 656–662; doi: 10.1038/aps.2009.76 Introduction ways, but two particular perturbations have been especially well studied and exert their effects at least in part by altering Nicotinic acetylcholine receptors (nAChRs) mediate the trafficking of nAChRs: 1) denervation changes the total synaptic transmission in the CNS, in autonomic ganglia, and number, the distribution, and the turnover rate of nAChRs in at neuromuscular junctions and other peripheral synapses. skeletal muscle; 2) prolonged exposure to nicotine increases The functional properties of these synapses differ, but in each the total number of nAChRs in neurons. Several of the stud- case, properly functional signaling requires cellular control ies reviewed here addressed the mechanisms by which these of the number, type, and location of nAChRs. Trafficking treatments alter nAChR trafficking. Other authors in this of nAChRs – the movement of nAChRs between compart- special issue will address other aspects of the effects of nico- ments of a cell, including the cell's biosynthetic and degrada- tine on nAChRs.
    [Show full text]
  • Kainate Receptors Depress Excitatory Synaptic Transmission at CA33CA1 Synapses in the Hippocampus Via a Direct Presynaptic Action
    The Journal of Neuroscience, May 1, 2001, 21(9):2958–2966 Kainate Receptors Depress Excitatory Synaptic Transmission at CA33CA1 Synapses in the Hippocampus via a Direct Presynaptic Action Matthew Frerking,1 Dietmar Schmitz,1 Qiang Zhou,1 Joshua Johansen,2 and Roger A. Nicoll1,2 Departments of 1Cellular and Molecular Pharmacology and 2Physiology, University of California, San Francisco, California 94143-0450 Kainate receptor activation depresses synaptic release of neu- excitation and subsequent release of a neuromodulator. Pre- rotransmitter at a number of synapses in the CNS. The mech- synaptic depolarization, achieved via increasing extracellular anism underlying this depression is controversial, and both K ϩ, caused a depression of the presynaptic fiber volley and an ionotropic and metabotropic mechanisms have been sug- increase in the frequency of miniature EPSCs. Neither effect gested. We report here that the AMPA/kainate receptor ago- was observed with DA, suggesting that DA does not depress nists domoate (DA) and kainate (KA) cause a presynaptic de- transmission via a presynaptic depolarization. However, the pression of glutamatergic transmission at CA33CA1 synapses effects of DA were abolished by the G-protein inhibitors in the hippocampus, which is not blocked by the AMPA recep- N-ethylmaleimide and pertussis toxin. These results suggest tor antagonist GYKI 53655 but is blocked by the AMPA/KA that KA receptor activation depresses synaptic transmission at receptor antagonist CNQX. Neither a blockade of interneuronal this synapse via a direct, presynaptic, metabotropic action. discharge nor antagonists of several neuromodulators affect Key words: domoate; kainate; metabotropic; presynaptic; the depression, suggesting that it is not the result of indirect hippocampus; CA1 Neurotransmitter receptors in the CNS can be separated into two use-dependent depression.
    [Show full text]
  • Functional Kainate-Selective Glutamate Receptors in Cultured Hippocampal Neurons (Excitatory Amino Acid Receptors/Hippocampus) JUAN LERMA*, ANA V
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11688-11692, December 1993 Neurobiology Functional kainate-selective glutamate receptors in cultured hippocampal neurons (excitatory amino acid receptors/hippocampus) JUAN LERMA*, ANA V. PATERNAIN, JosE R. NARANJO, AND BRITT MELLSTR6M Departamento de Plasticidad Neural, Instituto Cajal, Consejo Superior de Investigaciones Cientfficas, Avenida Doctor Arce 37, 28002-Madrid, Spain Communicated by Michael V. L. Bennett, September 15, 1993 ABSTRACT Glutamate mediates fast synaptic transmis- experiments, the regional distribution of high-affinity sion at the majority of excitatory synapses throughout the [3H]kainate binding sites does not match the AMPA receptor central nervous system by interacting with different types of distribution but corresponds well to the brain areas with high receptor channels. Cloning of glutamate receptors has pro- susceptibility to the neurotoxic actions of kainate (e.g., vided evidence for the existence of several structurally related hippocampal CA3 field) (13). However, patch-clamp record- subunit families, each composed of several members. It has ings from adult hippocampal neurons have revealed that been proposed that KA1 and KA2 and GluR-5, GluR-6, and native glutamate receptors are similar to the AMPA-type GluR-7 families represent subunit classes of high-affinity kain- recombinant glutamate receptors expressed from cDNA ate receptors and that in vivo different kainate receptor sub- clones but have failed so far to detect receptor channels ofthe types might be constructed from these subunits in heteromeric kainate type (14, 15). The only apparently high-affinity kain- assembly. However, despite some indications from autoradio- ate receptor channels have been found in the peripheral graphic studies and binding data in brain membranes, no nervous system (16, 17), although they are also activated by functional pure kainate receptors have so far been detected in AMPA.
