Tiling by Bars

Total Page:16

File Type:pdf, Size:1020Kb

Tiling by Bars Tiling by bars by Martin Tassy B.Sc., ENS Cachan 2007 M.A., Universit´ePierre et Marie Curie 2008 Adissertationsubmittedinpartialfulfillmentofthe requirements for the degree of Doctor of Philosophy in Mathematics at Brown University PROVIDENCE, RHODE ISLAND May 2014 c Copyright 2014 by Martin Tassy This dissertation by Martin Tassy is accepted in its present form by Mathematics as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Richard Kenyon, Ph.D., Advisor Recommended to the Graduate Council Date Je↵rey Brock, Ph.D., Reader Date Richard Schwartz, Ph.D., Reader Approved by the Graduate Council Date Peter Weber, Dean of the Graduate School iii Vitae Martin Tassy was born in Marseille, France. After finishing high-school at Lyc´ee de Provence, he entered classes pr´eparatoires successively at Lyce Thiers and Lyc´ee Sainte-Genevieve. In 2006, he was admitted at Ecole´ normal sup´erieure de Cachan. During his four years as a ´etudiant normalien, he received a Bachelor of Science in Mathematics, a Master of Mathematics in Probabilities from Universit´eRennes 1, a Master in Financial Mathematics from Universit´eParis 6 in 2008, and the french Aggr´egation of Mathematics. After spending one year as an academic guest at ETH Zurich to work on Random Interlacements, he entered the Brown University graduate school in 2010. iv Acknowledgements This work is a PhD thesis supervised by Richard Kenyon whom I thank for his tremendous assistance. I am extremely grateful to him for introducing me to the subject of tilings and supporting my educational endeavors, as well as for the numer- ous hours he spent patiently discussing and reviewing my ideas despite my challenges with communicating them. Many thanks to Scott Sheffield for his intellectual advice and whose own thesis on random surfaces has been greatly inspirational to my work. My appreciation to Tim Austin who introduced me to cocycles and for his guidance on questions related to ergodic theory. To the members of my thesis jury, Je↵Brock and Richard Schwartz, and to the sta↵ of the Brown Mathematics department, thank you for your time and consideration. AParticularthankstoDoreenPappas,whoalwaysdidherutmosttoassistmedur- ing the four years of this program. Thanks to Emanuel Zgraggen and Philippe Eichmann who patiently assisted me when I needed help with programming related problems. Thanks to Sara Maloni, Tonya Spano and Pellumb Kelmendi who kindly reviewed parts of this work. Finally, the deepest thanks to my family, especially to my parents, for their infinite love and support. v Abstract of “ Tiling by bars” by Martin Tassy, Ph.D., Brown University, May 2014 We study combinatorial and probabilistic properties of tilings of the plane by m 1 ⇥ horizontal rectangles and n 1verticalrectanglesalsocalledtilingsbybars. ⇥ In Chapter 2 We give a new criterion for the tilability of regions based on the height function in the Conway group. As a consequence we are able to prove that the tilability or regions with bounded number of holes and such that the boundary of those holes describes a trivial word in the Conway group is decidable in polynomial time. In the second part of Chapter 2 we generalize results on local moves connectiv- ity known for simply connected regions by giving a criterion to decide under which conditions tilings of a torus are connected by local moves. In Chapter 3 we discuss the di↵erences between the space of ergodic Gibbs mea- sures for tilings by dominos and the space of ergodic Gibbs measures for tilings by longer bars. Using notions from ergodic theory we prove that when a measure µ on tiling of the plane is ergodic then the image of the height function must µ -almost surely stay close to a single geodesic. We also propose a characterization of those ergodic Gibbs measures based on the generalization of the domino slope and on the support of the height function. Contents Vitae ii Acknowledgments iii 1 Introduction 1 1.1 Tilingsandheightfunctions . 3 1.2 Translation invariant Gibbs measures on tilings . 8 2 Tiling of the plane 12 2.1 Definition of tilings of the plane . 13 2.1.1 Tilings and their Conway tiling group . 14 2.1.2 Tilings by bars . 16 2.2 Local flips on tiling by rectangles . 34 2.2.1 Tilings of simply connected regions in Z2 ............ 34 2.2.2 A criterion for local move connectivity of tori tilings . 38 3 Translation invariant measures on tilings by bars 43 3.1 Gibbs measures on tiling by bars . 44 3.1.1 Definition and basic properties . 44 3.1.2 Translation invariant Gibbs measures on tilings . 46 3.1.3 Ergodic Gibbs measure . 49 3.1.4 Support of the height function on ergodic Gibbs measures . 51 3.2 Surface tension . 