Aspects of Categorical Algebra in Initialstructure Categories Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 15, No 4 (1974), P
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES MANFRED BERND WISCHNEWSKY Aspects of categorical algebra in initialstructure categories Cahiers de topologie et géométrie différentielle catégoriques, tome 15, no 4 (1974), p. 419-444 <http://www.numdam.org/item?id=CTGDC_1974__15_4_419_0> © Andrée C. Ehresmann et les auteurs, 1974, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHI ERS DE TOPOLOGIE Vol. XV-4 ET GEOMETRIE DIFFERENTIELLE ASPECTS OF CATEGORICAL ALGEBRA IN INITIALSTRUCTURE CATEGORIES* by Manfred Bernd WISCHNEWSKY Initialstruc ture functors F: K - L, the categorical generalization of BOURBAKI’s notion of an « initial objects [3], equivalent to Kenni- son’s pullback stripping functors, which Wyler calls Top-functors, reflect almost all categorical properties from the base category L to the initial structure category K briefly called INS-category [1,4,5,6,8,11,12,13, 13,16,18,19,20,21,22,37]. So for instance if L is complete, cocom- plete, wellpowered, cowellpowered, if L has generators, cogenerators, proj ectives, injectives, or ( coequalizer, mono )-bicategory structures ( ==> homomorphism theorem ) , then the same is valid for any INS-category over L . Finally all important theorems of equationally defined universal alge- bra ( e.g. existence of free K-algebras, adjointness of algebraic functors..
[Show full text]