A Glimpse of the World of Topos Theory
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Very Short Note on Homotopy Λ-Calculus
A very short note on homotopy λ-calculus Vladimir Voevodsky September 27, 2006, October 10, 2009 The homotopy λ-calculus is a hypothetical (at the moment) type system. To some extent one may say that Hλ is an attempt to bridge the gap between the "classical" type systems such as the ones of PVS or HOL Light and polymorphic type systems such as the one of Coq. The main problem with the polymorphic type systems lies in the properties of the equality types. As soon as we have a universe U of which P rop is a member we are in trouble. In the Boolean case, P rop has an automorphism of order 2 (the negation) and it is clear that this automorphism should correspond to a member of Eq(U; P rop; P rop). However, as far as I understand there is no way to produce such a member in, say, Coq. A related problem looks as follows. Suppose T;T 0 : U are two type expressions and there exists an isomorphism T ! T 0 (the later notion of course requires the notion of equality for members of T and T 0). Clearly, any proposition which is true for T should be true for T 0 i.e. for all functions P : U ! P rop one should have P (T ) = P (T 0). Again as far as I understand this can not be proved in Coq no matter what notion of equality for members of T and T 0 we use. Here is the general picture as I understand it at the moment. -
Topological Properties of the Real Numbers Object in a Topos Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 17, No 3 (1976), P
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES LAWRENCE NEFF STOUT Topological properties of the real numbers object in a topos Cahiers de topologie et géométrie différentielle catégoriques, tome 17, no 3 (1976), p. 295-326 <http://www.numdam.org/item?id=CTGDC_1976__17_3_295_0> © Andrée C. Ehresmann et les auteurs, 1976, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE Vol. XVIl-3 (1976) ET GEOMETRIE DIFFERENTIELLE TOPOLOGICAL PROPERTIES OF THE REAL NUMBERS OBJECT IN A TOPOS * by Lawrence Neff STOUT In his presentation at the categories Session at Oberwolfach in 1973, Tierney defined the continuous reals for a topos with a natural numbers ob- ject (he called them Dedekind reals). Mulvey studied the algebraic proper- ties of the object of continuous reals and proved that the construction gave the sheaf of germs of continuous functions from X to R in the spatial topos Sh(X). This paper presents the results of the study of the topological prop- erties of the continuous reals with an emphasis on similarities with classi- cal mathematics and applications to familiar concepts rephrased in topos terms. The notations used for the constructions in the internal logic of a topos conform to that of Osius [11]. -
The Petit Topos of Globular Sets
Journal of Pure and Applied Algebra 154 (2000) 299–315 www.elsevier.com/locate/jpaa View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The petit topos of globular sets Ross Street ∗ Macquarie University, N. S. W. 2109, Australia Communicated by M. Tierney Dedicated to Bill Lawvere Abstract There are now several deÿnitions of weak !-category [1,2,5,19]. What is pleasing is that they are not achieved by ad hoc combinatorics. In particular, the theory of higher operads which underlies Michael Batanin’s deÿnition is based on globular sets. The purpose of this paper is to show that many of the concepts of [2] (also see [17]) arise in the natural development of category theory internal to the petit 1 topos Glob of globular sets. For example, higher spans turn out to be internal sets, and, in a sense, trees turn out to be internal natural numbers. c 2000 Elsevier Science B.V. All rights reserved. MSC: 18D05 1. Globular objects and !-categories A globular set is an inÿnite-dimensional graph. To formalize this, let G denote the category whose objects are natural numbers and whose only non-identity arrows are m;m : m → n for all m¡n ∗ Tel.: +61-2-9850-8921; fax: 61-2-9850-8114. E-mail address: [email protected] (R. Street). 1 The distinction between toposes that are “space like” (or petit) and those which are “category-of-space like” (or gros) was investigated by Lawvere [9,10]. The gros topos of re exive globular sets has been studied extensively by Michael Roy [12]. -
Geometric Modality and Weak Exponentials
