The Roseobacter-Group Bacterium Phaeobacter As Safe Probiotic Solution for Aquaculture

Total Page:16

File Type:pdf, Size:1020Kb

The Roseobacter-Group Bacterium Phaeobacter As Safe Probiotic Solution for Aquaculture Downloaded from orbit.dtu.dk on: Oct 02, 2021 The Roseobacter-group bacterium Phaeobacter as safe probiotic solution for aquaculture Sonnenschein, Eva C.; Jimenez, Guillermo; Castex, Mathieu; Gram, Lone Published in: Applied and Environmental Microbiology Link to article, DOI: 10.1128/AEM.02581-20 Publication date: 2021 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Sonnenschein, E. C., Jimenez, G., Castex, M., & Gram, L. (2021). The Roseobacter-group bacterium Phaeobacter as safe probiotic solution for aquaculture. Applied and Environmental Microbiology, 87(5), [e02581- 20]. https://doi.org/10.1128/AEM.02581-20 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 The Roseobacter-group bacterium Phaeobacter as safe probiotic solution for aquaculture 2 Eva C. Sonnenschein1*, Guillermo Jimenez2, Mathieu Castex2, Lone Gram1 3 1 Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts 4 Plads Bldg. 221, 2800 Kgs. Lyngby, Denmark. 5 2 Lallemand SAS, Blagnac Cedex, France. 6 * corresponding author e-mail: [email protected] 7 Abstract 8 Phaeobacter inhibens has been assessed as a probiotic bacterium for application in aquaculture. 9 Studies addressing the efficacy and safety indicate that P. inhibens maintains it antagonistic 10 activity against pathogenic vibrios in aquaculture live cultures (live feed and fish egg/larvae), 11 while having no or a positive effect on the host organisms, and a minor impact on the host 12 microbiomes. While producing antibacterial and algicidal compounds, no study has so far found 13 a virulent phenotype of P. inhibens cells against higher organisms. Additionally, an in silico 14 search for antibiotic resistance genes using published genomes of representative strains did not 15 raise concern regarding the risk for antimicrobial resistance. P. inhibens occurs naturally in 16 aquaculture systems supporting its safe usage in this environment. Concluding, at the current 17 state of knowledge, P. inhibens is a “safe-to-use” organism. 18 19 INTRODUCTION 20 Phaeobacter inhibens is a marine alphaproteobacterium with potential for application as a 21 probiotic bacterium in marine aquaculture systems. P. inhibens is a representative of the 22 Roseobacter group that is widespread and an environmentally important marine group of 1 23 bacteria. P. inhibens serves as a heterotrophic marine model organism to understand fundamental 24 processes such as adaptation to an attached lifestyle and interactions with higher organisms (1). 25 Its probiotic activity against fish pathogenic bacteria is primarily due to the production of the 26 antibacterial compound tropodithietic acid (TDA) (2). TDA is bacteriocidal to both fish and 27 human bacterial pathogens. The applicability of P. inhibens as a probiotic bacterium in marine 28 aquaculture has been assessed in several studies and has recently been compared to that of other 29 probiotics (3). The bacterium is naturally present in aquaculture systems and it is able to inhibit 30 fish pathogenic bacteria. Most studies have been performed on its activity against economically 31 important Vibrio spp. such as V. anguillarum and V. vulnificus, but it also inhibits other fish 32 pathogens such as Aeromonas and Tenacibaculum spp. (4–7). This is seen both in laboratory 33 based agar-assays, and in live feed used in marine larval rearing. The ability to inhibit fish 34 pathogenic Vibrio has been demonstrated in both axenic and non-axenic live feed systems (6, 8– 35 11). Also, in model challenge trials, P. inhibens can decrease the mortality of fish larvae 36 challenged with pathogenic Vibrio (10). 37 Farming of fish and shellfish is of great importance to supply protein for food and feed for the 38 growing world population. Catches from wild fish have stagnated (or even declined) since the 39 mid 1980s and the increase in fish production comes almost exclusively from aquaculture (12). In 40 intense animal rearing systems, infectious agents such as pathogenic bacteria spread rapidly and 41 one particularly sensitive stage is the larval development. Fish larvae do not have a developed 42 immune system and vaccination can therefore not be used as disease preventive measure (13). 