56 3.2.1 definition of the surface tension relative to a specific word . 56 3.2.2 Minimizers of the entropy exist and are Gibbs measures . 62 3.3 Construction of invariant measures with a given slope . 64 4 Conclusion 70 4.1 Existence and characterization of the ergodic Gibbs measures . 71 4.2 Variational principle and unicity of ergodics Gibbs measures . 73 v A Construction of the specific free energy 76 A.1 Entropyofamesure ........................... 77 A.2 Constructionofthespecificfreeenergy . 80 B Notations 83 vi List of Figures 1.0.1 An aztec diamond randomly tiled by 3 1rectangles. 3 ⇥ 1.1.1 The Cayley graph of Z3 Z3 ....................... 5 1.2.1 Random tilings of a torus⇤ by 2 1and3 1rectangles. 9 ⇥ ⇥ 2.1.1 Local picture of the set S! ....................... 27 1 3.3.1 Torus with null vertical slope . 66 3.3.2 Torus with Extremal slope . 66 3.3.3 Combined configuration . 67 3.3.4 Combined configuration after shu✏ing . 68 vii Chapter One Introduction 2 Tilings as mathematical objects have been the subject of a countless literature over the last fifty years. In certain specific cases, such has tilings of the square lattice by dominos or tilings of the triangular lattice by hexagons, their properties are fairly well understood, and questions concerning their limiting behaviors or estimates of the number of tilings of a given region can be answered accurately (see amongst others [16],[4]). In other cases even the question of tilability of a region have been proven to be NP complete (see [18]). For most of the models for which precise results have been obtained, a tiling can be seen as the projection onto the plane of a 3-dimensional surface. Hence there exists a natural function which associates to every vertex of the tiling a number corresponding to the height of this surface; this is the so called height function. In [6] Conway introduced a generalized notion of height function for which the image space is not necessarily Z but could be a specific group associated to the tiling. When this group has a complicated structure a few results have been proven but they are still far from reaching the precision of the results obtained for height functions in Z. This thesis an attempt to understand better those generalized height functions by studying the specific case of tiling by bars. These tilings have proven to be simple to study because even though the image group of the height function is complex, there exist a Glauber dynamic (see [13]) which allows to randomize tilings of finite regions R and study their limiting properties (see Figure 1.0.1). 3 Figure 1.0.1: An aztec diamond randomly tiled by 3 1 rectangles ⇥ 1.1 Tilings and height functions AprototileoftheplanelatticeZ2 is a connected shape which covers exactly a finite number of squares of the lattice. A tiling of a region R of the plane Z2 by a finite set of prototiles t ,...,t up to translation is a collection of prototiles such that { 1 k} each square of R is covered by one and only one tile. In [6] Conway and Lagarias introduced a useful tool to describe tilings of a given region. The idea was to associate awordinthefreegroupF = a, b to every path contained in the tiling. The letter a,b h i 1 a would represent an horizontal step to the right, a− an horizontal step to the left, b 1 averticalstepupandb− averticalstepdown.Ifwedenote!i’s the words described be the boundaries of the prototiles t ,...,t we can define the Conway group of the { 1 k} tiling to be G = a, b ! = ... = ! = e , h | 1 n i 4 It is easy to see that two paths contained in the tiling with same starting and ending points must have the same projection into G. Hence this construction provides a necessary condition for the tilability of simply connected region of the plane since such regions should have a boundary path projecting into the identity word in G. This result is useful in itself but it appears that for certain types of tilings the height function contains much more information. In fact for some special sets of prototiles, tilings of a region R can be identified with the set of k-Lipschitz functions (with certain properties) from R to the Conway Group. The first result of this kind was obtained by J.C Fournier in [7] for the domino model. In this article Fournier showed that a simply connected region R would be tilable by dominos if and only if we had for all x,y in the boundary of R: d(h(x),h(y)) 2 x y +1. || − ||1 However the domino model has a very special place in the field of tilings due to its correspondence with the dimer model and the simple structure of its Conway group which can be embedded to Z.ThepurposeofChapter2istoproveageneralization of those results for tilings by bars and provide a method that we believe could be apply to other type of tilings.