Geometric Modality and Weak Exponentials Amirhossein Akbar Tabatabai ∗ Institute of Mathematics Academy of Sciences of the Czech Republic [email protected] Abstract The intuitionistic implication and hence the notion of function space in constructive disciplines is both non-geometric and impred- icative. In this paper we try to solve both of these problems by first introducing weak exponential objects as a formalization for predica- tive function spaces and then by proposing modal spaces as a way to introduce a natural family of geometric predicative implications based on the interplay between the concepts of time and space. This combination then leads to a brand new family of modal propositional logics with predicative implications and then to topological semantics for these logics and some weak modal and sub-intuitionistic logics, as well. Finally, we will lift these notions and the corresponding relations to a higher and more structured level of modal topoi and modal type theory. 1 Introduction Intuitionistic logic appears in different many branches of mathematics with arXiv:1711.01736v1 [math.LO] 6 Nov 2017 many different and interesting incarnations. In geometrical world it plays the role of the language of a topological space via topological semantics and in a higher and more structured level, it becomes the internal logic of any elementary topoi. On the other hand and in the theory of computations, the intuitionistic logic shows its computational aspects as a method to describe the behavior of computations using realizability interpretations and in cate- gory theory it becomes the syntax of the very central class of Cartesian closed categories. -
Basic Category Theory and Topos Theory
Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics Utrecht University The Netherlands Revised, February 2016 Contents 1 Categories and Functors 1 1.1 Definitions and examples . 1 1.2 Some special objects and arrows . 5 2 Natural transformations 8 2.1 The Yoneda lemma . 8 2.2 Examples of natural transformations . 11 2.3 Equivalence of categories; an example . 13 3 (Co)cones and (Co)limits 16 3.1 Limits . 16 3.2 Limits by products and equalizers . 23 3.3 Complete Categories . 24 3.4 Colimits . 25 4 A little piece of categorical logic 28 4.1 Regular categories and subobjects . 28 4.2 The logic of regular categories . 34 4.3 The language L(C) and theory T (C) associated to a regular cat- egory C ................................ 39 4.4 The category C(T ) associated to a theory T : Completeness Theorem 41 4.5 Example of a regular category . 44 5 Adjunctions 47 5.1 Adjoint functors . 47 5.2 Expressing (co)completeness by existence of adjoints; preserva- tion of (co)limits by adjoint functors . 52 6 Monads and Algebras 56 6.1 Algebras for a monad . 57 6.2 T -Algebras at least as complete as D . 61 6.3 The Kleisli category of a monad . 62 7 Cartesian closed categories and the λ-calculus 64 7.1 Cartesian closed categories (ccc's); examples and basic facts . 64 7.2 Typed λ-calculus and cartesian closed categories . 68 7.3 Representation of primitive recursive functions in ccc's with nat- ural numbers object . -
The Sierpinski Object in the Scott Realizability Topos
Logical Methods in Computer Science Volume 16, Issue 3, 2020, pp. 12:1–12:16 Submitted May 01, 2019 https://lmcs.episciences.org/ Published Aug. 20, 2020 THE SIERPINSKI OBJECT IN THE SCOTT REALIZABILITY TOPOS TOM DE JONG AND JAAP VAN OOSTEN School of Computer Science, University of Birmingham e-mail address: [email protected] Department of Mathematics, Utrecht University e-mail address: [email protected] Abstract. We study the Sierpinski object Σ in the realizability topos based on Scott's graph model of the λ-calculus. Our starting observation is that the object of realizers in this topos is the exponential ΣN , where N is the natural numbers object. We define order-discrete objects by orthogonality to Σ. We show that the order-discrete objects form a reflective subcategory of the topos, and that many fundamental objects in higher-type arithmetic are order-discrete. Building on work by Lietz, we give some new results regarding the internal logic of the topos. Then we consider Σ as a dominance; we explicitly construct the lift functor and characterize Σ-subobjects. Contrary to our expectations the dominance Σ is not closed under unions. In the last section we build a model for homotopy theory, where the order-discrete objects are exactly those objects which only have constant paths. 1. Introduction In this paper, we aim to revive interest in what we call the Sierpinski object in the Scott realizability topos. We show that it is of fundamental importance in studying the subcategory of order-discrete objects (section 3), arithmetic in the topos (section 4), the Sierpinski object as a dominance (section 5) and a notion of homotopy based on it (section 6). -
On the Constructive Elementary Theory of the Category of Sets