    [Show full text]
  • Kainate Receptor-Mediated Depression of Glutamate Release
    Article Kainate Receptor‐Mediated Depression of Glutamate Release Involves Protein Kinase A in the Cerebellum Rafael Falcón‐Moya, Pilar Losada‐Ruiz and Antonio Rodríguez‐Moreno * Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, ES‐41013 Sevilla, Spain * Correspondence: [email protected]; Tel: +34‐95497‐7393 Received: 20 July 2019; Accepted: 23 August 2019; Published: 23 August 2019 Abstract: Kainate (KA) receptors (KAR) have important modulatory roles of synaptic transmission. In the cerebellum, the action mechanisms of KAR‐mediated glutamatergic depression are unknown. We studied these mechanisms by recording evoked excitatory postsynaptic currents (eEPSCs) from cerebellar slices using the whole‐cell configuration of the patch‐clamp technique. We observed that 3 μM KA decreased the amplitude of eEPSCs and increased the number of failures at the synapses established between parallel fibers (PF) and Purkinje neurons, and the effect was antagonized by NBQX under the condition where AMPA receptors were previously blocked. The inhibition of protein kinase A (PKA) suppressed the effect of KAR activation on eEPSC, and effect was not prevented by protein kinase C inhibitors. Furthermore, in the presence of Pertussis toxin, the depression of glutamate release mediated by KAR activation was prevented, invoking the participation of a Gi/o protein in this modulation. Finally, the KAR‐mediated depression of glutamate release was not prevented by blocking calcium‐permeable KARs or by treatments that affect calcium release from intracellular stores. We conclude that KARs present at these synapses mediate an inhibition of glutamate release through a mechanism that involves the activation of G‐protein and protein kinase A.
    [Show full text]
  • Glutamate Receptor Antagonism: Neurotoxicity, Anti-Akinetic Effects, and Psychosis
    J Neural Transm (1991) [Suppl] 34: 203-210 © by Springer-Verlag 1991 Glutamate receptor antagonism: neurotoxicity, anti-akinetic effects, and psychosis P. Riederer1, K. W. Lange1, J. Kornhuber1, and K. Jellinger2 'Clinical Neurochemistry, Department of Psychiatry, University of Wiirzburg, Federal Republic of Germany 2Ludwig Boltzmann Institute of Clinical Neurobiology, Lainz Hospital, Vienna, Austria Summary. There is evidence to suggest that glutamate and other excitatory amino acids play an important role in the regulation of neuronal excitation. Glutamate receptor stimulation leads to a non-physiological increase of intra• cellular free Ca2+. Disturbed Ca2+ homeostasis and subsequent radical formation may be decisive factors in the pathogenesis of neurodegenerative diseases. Decreased glutamatergic activity appears to contribute to paranoid hallucinatory psychosis in schizophrenia and pharmacotoxic psychosis in Parkinson's disease. It has been suggested that a loss of glutamatergic function causes dopaminergic over-activity. Imbalances of glutamatergic and dopaminer• gic systems in different brain regions may result in anti-akinetic effects or the occurrence of psychosis. The simplified hypothesis of a glutamatergic- dopaminergic (im)-balancc may lead to a better understanding of motor behaviour and psychosis. Introduction It is only recently that excitatory amino acid receptors have been dis• covered. Through the use of selective agonists and antagonists it has become evident that these receptors consist of different subtypes (for review see Watkins et al., 1990). At present the most useful classification provides the following excitatory amino acid receptor subtypes: N-methyl-D-aspartate (NMDA) receptors, kainate receptors, quisqualate receptors or a-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, metabotropic receptors and L-aminophosphonobutyrate (L-AP4) receptors.