43 During larval rearing, opportunistic and pathogenic bacteria are easily introduced via live feed 44 and infections can spread rapidly, eradicating the complete larval batch (14). Antibiotics have 45 been used to control these infections, however due to the risk of bacteria developing and 46 spreading antibiotic resistance, other measures must be found. One strategy for limiting the 2 47 proliferation of bacterial pathogens in live feed and fish larvae is the use of probiotic bacteria 48 (15). Probiotic microorganisms have been defined by FAO and WHO (16) as “live 49 microorganisms which when administered in adequate amounts confer a health benefit on the 50 host”. This approach presents an environmentally sustainable and economically viable solution to 51 counteract the economic loss caused by bacterial pathogens in aquaculture systems. 52 53 P. inhibens has been shown to antagonize many fish pathogenic bacteria such as Vibrio spp. (6, 54 7). In the laboratory, resistance to the effector molecule, TDA, could not be selected for in 55 pathogenic bacteria, likely because the molecule as an antiporter destabilizes the bacterial proton 56 motive force (17, 18). Interestingly, despite this broad range effect, addition of the bacterium to 57 live feed only causes minor changes in the microbiome of the live feed (19). A search in the 58 whole genome sequence of P. inhibens DSM 17395 for the presence of known antimicrobial 59 resistance (AMR) genes to antimicrobials relevant to their use in humans and animals was 60 performed, as indicated in the European Food Safety Authority (EFSA) Guidance on the 61 characterization of microorganisms used as feed additives or as production organisms (EFSA, 62 2018). For this purpose, a comparison against up-to-date databases (e.g. ARG-ANNOT, CARD 63 and ResFinder) was performed. This article provides an overview of the genetics and physiology 64 of P. inhibens and summarizes the current information on the safety of P. inhibens for its use as a 65 probiotic in aquaculture. 66 67 TAXONOMIC CLASSIFICATION, PHENOTYPE AND GENETIC DIVERSITY OF P. 68 INHIBENS 69 The obligate marine genus Phaeobacter belongs to the Roseobacter group, the marine subgroup 70 within the family Rhodobacteraceae (20). Due to the ease at which Rhodobacteraceae can be 3 71 cultured and the prevalence of this family in marine ecosystems, today, 181 different genera have 72 been reported (according to NCBI taxonomy); however, over the recent years, there has also been 73 several drastic reclassifications at genus and species level (21, 22). Currently, the Phaeobacter 74 genus comprises six species: P. gallaeciencis (21), P. inhibens (21), P. marinintestinus (23), P. 75 piscinae (24), P. porticola (25), and P. italicus (26) (Fig. 1). However the phylogenetic diversity 76 within the genus is low (22) and species level distinction based on 16S rRNA gene sequences is 77 difficult (27). In particular, differentiating between P. inhibens, P. gallaeciensis and P. piscinae 78 is challenging (24). When comparing the whole nucleotide data per genome using the average 79 nucleotide identity, P. piscinae (89.7%) and P. gallaeciensis (89.3%) are closest related to P. 80 inhibens (Fig. 1). P. porticola (84.5%) and P. italicus (78.6%) are less similar to P. inhibens. 81 82 The species Phaeobacter inhibens with the type strain DSM 16374T (also named LMG 22475T or 83 T5T) was described in 2006 as a reclassification of the species Roseobacter gallaeciensis (21). 84 Additional well-characterized strains include DSM 17395 (initially isolated as type strain of P. 85 gallaeciensis BS107; (28, 29)) and 2.10 (also named DSM 24588) (30). The strain DSM 17395 86 was considered identical with the strain CIP 105210 as both represented culture collection 87 deposits of the P. gallaeciensis type strain BS107T; however, further genomic analysis revealed 88 that DSM 17395 is more closely affiliated to P. inhibens T5T and represents a strain distinct from 89 CIP 105210 (29). CIP 105210T (= DSM 26640T = BS107T) is now the type strain of P. 90 gallaeciensis. In many studies, the descriptions of the source of strain BS107T is unclear and 91 accordingly, the biological identity of the strain described in these studies remains unknown. 92 93 Extensive physiological data on P. inhibens are available (21). P. inhibens clearly differentiates 94 morphologically from other marine bacteria due to the formation of brown colonies on nutrient 4 95 rich iron-containing medium due to precipitation of a brown TDA-iron complex (31). In liquid 96 medium, cells are motile, but tend to form star-shaped aggregates, also called rosettes (32). Based 97 on the currently available 22 genomes (Table 1), genomes of P. inhibens strains have an average 98 size of 4.36 Mb (4.02 – 4.84 Mb) and an average GC content of 59.8% (59.5 – 60.0%). The 99 nucleotide information is structured in one chromosome and several plasmids (3 to 10 plasmids) 100 including few very large (up to 262 kb) plasmids, or chromids. The genomes encode on average 101 4128 genes (3771 – 4609 genes).