On the Constructive Elementary Theory of the Category of Sets Aruchchunan Surendran Ludwig-Maximilians-University Supervision: Dr. I. Petrakis August 14, 2019 1 Contents 1 Introduction 2 2 Elements of basic Category Theory 3 2.1 The category Set ................................3 2.2 Basic definitions . .4 2.3 Basic properties of Set .............................6 2.3.1 Epis and monos . .6 2.3.2 Elements as arrows . .8 2.3.3 Binary relations as monic arrows . .9 2.3.4 Coequalizers as quotient sets . 10 2.4 Membership of elements . 12 2.5 Partial and total arrows . 14 2.6 Cartesian closed categories (CCC) . 16 2.6.1 Products of objects . 16 2.6.2 Application: λ-Calculus . 18 2.6.3 Exponentials . 21 3 Constructive Elementary Theory of the Category of Sets (CETCS) 26 3.1 Constructivism . 26 3.2 Axioms of ETCS . 27 3.3 Axioms of CETCS . 28 3.4 Π-Axiom . 29 3.5 Set-theoretic consequences . 32 3.5.1 Quotient Sets . 32 3.5.2 Induction . 34 3.5.3 Constructing new relations with logical operations . 35 3.6 Correspondence to standard categorical formulations . 42 1 1 Introduction The Elementary Theory of the Category of Sets (ETCS) was first introduced by William Lawvere in [4] in 1964 to give an axiomatization of sets. The goal of this thesis is to describe the Constructive Elementary Theory of the Category of Sets (CETCS), following its presentation by Erik Palmgren in [2]. In chapter 2. we discuss basic elements of Category Theory. Category Theory was first formulated in the year 1945 by Eilenberg and Mac Lane in their paper \General theory of natural equivalences" and is the study of generalized functions, called arrows, in an abstract algebra. -
Bernays–G Odel Type Theory
Journal of Pure and Applied Algebra 178 (2003) 1–23 www.elsevier.com/locate/jpaa Bernays–G&odel type theory Carsten Butz∗ Department of Mathematics and Statistics, Burnside Hall, McGill University, 805 Sherbrooke Street West, Montreal, Que., Canada H3A 2K6 Received 21 November 1999; received in revised form 3 April 2001 Communicated by P. Johnstone Dedicated to Saunders Mac Lane, on the occasion of his 90th birthday Abstract We study the type-theoretical analogue of Bernays–G&odel set-theory and its models in cate- gories. We introduce the notion of small structure on a category, and if small structure satisÿes certain axioms we can think of the underlying category as a category of classes. Our axioms imply the existence of a co-variant powerset monad on the underlying category of classes, which sends a class to the class of its small subclasses. Simple ÿxed points of this and related monads are shown to be models of intuitionistic Zermelo–Fraenkel set-theory (IZF). c 2002 Published by Elsevier Science B.V. MSC: Primary: 03E70; secondary: 03C90; 03F55 0. Introduction The foundations of mathematics accepted by most working mathematicians is Zermelo–Fraenkel set-theory (ZF). The basic notion is that of a set, the abstract model of a collection. There are other closely related systems, like for example that of Bernays and G&odel (BG) based on the distinction between sets and classes: every set is a class, but the only elements of classes are sets. The theory (BG) axiomatizes which classes behave well, that is, are sets. In fact, the philosophy of Bernays–G&odel set-theory is that small classes behave well. -
The Category of Sheaves Is a Topos Part 2
The category of sheaves is a topos part 2 Patrick Elliott Recall from the last talk that for a small category C, the category PSh(C) of presheaves on C is an elementary topos. Explicitly, PSh(C) has the following structure: • Given two presheaves F and G on C, the exponential GF is the presheaf defined on objects C 2 obC by F G (C) = Hom(hC × F; G); where hC = Hom(−;C) is the representable functor associated to C, and the product × is defined object-wise. • Writing 1 for the constant presheaf of the one object set, the subobject classifier true : 1 ! Ω in PSh(C) is defined on objects by Ω(C) := fS j S is a sieve on C in Cg; and trueC : ∗ ! Ω(C) sends ∗ to the maximal sieve t(C). The goal of this talk is to refine this structure to show that the category Shτ (C) of sheaves on a site (C; τ) is also an elementary topos. To do this we must make use of the sheafification functor defined at the end of the first talk: Theorem 0.1. The inclusion functor i : Shτ (C) ! PSh(C) has a left adjoint a : PSh(C) ! Shτ (C); called sheafification, or the associated sheaf functor. Moreover, this functor commutes with finite limits. Explicitly, a(F) = (F +)+, where + F (C) := colimS2τ(C)Match(S; F); where Match(S; F) is the set of matching families for the cover S of C, and the colimit is taken over all covering sieves of C, ordered by reverse inclusion. -
Arxiv:2010.05167V1 [Cs.PL] 11 Oct 2020
