Complexity As a Homeomorphism Invariant for Tiling Spaces Tome 67, No 2 (2017), P

Total Page:16

File Type:pdf, Size:1020Kb

Complexity As a Homeomorphism Invariant for Tiling Spaces Tome 67, No 2 (2017), P R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Antoine JULIEN Complexity as a homeomorphism invariant for tiling spaces Tome 67, no 2 (2017), p. 539-577. <http://aif.cedram.org/item?id=AIF_2017__67_2_539_0> © Association des Annales de l’institut Fourier, 2017, Certains droits réservés. Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/ L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 67, 2 (2017) 539-577 COMPLEXITY AS A HOMEOMORPHISM INVARIANT FOR TILING SPACES by Antoine JULIEN (*) Abstract. — It is proved that whenever two aperiodic repetitive tilings with finite local complexity have homeomorphic tiling spaces, their associated complex- ity functions are asymptotically equivalent in a certain sense (which implies, if the complexity is polynomial, that the exponent of the leading term is preserved by homeomorphism). This theorem can be reworded in terms of d-dimensional d infinite words: if two Z -subshifts (with the same conditions as above) are flow equivalent, their complexity functions are equivalent up to rescaling. An analogous theorem is stated for the repetitivity function, which is a quantitative measure of the recurrence of orbits in the tiling space. Behind this result is the fact that any homeomorphism between tiling spaces is described by a so-called “shape deforma- tion”. In the last section, we use this observation to show that a certain cohomology group is an invariant of homeomorphisms between tiling spaces up to topological conjugacy. Résumé. — Il est prouvé dans cet article que deux pavages apériodiques et répétitifs dont les espaces de pavages sont homéomorphes ont des fonctions de complexité asymptotiquement équivalentes en un certain sens. Cela implique que lorsque les fonctions de complexité croissent polynomialement, l’exposant du terme dominant est préservé par homéomorphisme. Ce théorème peut s’énoncer en termes d de mots infinis d-dimensionels: si deux sous-décalages indexés par Z (avec les mêmes conditions) sont « flot-équivalents » (c’est-à-dire que leurs suspensions sont homéomorphes), alors leurs fonctions de complexité sont équivalentes à changement d’échelle près. Un théorème analogue peut être énoncé pour la fonction de répé- titivité, qui donne une mesure quantitative de la vitesse de récurrence des orbites dans l’espace de pavages. De manière sous-jacente, se trouve le fait que tout ho- méomorphisme entre espaces de pavages est induit par une déformation des tuiles. Dans la dernière section, on utilise cette observation pour montrer qu’un certain groupe de cohomologie fournit un invariant des homéomorphismes entre espaces de pavages à conjugation près. Keywords: aperiodic tilings, complexity, repetitivity, flow-equivalence, orbit-equivalence. Math. classification: 37B50, 37B10. (*) Part of the early work on this topic was done at the University of Victoria, under the supervision of Ian Putnam, partially funded by the Pacific Institute for the Mathematical Sciences. 540 Antoine JULIEN 1. Introduction This article is concerned with the study of aperiodic tilings. These tilings, such as the well-known Penrose tilings, provide good models for quasicrys- tals in physics. The tilings in which we are interested display two a priori antagonistic properties: a highly ordered structure (in the form of uniform repetition of patches), and aperiodicity. A tiling is a covering of the plane by geometric shapes (tiles), with no holes and no overlap. In this paper, tilings are assumed to be made using finitely many tile types up to translation. Furthermore, it is assumed that any two tiles can be fitted together in only finitely many ways (for example it could be assumed that tiles meet full-face to full-face in the case of polytopal tiles). This last condition is known as finite local complexity. Finally, tilings we are dealing with are assumed to be repetitive in the sense that any finite patch of a given tiling repeats within bounded distance of any point in the tiling (these definitions are given with more precision and quantifiers in Section2). An aperiodic tiling with the above properties has a topological compact space associated with it. It consists of all tilings which are indistinguish- able from it at a local scale, and it supports an Rd-action (for tilings of dimension d), induced by translations. It is possible to gain a better un- derstanding of such tiling spaces by using an analogy with subshifts: a d multi-dimensional