Recommended publications
  • Tiling Problems: from Dominoes, Checkerboards, and Mazes to Discrete Geometry
    TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY BERKELEY MATH CIRCLE 1. Looking for a number Consider an 8 × 8 checkerboard (like the one used to play chess) and consider 32 dominoes that each may cover two adjacent squares (horizontally or vertically). Question 1 (***). What is the number N of ways in which you can cover the checkerboard with the dominoes? This question is difficult, but we will answer it at the end of the lecture, once we will have familiarized with tilings. But before we go on Question 2. Compute the number of domino tilings of a n × n checkerboard for n small. Try n = 1; 2; 3; 4; 5. Can you do n = 6...? Question 3. Can you give lower and upper bounds on the number N? Guess an estimate of the order of N. 2. Other settings We can tile other regions, replacing the n × n checkerboard by a n × m rectangle, or another polyomino (connected set of squares). We say that a region is tileable by dominos if we can cover entirely the region with dominoes, without overlap. Question 4. Are all polyominoes tileable by dominoes? Question 5. Can you find necessary conditions that polyominoes have to satisfy in order to be tileable by dominos? What if we change the tiles? Try the following questions. Question 6. Can you tile a 8×8 checkerboard from which a square has been removed with triminos 1 × 3 (horizontal or vertical)? Question 7 (*). If you answered yes to the previous question, can you tell what are the only possible squares that can be removed so that the corresponding board is tileable? Date: February 14th 2012; Instructor: Adrien Kassel (MSRI); for any questions, email me.
    [Show full text]
  • Treb All De Fide Gra U
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC Grau en Matematiques` T´ıtol:Tilings and the Aztec Diamond Theorem Autor: David Pardo Simon´ Director: Anna de Mier Departament: Mathematics Any academic:` 2015-2016 TREBALL DE FI DE GRAU Facultat de Matemàtiques i Estadística David Pardo 2 Tilings and the Aztec Diamond Theorem A dissertation submitted to the Polytechnic University of Catalonia in accordance with the requirements of the Bachelor's degree in Mathematics in the School of Mathematics and Statistics. David Pardo Sim´on Supervised by Dr. Anna de Mier School of Mathematics and Statistics June 28, 2016 Abstract Tilings over the plane R2 are analysed in this work, making a special focus on the Aztec Diamond Theorem. A review of the most relevant results about monohedral tilings is made to continue later by introducing domino tilings over subsets of R2. Based on previous work made by other mathematicians, a proof of the Aztec Dia- mond Theorem is presented in full detail by completing the description of a bijection that was not made explicit in the original work. MSC2010: 05B45, 52C20, 05A19. iii Contents 1 Tilings and basic notions1 1.1 Monohedral tilings............................3 1.2 The case of the heptiamonds.......................8 1.2.1 Domino Tilings.......................... 13 2 The Aztec Diamond Theorem 15 2.1 Schr¨odernumbers and Hankel matrices................. 16 2.2 Bijection between tilings and paths................... 19 2.3 Hankel matrices and n-tuples of Schr¨oderpaths............ 27 v Chapter 1 Tilings and basic notions The history of tilings and patterns goes back thousands of years in time.