A Categorical Programming Language Tatsuya Hagino arXiv:2010.05167v1 [cs.PL] 11 Oct 2020 Doctor of Philosophy University of Edinburgh 1987 Author’s current address: Tatsuya Hagino Faculty of Environment and Information Studies Keio University Endoh 5322, Fujisawa city, Kanagawa Japan 252-0882 E-mail: [email protected] Abstract A theory of data types and a programming language based on category theory are presented. Data types play a crucial role in programming. They enable us to write programs easily and elegantly. Various programming languages have been developed, each of which may use different kinds of data types. Therefore, it becomes important to organize data types systematically so that we can understand the relationship between one data type and another and investigate future directions which lead us to discover exciting new data types. There have been several approaches to systematically organize data types: alge- braic specification methods using algebras, domain theory using complete par- tially ordered sets and type theory using the connection between logics and data types. Here, we use category theory. Category theory has proved to be remark- ably good at revealing the nature of mathematical objects, and we use it to understand the true nature of data types in programming. We organize data types under a new categorical notion of F,G-dialgebras which is an extension of the notion of adjunctions as well as that of T -algebras. T - algebras are also used in domain theory, but while domain theory needs some primitive data types, like products, to start with, we do not need any. -
Categorification and (Virtual) Knots
Categorification and (virtual) knots Daniel Tubbenhauer If you really want to understand something - (try to) categorify it! 13.02.2013 = = Daniel Tubbenhauer Categorification and (virtual) knots 13.02.2013 1 / 38 1 Categorification What is categorification? Two examples The ladder of categories 2 What we want to categorify Virtual knots and links The virtual Jones polynomial The virtual sln polynomial 3 The categorification The algebraic perspective The categorical perspective More to do! Daniel Tubbenhauer Categorification and (virtual) knots 13.02.2013 2 / 38 What is categorification? Categorification is a scary word, but it refers to a very simple idea and is a huge business nowadays. If I had to explain the idea in one sentence, then I would choose Some facts can be best explained using a categorical language. Do you need more details? Categorification can be easily explained by two basic examples - the categorification of the natural numbers through the category of finite sets FinSet and the categorification of the Betti numbers through homology groups. Let us take a look on these two examples in more detail. Daniel Tubbenhauer Categorification and (virtual) knots 13.02.2013 3 / 38 Finite Combinatorics and counting Let us consider the category FinSet - objects are finite sets and morphisms are maps between these sets. The set of isomorphism classes of its objects are the natural numbers N with 0. This process is the inverse of categorification, called decategorification- the spirit should always be that decategorification should be simple while categorification could be hard. We note the following observations. Daniel Tubbenhauer Categorification and (virtual) knots 13.02.2013 4 / 38 Finite Combinatorics and counting Much information is lost, i.e. -
Categories for Me, and You?
Categories for Me, and You?∗ Cl´ement Aubert† October 16, 2019 arXiv:1910.05172v2 [math.CT] 15 Oct 2019 ∗The title echoes the notes of Olivier Laurent, available at https://perso.ens-lyon.fr/olivier.laurent/categories.pdf. †e-mail: [email protected]. Some of this work was done when I was sup- ported by the NSF grant 1420175 and collaborating with Patricia Johann, http://www.cs.appstate.edu/~johannp/. This result is folklore, which is a technical term for a method of publication in category theory. It means that someone sketched it on the back of an envelope, mimeographed it (whatever that means) and showed it to three people in a seminar in Chicago in 1973, except that the only evidence that we have of these events is a comment that was overheard in another seminar at Columbia in 1976. Nevertheless, if some younger person is so presumptuous as to write out a proper proof and attempt to publish it, they will get shot down in flames. Paul Taylor 2 Contents 1. On Categories, Functors and Natural Transformations 6 1.1. BasicDefinitions ................................ 6 1.2. Properties of Morphisms, Objects, Functors, and Categories . .. .. 7 1.3. Constructions over Categories and Functors . ......... 15 2. On Fibrations 18 3. On Slice Categories 21 3.1. PreliminariesonSlices . .... 21 3.2. CartesianStructure. 24 4. On Monads, Kleisli Category and Eilenberg–Moore Category 29 4.1. Monads ...................................... 29 4.2. KleisliCategories . .. .. .. .. .. .. .. .. 30 4.3. Eilenberg–Moore Categories . ..... 31 Bibliography 41 A. Cheat Sheets 43 A.1. CartesianStructure. 43 A.2.MonadicStructure ............................... 44 3 Disclaimers Purpose Those notes are an expansion of a document whose first purpose was to remind myself the following two equations:1 Mono = injective = faithful Epi = surjective = full I am not an expert in category theory, and those notes should not be trusted2.