infinite word w ∈ AZ has a subshift associated with it. d It is the closure in AZ of the Zd-orbit of w under the shift (or translation) map. The word w can also be interpreted as a tiling by cubes, the colours of which are indexed by A. The tiling space of this tiling by cubes then cor- responds exactly to the suspension of the subshift (which for d = 1 is also known as the mapping torus of the shift map). This suspension contains the subshift as a closed subset, and supports an Rd-action which extends the Zd-action on the subshift. We see here that if a subshift is minimal (which corresponds exactly to the condition cited above on repetition of patches), all elements in the subshifts have the same language, i.e. the same set of finite subwords. In the same way, if a tiling space is minimal, it make more sense to study the space rather than to particularise an arbitrarily chosen tiling. This philosophy of studying the space rather than the tiling (or the sub- shift rather than the word) is far from new, and has been quite successful. One can specifically cite the gap-labeling theorems, which relate the topo- logical invariants of the space on the one hand (the ordered K0-group), and the gaps in the spectrum of a certain Schrödinger operator with aperiodic ANNALES DE L’INSTITUT FOURIER COMPLEXITY AND HOMEOMORPHISMS BETWEEN TILING SPACES 541 potential on the other hand. Any attempt to give complete references for this problem would be unfair; we will therefore give a very incomplete list of references in the form of the papers [4, 13,3] and their references. A natural question, however, which results directly from this “space-over- tiling” approach is the following: whenever a relation is established between two tiling spaces, to what extent does it translate back in terms of tilings? In this paper, we start with two tiling spaces which are equivalent in the realm of topological spaces, i.e. homeomorphic. We then investigate what are the consequences on the underlying tilings. The main results state that whenever two tiling spaces are homeomorphic, their respective complexity functions, as well as their repetitivity functions are equivalent in some sense. Given a tiling (or a word), the complexity function is a map r 7→ p(r), where p(r) counts the number of distinct patches of size r, up to translation. This function was first studied in the framework of symbolic dynamics (one- dimensional subshifts). In their seminal paper, Morse and Hedlund [20] define p(n) as the number of subwords of size n in a given bi-infinite word. This function provides a good measure of order and disorder in a word: if p(n) doesn’t grow at least linearly, then the word is periodic. This result was generalized outside of the symbolic setting, in higher dimension: if the complexity function associated with a tiling doesn’t grow at least linarly, then the tiling is completely periodic i.e. it has d independent periods. One can refer to Lagarias–Pleasants [18] for a proof of this result in the setting of Delaunay sets of Rd. The first main theorem of this article describes how the complexity func- tion is preserved whenever two tiling spaces are homeomorphic. Theorem (Theorem 3.1).— If h :Ω −→ Ω0 is a homeomorphism be- tween two tiling spaces of aperiodic and repetitive tilings with finite local complexity, then the associated complexity functions p and p0 satisfy the following inequalities: 0 cp(mr) 6 p (r) 6 Cp(Mr), for some constants c, C, m, M > 0 and all r big enough. A few remarks: (1) If the functions p and p0 are at least linear (which is the case for non-periodic tilings, by the Morse–Hedlund theorem), then c and C can be taken equal to 1 (up to adjusting the values of m and M); (2) On the other hand, if the functions p and p0 grow at most polyno- mially, then m and M can be chosen equal to 1 (up to adjusting c TOME 67 (2017), FASCICULE 2 542 Antoine JULIEN and C). In particular, if p grows like a polynomial, then so does p0, and the exponent of the leading term is the same. Corollary 1.1. — Let T be an aperiodic, repetitive tiling with finite local complexity. Assume that its complexity function grows asymptotically like rα, up to a multiplicative constant. Then the exponent α is a topological invariant of the tiling space associated with T . The repetitivity function was also introduced by Morse and Hedlund [20] in the setting of one-dimensional symbolic dynamics. The repetitivity func- tion for a tiling T is defined as follows: for r > 0, R(r) is the infimum of all numbers c which satisfy that any patch of radius c in T contains a copy of all patches of radius r which appear somewhere in T .