    [Show full text]
  • [Math.CO] 25 Jan 2005 Eirshlra H A/Akct Mathematics City IAS/Park As the Institute
    Tilings∗ Federico Ardila † Richard P. Stanley‡ 1 Introduction. 4 3 6 Consider the following puzzle. The goal is to 5 2 cover the region 1 7 For that reason, even though this is an amusing puzzle, it is not very intriguing mathematically. This is, in any case, an example of a tiling problem. A tiling problem asks us to cover a using the following seven tiles. given region using a given set of tiles, com- pletely and without any overlap. Such a cov- ering is called a tiling. Of course, we will fo- 1 2 3 4 cus our attention on specific regions and tiles which give rise to interesting mathematical problems. 6 7 5 Given a region and a set of tiles, there are many different questions we can ask. Some The region must be covered entirely with- of the questions that we will address are the out any overlap. It is allowed to shift and following: arXiv:math/0501170v3 [math.CO] 25 Jan 2005 rotate the seven pieces in any way, but each Is there a tiling? piece must be used exactly once. • One could start by observing that some How many tilings are there? • of the pieces fit nicely in certain parts of the About how many tilings are there? region. However, the solution can really only • be found through trial and error. Is a tiling easy to find? • ∗ This paper is based on the second author’s Clay Is it easy to prove that a tiling does not Public Lecture at the IAS/Park City Mathematics • Institute in July, 2004.
    [Show full text]
  • Perfect Sampling Algorithm for Schur Processes Dan Betea, Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, Mirjana Vuletić
    Perfect sampling algorithm for Schur processes Dan Betea, Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, Mirjana Vuletić To cite this version: Dan Betea, Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, et al.. Perfect sampling algorithm for Schur processes. Markov Processes And Related Fields, Polymat Publishing Company, 2018, 24 (3), pp.381-418. hal-01023784 HAL Id: hal-01023784 https://hal.archives-ouvertes.fr/hal-01023784 Submitted on 5 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Perfect sampling algorithms for Schur processes D. Betea∗ C. Boutillier∗ J. Bouttiery G. Chapuyz S. Corteelz M. Vuleti´cx August 31, 2018 Abstract We describe random generation algorithms for a large class of random combinatorial objects called Schur processes, which are sequences of random (integer) partitions subject to certain interlacing con- ditions. This class contains several fundamental combinatorial objects as special cases, such as plane partitions, tilings of Aztec diamonds, pyramid partitions and more generally steep domino tilings of the plane. Our algorithm, which is of polynomial complexity, is both exact (i.e. the output follows exactly the target probability law, which is either Boltzmann or uniform in our case), and entropy optimal (i.e.
    [Show full text]
  • Domino Tiling, Gene Recognition, and Mice Lior
    Domino Tiling, Gene Recognition, and Mice by Lior Samuel Pachter B.S. in Mathematics California Institute of Technology (1994) Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1999 © Lior Pachter, MCMXCIX. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part, and to grant others the right to do so. A uth or ........................................... Department of Mathematics May 4, 1999 Certified by ....... ... .. .................................... Bonnie A. Berger Associate Professor of Applied Mathematics Thesis Supervisor Accepted by ..... ....................................... Michael Sipser Chairman, Applied Mathematics Committee Accepted by . ..................... INSTITUTE Richard Melrose Chairman, Department Committee on Graduate Students LIBRARIES 2 Domino Tiling, Gene Recognition, and Mice by Lior Samuel Pachter Submitted to the Department of Mathematics on May 17, 1999, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract The first part of this thesis outlines the details of a computational program to identify genes and their coding regions in human DNA. Our main result is a new algorithm for identifying genes based on comparisons between orthologous human and mouse genes. Using our new technique we are able to improve on the current best gene recognition results. Testing on a collection of 117 genes for which we have human and mouse orthologs, we find that we predict 84% of the coding exons in genes correctly on both ends. Our nucleotide sensitivity and specificity is 95% and 98% respectively.
