SHORT INTRODUCTION TO ENRICHED CATEGORIES FRANCIS BORCEUX and ISAR STUBBE Departement de Mathematique, Universite Catholique de Louvain, 2 Ch. du Cyclotron, B-1348 Louvain-la-Neuve, Belgium. e-mail:
[email protected] —
[email protected] This text aims to be a short introduction to some of the basic notions in ordinary and enriched category theory. With reasonable detail but always in a compact fashion, we have brought together in the rst part of this paper the denitions and basic properties of such notions as limit and colimit constructions in a category, adjoint functors between categories, equivalences and monads. In the second part we pass on to enriched category theory: it is explained how one can “replace” the category of sets and mappings, which plays a crucial role in ordinary category theory, by a more general symmetric monoidal closed category, and how most results of ordinary category theory can be translated to this more general setting. For a lack of space we had to omit detailed proofs, but instead we have included lots of examples which we hope will be helpful. In any case, the interested reader will nd his way to the references, given at the end of the paper. 1. Ordinary categories When working with vector spaces over a eld K, one proves such theorems as: for all vector spaces there exists a base; every vector space V is canonically included in its bidual V ; every linear map between nite dimensional based vector spaces can be represented as a matrix; and so on. But where do the universal quantiers take their value? What precisely does “canonical” mean? How can we formally “compare” vector spaces with matrices? What is so special about vector spaces that they can be based? An answer to these questions, and many more, can be formulated in a very precise way using the language of category theory.