Recommended publications
  • The Topological Entropy Conjecture
    mathematics Article The Topological Entropy Conjecture Lvlin Luo 1,2,3,4 1 Arts and Sciences Teaching Department, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; [email protected] or [email protected] 2 School of Mathematical Sciences, Fudan University, Shanghai 200433, China 3 School of Mathematics, Jilin University, Changchun 130012, China 4 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China Abstract: For a compact Hausdorff space X, let J be the ordered set associated with the set of all finite open covers of X such that there exists nJ, where nJ is the dimension of X associated with ¶. Therefore, we have Hˇ p(X; Z), where 0 ≤ p ≤ n = nJ. For a continuous self-map f on X, let a 2 J be f an open cover of X and L f (a) = fL f (U)jU 2 ag. Then, there exists an open fiber cover L˙ f (a) of X induced by L f (a). In this paper, we define a topological fiber entropy entL( f ) as the supremum of f ent( f , L˙ f (a)) through all finite open covers of X = fL f (U); U ⊂ Xg, where L f (U) is the f-fiber of − U, that is the set of images f n(U) and preimages f n(U) for n 2 N. Then, we prove the conjecture log r ≤ entL( f ) for f being a continuous self-map on a given compact Hausdorff space X, where r is the maximum absolute eigenvalue of f∗, which is the linear transformation associated with f on the n L Cechˇ homology group Hˇ ∗(X; Z) = Hˇ i(X; Z).
    [Show full text]
  • Topological Invariance of the Sign of the Lyapunov Exponents in One-Dimensional Maps
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 1, Pages 265–272 S 0002-9939(05)08040-8 Article electronically published on August 19, 2005 TOPOLOGICAL INVARIANCE OF THE SIGN OF THE LYAPUNOV EXPONENTS IN ONE-DIMENSIONAL MAPS HENK BRUIN AND STEFANO LUZZATTO (Communicated by Michael Handel) Abstract. We explore some properties of Lyapunov exponents of measures preserved by smooth maps of the interval, and study the behaviour of the Lyapunov exponents under topological conjugacy. 1. Statement of results In this paper we consider C3 interval maps f : I → I,whereI is a compact interval. We let C denote the set of critical points of f: c ∈C⇔Df(c)=0.We shall always suppose that C is finite and that each critical point is non-flat: for each ∈C ∈ ∞ 1 ≤ |f(x)−f(c)| ≤ c ,thereexist = (c) [2, )andK such that K |x−c| K for all x = c.LetM be the set of ergodic Borel f-invariant probability measures. For every µ ∈M, we define the Lyapunov exponent λ(µ)by λ(µ)= log |Df|dµ. Note that log |Df|dµ < +∞ is automatic since Df is bounded. However we can have log |Df|dµ = −∞ if c ∈Cis a fixed point and µ is the Dirac-δ measure on c. It follows from [15, 1] that this is essentially the only way in which log |Df| can be non-integrable: if µ(C)=0,then log |Df|dµ > −∞. The sign, more than the actual value, of the Lyapunov exponent can have signif- icant implications for the dynamics. A positive Lyapunov exponent, for example, indicates sensitivity to initial conditions and thus “chaotic” dynamics of some kind.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Tiling Problems: from Dominoes, Checkerboards, and Mazes to Discrete Geometry
    TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY BERKELEY MATH CIRCLE 1. Looking for a number Consider an 8 × 8 checkerboard (like the one used to play chess) and consider 32 dominoes that each may cover two adjacent squares (horizontally or vertically). Question 1 (***). What is the number N of ways in which you can cover the checkerboard with the dominoes? This question is difficult, but we will answer it at the end of the lecture, once we will have familiarized with tilings. But before we go on Question 2. Compute the number of domino tilings of a n × n checkerboard for n small. Try n = 1; 2; 3; 4; 5. Can you do n = 6...? Question 3. Can you give lower and upper bounds on the number N? Guess an estimate of the order of N. 2. Other settings We can tile other regions, replacing the n × n checkerboard by a n × m rectangle, or another polyomino (connected set of squares). We say that a region is tileable by dominos if we can cover entirely the region with dominoes, without overlap. Question 4. Are all polyominoes tileable by dominoes? Question 5. Can you find necessary conditions that polyominoes have to satisfy in order to be tileable by dominos? What if we change the tiles? Try the following questions. Question 6. Can you tile a 8×8 checkerboard from which a square has been removed with triminos 1 × 3 (horizontal or vertical)? Question 7 (*). If you answered yes to the previous question, can you tell what are the only possible squares that can be removed so that the corresponding board is tileable? Date: February 14th 2012; Instructor: Adrien Kassel (MSRI); for any questions, email me.