    [Show full text]
  • Modular Design of Hexagonal Phased Arrays Through Diamond Tiles
    This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/TAP.2019.2963561 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 0, 2019 1 Modular Design of Hexagonal Phased Arrays through Diamond Tiles Paolo Rocca, Senior Member, IEEE, Nicola Anselmi, Member, IEEE, Alessandro Polo, Member, IEEE, and Andrea Massa, Fellow, IEEE Abstract—The modular design of planar phased array anten- are considered an enabling technology in these fields thanks nas with hexagonal apertures is addressed by means of innovative to their capability of guaranteeing the necessary quality-of- diamond-shaped tiling techniques. Both tiling configuration and service and a suitable level of safety and reliability. On sub-array coefficients are optimized to fit user-defined power- mask constraints on the radiation pattern. Towards this end, the other hand, even though the continuous development of suitable surface-tiling mathematical theorems are customized to electronics (e.g., fast analog-to-digital converters and massive the problem at hand to guarantee optimal performance in case systems-on-chip) and material science (e.g., artificial materials of low/medium-size arrays, while the computationally-hard tiling and meta-materials) as well as the introduction of innovative of large arrays is yielded thanks to an effective integer-coded manufacturing processes (e.g., 3D printing and flexible elec- GA-based exploration of the arising high-cardinality solution spaces. By considering ideal as well as real array models, a set tronics), phased arrays are still far from being commercial- of representative benchmark problems is dealt with to assess the off-the-shelf (COTS) devices.
    [Show full text]
  • DOMINO TILING Contents 1. Introduction 1 2. Rectangular Grids
    DOMINO TILING KASPER BORYS Abstract. In this paper we explore the problem of domino tiling: tessellating a region with 1x2 rectangular dominoes. First we address the question of existence for domino tilings of rectangular grids. Then we count the number of possible domino tilings when one exists. Contents 1. Introduction 1 2. Rectangular Grids 2 Acknowledgments 10 References 10 1. Introduction Definition 1.1. (Domino) A domino is a rectangle formed by connecting two unit squares along an edge. Definition 1.2. (Domino Tiling) A domino tiling is a covering of a grid using dominoes such that all dominoes are disjoint and contained inside the boundary of the grid. Tilings were originally studied in statistical mechanics as a model for molecules on a lattice. Our dominoes become equivalent to dimers, which are two molecules connected by a bond, and our grid becomes equivalent to a lattice. Arrangements of dominoes on a lattice are useful because thermodynamical properties can be calculated from the number of arrangements when there is a zero energy of mixing. Domino tiling is also useful as a model for finding the free energy of a liquid, because this calculation requires the number of ways that a volume of liquid can be divided into certain sized 'cells,' that are equivalent to our grid's tiles. Additionally, our grid can also be seen as equivalent to a particular bipartite graph, as illustrated in the figure below. On the left we see a possible domino tiling of a 2 × 3 grid, and on the right we see the equivalent graph, with vertices representing tiles and edges representing dominoes.