    [Show full text]
  • Functional Impact of Interacting Protein on Kainate Receptors: Necab1 and Neto Proteins
    Instituto de Neurociencias de Alicante Universidad Miguel Hernandez Thesis manuscript for: PhD in Neuroscience Functional impact of interacting protein on kainate receptors: NeCaB1 and NeTo proteins. Jon Palacios Filardo Supervised by: Prof. Juan Lerma Alicante, 2014 Agradecimientos/Acknowledgments Agradecimientos/Acknowledgments Ahora que me encuentro escribiendo los agradecimientos, me doy cuenta que esta es posiblemente la única sección de la tesis que no será corregida. De manera que los escribiré tal como soy, tal vez un poco caótico. En primer lugar debo agradecer al profesor Juan Lerma, por la oportunidad que me brindó al permitirme realizar la tesis en su laboratorio. Más que un jefe ha sido un mentor en todos estos años, 6 exactamente, en los que a menudo al verme decía: “Jonny cogió su fusil”, y al final me entero que es el título de una película de cine… Pero aparte de un montón de anécdotas graciosas, lo que guardaré en la memoria es la figura de un mentor, que de ciencia todo lo sabía y le encantaba compartirlo. Sin duda uno no puede escribir un libro así (la tesis) sin un montón de gente alrededor que te enseña y ayuda. Como ya he dicho han sido 6 años conviviendo con unos maravillosos compañeros, desde julio de 2008 hasta presumiblemente 31 de junio de 2014. De cada uno de ellos he aprendido mucho; técnicamente toda la electrofisiología se la debo a Ana, con una paciencia infinita o casi infinita. La biología molecular me la enseñó Isa. La proteómica la aprendí del trío Esther-Ricado-Izabella. Joana y Ricardo me solventaron mis primeras dudas en el mundo de los kainatos.
    [Show full text]
  • Pharmacological Approaches to the Treatment of Ischaemic Neuronal Damage
    Ey e (1991) 5, 193-197 Pharmacological Approaches to the Treatment of Ischaemic Neuronal Damage L. L. IVERSEN Harlow Summary Retina is particularly susceptible to ischaemic damage following exposure to anoxia or hypoglycaemia. In animal models the neuronal damage following ischaemia resembles that caused by exposure to glutamate or other excitotoxic agents which act on excitatory amino acid receptors. There are a number of pharmacological approaches designed to limit neuronal damage following ischaemia. These include free radical scavenging agents, calcium channel blockers, kappa opiate agonists and excitatory amino acid antagonists. Recent studies with antagonists acting at both NMDA and non-NMDA receptors for glutamate show that such compounds can pro­ tect against ischaemic damage, and are effective even when administered several hours after the ischaemic insult. Retinal neurones, like those in other regions systemic administration of L-glutamate or of CNS, are highly dependent on the oxida­ aspartate in very large doses (2-4 g/kg s.cut) tive metabolism of glucose for their energy lead to profound neurodegenerative changes requirements, and are susceptible to damage in retinal neurones of albino mice. These under conditions of ischaemia or hypoglycae­ changes were seen mainly in ganglion cells in mia. There has been an increased research adult animals, but in immature animals all ret­ effort in recent years devoted to the develop­ inal cells were affected. Olney and colleagues ment of pharmacological agents which might more than a decade
    [Show full text]
  • Metabotropic Receptor Modulation of Kainate Receptors in the Hippocampus C'iana Patrice Cooper University of South Carolina - Columbia
    University of South Carolina Scholar Commons Theses and Dissertations 12-14-2015 Metabotropic Receptor Modulation of Kainate Receptors in the Hippocampus C'iana Patrice Cooper University of South Carolina - Columbia Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Medicine and Health Sciences Commons Recommended Citation Cooper, C. P.(2015). Metabotropic Receptor Modulation of Kainate Receptors in the Hippocampus. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/3239 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. METABOTROPIC RECEPTOR MODULATION OF KAINATE RECEPTORS IN THE HIPPOCAMPUS by C’iana Patrice Cooper Bachelor of Science Georgia Institute of Technology, 2008 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Exercise Science The Norman J. Arnold School of Public Health University of South Carolina 2015 Accepted by: David Mott, Major Professor J. Larry Durstine, Major Professor Roger Newman-Norlund, Committee Member Troy Herter, Committee Member Lacy Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by C’iana Patrice Cooper, 2015 All Rights Reserved. ii DEDICATION I would like to dedicate this manuscript to my loving husband, Jonnifer L. Cooper, for started and ending this journey with me, and being my best friend and confidant the along the way. I pray that we continue to have a lifetime full of exciting journeys to conquer together. I would also like to dedicate this manuscript to my loving parents, Charles E.
    [Show full text]