    [Show full text]
  • Treb All De Fide Gra U
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC Grau en Matematiques` T´ıtol:Tilings and the Aztec Diamond Theorem Autor: David Pardo Simon´ Director: Anna de Mier Departament: Mathematics Any academic:` 2015-2016 TREBALL DE FI DE GRAU Facultat de Matemàtiques i Estadística David Pardo 2 Tilings and the Aztec Diamond Theorem A dissertation submitted to the Polytechnic University of Catalonia in accordance with the requirements of the Bachelor's degree in Mathematics in the School of Mathematics and Statistics. David Pardo Sim´on Supervised by Dr. Anna de Mier School of Mathematics and Statistics June 28, 2016 Abstract Tilings over the plane R2 are analysed in this work, making a special focus on the Aztec Diamond Theorem. A review of the most relevant results about monohedral tilings is made to continue later by introducing domino tilings over subsets of R2. Based on previous work made by other mathematicians, a proof of the Aztec Dia- mond Theorem is presented in full detail by completing the description of a bijection that was not made explicit in the original work. MSC2010: 05B45, 52C20, 05A19. iii Contents 1 Tilings and basic notions1 1.1 Monohedral tilings............................3 1.2 The case of the heptiamonds.......................8 1.2.1 Domino Tilings.......................... 13 2 The Aztec Diamond Theorem 15 2.1 Schr¨odernumbers and Hankel matrices................. 16 2.2 Bijection between tilings and paths................... 19 2.3 Hankel matrices and n-tuples of Schr¨oderpaths............ 27 v Chapter 1 Tilings and basic notions The history of tilings and patterns goes back thousands of years in time.
    [Show full text]
  • Multiple Periodic Solutions and Fractal Attractors of Differential Equations with N-Valued Impulses
    mathematics Article Multiple Periodic Solutions and Fractal Attractors of Differential Equations with n-Valued Impulses Jan Andres Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic; [email protected] Received: 10 September 2020; Accepted: 30 September 2020; Published: 3 October 2020 Abstract: Ordinary differential equations with n-valued impulses are examined via the associated Poincaré translation operators from three perspectives: (i) the lower estimate of the number of periodic solutions on the compact subsets of Euclidean spaces and, in particular, on tori; (ii) weakly locally stable (i.e., non-ejective in the sense of Browder) invariant sets; (iii) fractal attractors determined implicitly by the generating vector fields, jointly with Devaney’s chaos on these attractors of the related shift dynamical systems. For (i), the multiplicity criteria can be effectively expressed in terms of the Nielsen numbers of the impulsive maps. For (ii) and (iii), the invariant sets and attractors can be obtained as the fixed points of topologically conjugated operators to induced impulsive maps in the hyperspaces of the compact subsets of the original basic spaces, endowed with the Hausdorff metric. Five illustrative examples of the main theorems are supplied about multiple periodic solutions (Examples 1–3) and fractal attractors (Examples 4 and 5). Keywords: impulsive differential equations; n-valued maps; Hutchinson-Barnsley operators; multiple periodic solutions; topological fractals; Devaney’s chaos on attractors; Poincaré operators; Nielsen number MSC: 28A20; 34B37; 34C28; Secondary 34C25; 37C25; 58C06 1. Introduction The theory of impulsive differential equations and inclusions has been systematically developed (see e.g., the monographs [1–4], and the references therein), among other things, especially because of many practical applications (see e.g., References [1,4–11]).