    [Show full text]
  • Tilings and Tessellations
    August 24 { September 4, 2015. Isfahan, IRAN CIMPA Research School Tilings and Tessellations Isfahan University of Technology Isfahan Mathematics House Foreword These are the lectures notes of the CIMPA school Tilings and Tessellations that takes place from august 24 to september 4 in the Technological University of Isfahan and the Mathematics House of Isfahan, Iran. This school is supported by the Centre International de Math´ematiquesPures et Appliqu´ees(CIMPA), the french Agence National de la Recherche (project QuasiCool, ANR-12-JS02-011-01), the universities of the contributors (listed below), the International Mathematical Union (IMU) and the iranian Institute for research in Fundamental Sciences (IPM). List of the contributors: • Fr´ed´erique Bassino, Univ. Paris 13, France • Florent Becker, Univ. Orl´eans,France • Nicolas Bedaride´ , Univ. Aix-Marseille, France • Olivier Bodini, Univ. Paris 13, France • C´edric Boutillier, Univ. Paris 6, France • B´eatrice De Tilliere` , Univ. Paris 6, France • Thomas Fernique, CNRS & Univ. Paris 13, France • Pierre Guillon, CNRS & Univ. Aix-Marseille, France • Amir Hashemi, Isfahan Univrsity of Technology, Iran • Eric´ Remila´ , Univ. Saint-Etienne,´ France • Guillaume Theyssier, Univ. de Savoie, France iii Contents 1 Tileability 1 1.1 Tiling with dominoes . .1 1.2 Tiling with bars . .2 1.3 Tiling with rectangles . .2 1.4 Gr¨obnerbases . .5 1.5 Buchberger's algorithm . .7 1.6 Gr¨obnerbases and tilings . .9 2 Random Tilings 11 2.1 Dimer model and random tilings . 11 2.2 Kasteleyn/Temperley and Fisher's theorem . 15 2.3 Explicit expression for natural probability measures on dimers . 16 2.4 Computation of the number of tilings : a few examples .
    [Show full text]
  • Domino Tilings of the Torus
    Fillipo de Souza Lima Impellizieri Domino Tilings of the Torus Disserta¸c~aode Mestrado Dissertation presented to the Programa de P´os-Gradua¸c~aoem Matem´aticaof the Departamento de Matem´atica,PUC-Rio as partial fulfillment of the requirements for the degree of Mestre em Matem´atica. Advisor: Prof. Nicolau Cor¸c~aoSaldanha arXiv:1601.06354v1 [math.CO] 24 Jan 2016 Rio de Janeiro September 2015 Fillipo de Souza Lima Impellizieri Domino Tilings of the Torus Dissertation presented to the Programa de P´os-Gradua¸c~aoem Matem´atica of the Departamento de Matem´atica do Centro T´ecnico Cient´ıfico da PUC-Rio, as partial fulfillment of the requirements for the degree of Mestre. Prof. Nicolau Cor¸c~aoSaldanha Advisor Departamento de Matem´atica{ PUC-Rio Prof. Carlos Tomei Departamento de Matem´atica{ PUC-Rio Prof. Juliana Abrantes Freire Departamento de Matem´atica{ PUC-Rio Prof. Marcio da Silva Passos Telles Instituto de Matem´aticae Estat´ıstica { UERJ Prof. Robert David Morris Instituto de Matem´aticaPura e Aplicada { IMPA Prof. Jos´eEugenio Leal Coordinator of the Centro T´ecnicoCient´ıfico{ PUC-Rio Rio de Janeiro, September 11th, 2015 All rights reserved Fillipo de Souza Lima Impellizieri The author obtained the degree of Bacharel em Matem´atica from PUC-Rio in July 2013 Bibliographic data Impellizieri, Fillipo de Souza Lima Domino Tilings of the Torus / Fillipo de Souza Lima Impellizieri ; advisor: Nicolau Cor¸c~aoSaldanha. | 2015. 146 f. : il. ; 30 cm Disserta¸c~ao(Mestrado em Matem´atica)-Pontif´ıcia Uni- versidade Cat´olicado Rio de Janeiro, Rio de Janeiro, 2015.