    [Show full text]
  • Arxiv:1812.04689V1 [Math.DS] 11 Dec 2018 Fasltigipisteeitneo W Oitos Into Foliations, Two Years
    FOLIATIONS AND CONJUGACY, II: THE MENDES CONJECTURE FOR TIME-ONE MAPS OF FLOWS JORGE GROISMAN AND ZBIGNIEW NITECKI Abstract. A diffeomorphism f: R2 →R2 in the plane is Anosov if it has a hyperbolic splitting at every point of the plane. The two known topo- logical conjugacy classes of such diffeomorphisms are linear hyperbolic automorphisms and translations (the existence of Anosov structures for plane translations was originally shown by W. White). P. Mendes con- jectured that these are the only topological conjugacy classes for Anosov diffeomorphisms in the plane. We prove that this claim holds when the Anosov diffeomorphism is the time-one map of a flow, via a theorem about foliations invariant under a time one map. 1. Introduction A diffeomorphism f: M →M of a compact manifold M is called Anosov if it has a global hyperbolic splitting of the tangent bundle. Such diffeomor- phisms have been studied extensively in the past fifty years. The existence of a splitting implies the existence of two foliations, into stable (resp. unsta- ble) manifolds, preserved by the diffeomorphism, such that the map shrinks distances along the stable leaves, while its inverse does so for the unstable ones. Anosov diffeomorphisms of compact manifolds have strong recurrence properties. The existence of an Anosov structure when M is compact is independent of the Riemann metric used to define it, and the foliations are invariants of topological conjugacy. By contrast, an Anosov structure on a non-compact manifold is highly dependent on the Riemann metric, and the recurrence arXiv:1812.04689v1 [math.DS] 11 Dec 2018 properties observed in the compact case do not hold in general.
    [Show full text]
  • Quasiconformal Homeomorphisms in Dynamics, Topology, and Geometry
    Proceedings of the International Congress of Mathematicians Berkeley, California, USA, 1986 Quasiconformal Homeomorphisms in Dynamics, Topology, and Geometry DENNIS SULLIVAN Dedicated to R. H. Bing This paper has four parts. Each part involves quasiconformal homeomor­ phisms. These can be defined between arbitrary metric spaces: <p: X —* Y is Ä'-quasiconformal (or K qc) if zjf \ _ r SUP 1^0*0 ~ Piv) wnere \x - y\ = r and x is fixed r_>o inf \<p(x) — <p(y)\ where \x — y\ = r and x is fixed is at most K where | | means distance. Between open sets in Euclidean space, H(x) < K implies <p has many interesting analytic properties. (See Gehring's lecture at this congress.) In the first part we discuss Feigenbaum's numerical discoveries in one-dimen­ sional iteration problems. Quasiconformal conjugacies can be used to define a useful coordinate independent distance between real analytic dynamical systems which is decreased by Feigenbaum's renormalization operator. In the second part we discuss de Rham, Atiyah-Singer, and Yang-Mills the­ ory in its foundational aspect on quasiconformal manifolds. The discussion (which is joint work with Simon Donaldson) connects with Donaldson's work and Freedman's work to complete a nice picture in the structure of manifolds— each topological manifold has an essentially unique quasiconformal structure in all dimensions—except four (Sullivan [21]). In dimension 4 both parts of the statement are false (Donaldson and Sullivan [3]). In the third part we discuss the C-analytic classification of expanding analytic transformations near fractal invariant sets. The infinite dimensional Teichmüller ^spare-ofnsuch=systemrìs^embedded=in^ for the transformation on the fractal.
    [Show full text]
  • [Math.CO] 25 Jan 2005 Eirshlra H A/Akct Mathematics City IAS/Park As the Institute
    Tilings∗ Federico Ardila † Richard P. Stanley‡ 1 Introduction. 4 3 6 Consider the following puzzle. The goal is to 5 2 cover the region 1 7 For that reason, even though this is an amusing puzzle, it is not very intriguing mathematically. This is, in any case, an example of a tiling problem. A tiling problem asks us to cover a using the following seven tiles. given region using a given set of tiles, com- pletely and without any overlap. Such a cov- ering is called a tiling. Of course, we will fo- 1 2 3 4 cus our attention on specific regions and tiles which give rise to interesting mathematical problems. 6 7 5 Given a region and a set of tiles, there are many different questions we can ask. Some The region must be covered entirely with- of the questions that we will address are the out any overlap. It is allowed to shift and following: arXiv:math/0501170v3 [math.CO] 25 Jan 2005 rotate the seven pieces in any way, but each Is there a tiling? piece must be used exactly once. • One could start by observing that some How many tilings are there? • of the pieces fit nicely in certain parts of the About how many tilings are there? region. However, the solution can really only • be found through trial and error. Is a tiling easy to find? • ∗ This paper is based on the second author’s Clay Is it easy to prove that a tiling does not Public Lecture at the IAS/Park City Mathematics • Institute in July, 2004.