    [Show full text]
  • Generating Stochastic Wall Patterns On-The-Fly with Wang Tiles
    EUROGRAPHICS 2019 / P. Alliez and F. Pellacini Volume 38 (2019), Number 2 (Guest Editors) Generating Stochastic Wall Patterns On-the-fly with Wang Tiles Alexandre Derouet-Jourdan1 , Marc Salvati1 and Théo Jonchier1;2 1OLM Digital Inc, Japan 2ASALI-SIR, XLIM, France (a) (b) (c) Figure 1: (a) Wall painted by an artist. (b) Stochastic wall pattern generated using our on-the-fly procedural algorithm. (c) Final texture after adding details. Our algorithm generates a line structure similar to the one created by the artist. This structure is used to generate brick colors and details around the edges. The global material appearance has been generated using texture bombing techniques. Abstract The game and movie industries always face the challenge of reproducing materials. This problem is tackled by combining illumination models and various textures (painted or procedural patterns). Generating stochastic wall patterns is crucial in the creation of a wide range of backgrounds (castles, temples, ruins...). A specific Wang tile set was introduced previously to tackle this problem, in an iterative fashion. However, long lines may appear as visual artifacts. We use this tile set in a new on-the-fly procedure to generate stochastic wall patterns. For this purpose, we introduce specific hash functions implementing a constrained Wang tiling. This technique makes possible the generation of boundless textures while giving control over the maximum line length. The algorithm is simple and easy to implement, and the wall structure we get from the tiles allows to achieve visuals that reproduce all the small details of artist painted walls. CCS Concepts • Computing methodologies ! Texturing; 1.
    [Show full text]
  • Pavages Aléatoires Alexandra Ugolnikova
    Pavages Aléatoires Alexandra Ugolnikova To cite this version: Alexandra Ugolnikova. Pavages Aléatoires. Modélisation et simulation. Université Sorbonne Paris Cité, 2016. Français. NNT : 2016USPCD034. tel-01889871 HAL Id: tel-01889871 https://tel.archives-ouvertes.fr/tel-01889871 Submitted on 8 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSIT E´ PARIS NORD (PARIS 13) Laboratoire d’Informatique de Paris Nord Th`ese pour obtenir le titre de Docteur de l’Universit´eParis Nord (Paris 13) Sp´ecialit´eInformatique PAVAGES ALEATOIRES´ pr´esent´ee et soutenue publiquement par Alexandra UGOLNIKOVA le 2`eme d´ecembre 2016 devant le jury compros´ede: Directeur de th`ese : Thomas FERNIQUE Rapporteurs: B´eatrice DE TILI ERE` Eric´ R EMILA´ Examinateurs: Fr´ed´erique BASSINO Olivier BODINI Ana BU SIˇ C´ Pavel KALOUGUINE Abstract In this thesis we study two types of tilings: tilings by a pair of squares and tilings on the tri-hexagonal (Kagome) lattice. We consider different combinatorial and probabilistic problems. First, we study the case of 1 1 and 2 2 squares on infinite stripes of × × height k and get combinatorial results on proportions of 1 1 squares for k 10 in × ≤ plain and cylindrical cases.
    [Show full text]
  • Tiling with Squares and Packing Dominos in Polynomial Time
    Tiling with Squares and Packing Dominos in Polynomial Time Anders Aamand∗ Mikkel Abrahamsen∗ Thomas D. Ahle∗ Peter M. R. Rasmussen∗ August 9, 2021 Abstract A polyomino is a polygonal region with axis parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container P . We give two polynomial time algorithms, one for deciding if P can be tiled with k × k squares for any fixed k which can be part of the input (that is, deciding if P is the union of a set of non-overlapping k × k squares) and one for packing P with a maximum number of non-overlapping and axis-parallel 2×1 dominos, allowing rotations by 90◦. As packing is more general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2 × 1 dominos. These are classical problems with important applications in VLSI design, and the related problem of finding a maximum packing of 2 × 2 squares is known to be NP-Hard [J. Algorithms 1990]. For our three problems there are known pseudo-polynomial time algorithms, that is, algorithms with running times polynomial in the area or perimeter of P . However, the standard, compact way to represent a polygon is by listing the coordinates of the corners in binary. We use this representation, and thus present the first polynomial time algorithms for the problems. Concretely, we give a simple O(n log n) algorithm for tiling with squares, and a more involved O(n3 polylog n) algorithm for packing and tiling with dominos, where n is the number of corners of P .
    [Show full text]