    [Show full text]
  • Perfect Sampling Algorithm for Schur Processes Dan Betea, Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, Mirjana Vuletić
    Perfect sampling algorithm for Schur processes Dan Betea, Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, Mirjana Vuletić To cite this version: Dan Betea, Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, et al.. Perfect sampling algorithm for Schur processes. Markov Processes And Related Fields, Polymat Publishing Company, 2018, 24 (3), pp.381-418. hal-01023784 HAL Id: hal-01023784 https://hal.archives-ouvertes.fr/hal-01023784 Submitted on 5 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Perfect sampling algorithms for Schur processes D. Betea∗ C. Boutillier∗ J. Bouttiery G. Chapuyz S. Corteelz M. Vuleti´cx August 31, 2018 Abstract We describe random generation algorithms for a large class of random combinatorial objects called Schur processes, which are sequences of random (integer) partitions subject to certain interlacing con- ditions. This class contains several fundamental combinatorial objects as special cases, such as plane partitions, tilings of Aztec diamonds, pyramid partitions and more generally steep domino tilings of the plane. Our algorithm, which is of polynomial complexity, is both exact (i.e. the output follows exactly the target probability law, which is either Boltzmann or uniform in our case), and entropy optimal (i.e.
    [Show full text]
  • Mostly Conjugate: Relating Dynamical Systems — Beyond Homeomorphism
    Mostly Conjugate: Relating Dynamical Systems — Beyond Homeomorphism Joseph D. Skufca1, ∗ and Erik M. Bollt1, † 1 Department of Mathematics, Clarkson University, Potsdam, New York (Dated: April 24, 2006) A centerpiece of Dynamical Systems is comparison by an equivalence relationship called topolog- ical conjugacy. Current state of the field is that, generally, there is no easy way to determine if two systems are conjugate or to explicitly find the conjugacy between systems that are known to be equivalent. We present a new and highly generalizable method to produce conjugacy functions based on a functional fixed point iteration scheme. In specific cases, we prove that although the conjugacy function is strictly increasing, it is a.e. differentiable, with derivative 0 everywhere that it exists — a Lebesgue singular function. When applied to non-conjugate dynamical systems, we show that the fixed point iteration scheme still has a limit point, which is a function we now call a “commuter” — a non-homeomorphic change of coordinates translating between dissimilar systems. This translation is natural to the concepts of dynamical systems in that it matches the systems within the language of their orbit structures. We introduce methods to compare nonequivalent sys- tems by quantifying how much the commuter functions fails to be a homeomorphism, an approach that gives more respect to the dynamics than the traditional comparisons based on normed linear spaces, such as L2. Our discussion includes fundamental issues as a principled understanding of the degree to which a “toy model” might be representative of a more complicated system, an important concept to clarify since it is often used loosely throughout science.
    [Show full text]
  • Fractal Geometry and Dynamics
    FRACTAL GEOMETRY AND DYNAMICS MOOR XU NOTES FROM A COURSE BY YAKOV PESIN Abstract. These notes were taken from a mini-course at the 2010 REU at the Pennsylvania State University. The course was taught for two weeks from July 19 to July 30; there were eight two-hour lectures and two problem sessions. The lectures were given by Yakov Pesin and the problem sessions were given by Vaughn Cli- menhaga. Contents 1. Introduction 1 2. Introduction to Fractal Geometry 2 3. Introduction to Dynamical Systems 5 4. More on Dynamical Systems 7 5. Hausdorff Dimension 12 6. Box Dimensions 15 7. Further Ideas in Dynamical Systems 21 8. Computing Dimension 25 9. Two Dimensional Dynamical Systems 28 10. Nonlinear Two Dimensional Systems 35 11. Homework 1 46 12. Homework 2 53 1. Introduction This course is about fractal geometry and dynamical systems. These areas intersect, and this is what we are interested in. We won't be able to go deep. It is new and rapidly developing.1 Fractal geometry itself goes back to Caratheodory, Hausdorff, and Besicovich. They can be called fathers of this area, working around the year 1900. For dynamical systems, the area goes back to Poincare, and many people have contributed to this area. There are so many 119 June 2010 1 2 FRACTAL GEOMETRY AND DYNAMICS people that it would take a whole lecture to list. The intersection of the two areas originated first with the work of Mandelbrot. He was the first one who advertised this to non-mathematicians with a book called Fractal Geometry of Nature.
    [Show full text]