Recommended publications
  • Genome-Scale Data Suggest Reclassifications in the Leisingera
    ORIGINAL RESEARCH ARTICLE published: 11 August 2014 doi: 10.3389/fmicb.2014.00416 Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Sven Breider 1†, Carmen Scheuner 2†, Peter Schumann 2, Anne Fiebig 2, Jörn Petersen 2, Silke Pradella 2, Hans-Peter Klenk 2, Thorsten Brinkhoff 1 and Markus Göker 2* 1 Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany 2 Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany Edited by: Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria) Martin G. Klotz, University of North genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. Carolina at Charlotte, USA We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF Reviewed by: mass-spectrometry analysis and a re-assessment of the phenotypic data from the Martin G. Klotz, University of North Carolina at Charlotte, USA literature to settle this matter, aiming at a reclassification of the two genera. Neither Aharon Oren, The Hebrew Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. University of Jerusalem, Israel Rather, smaller monophyletic assemblages emerged, which were phenotypically more *Correspondence: homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the Markus Göker, Department of type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the Microorganisms, Leibniz Institute DSMZ - German Collection of reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter Microorganisms and Cell Cultures, arcticus gen.
    [Show full text]
  • <I>Euprymna Scolopes</I>
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-10-2009 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes Brian Shawn Wong Won University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, Molecular Biology Commons, and the Other Animal Sciences Commons Recommended Citation Wong Won, Brian Shawn, "Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes" (2009). Honors Scholar Theses. 67. https://opencommons.uconn.edu/srhonors_theses/67 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes . Author: Brian Shawn Wong Won Advisor: Spencer V. Nyholm Ph.D. University of Connecticut Honors Program Date submitted: 05/11/09 1 Abstract The subject of our study is the Hawaiian bobtail squid, Euprymna scolopes , which is known for its model symbiotic relationship with the bioluminescent bacterium, Vibrio fischeri . The interactions between E. scolopes and V. fischeri provide an exemplary model of the biochemical and molecular dynamics of symbiosis since both members can be cultivated separately and V. fischeri can be genetically modified 1. However, in a laboratory setting, the mortality of embryonic E. scolopes can be a recurrent problem. In many of these fatalities, the egg cases display a pink-hued biofilm, and rosy pigmentation has also been noted in the deaths of several adult squid. To identify the microbial components of this biofilm, we cloned and sequenced the 16s ribosomal DNA gene from pink, culture-grown isolates from infected egg cases and adult tissues.
    [Show full text]
  • Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter
    GBE Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter Heike M. Freese1,*, Johannes Sikorski1, Boyke Bunk1,CarmenScheuner1, Jan P. Meier-Kolthoff1, Cathrin Spro¨er1,LoneGram2,andJo¨rgOvermann1,3 1Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany 2Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark 3Institute of Microbiology, University Braunschweig, Germany *Corresponding author: E-mail: [email protected]. Accepted: November 27, 2017 Data deposition: This project has been deposited at GenBank under the accessions CP010588 - CP010775, CP010784 - CP010791, CP010805 - CP010810, KY357362 - KY357447. Abstract The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals.
    [Show full text]
  • Isolation of Phaeobacter Sp. from Larvae of Atlantic Bonito
    microorganisms Article Isolation of Phaeobacter sp. from Larvae of Atlantic Bonito (Sarda sarda) in a Mesocosmos Unit, and Its Use for the Rearing of European Seabass Larvae (Dicentrarchus labrax L.) Pavlos Makridis 1,* , Fotini Kokou 2 , Christos Bournakas 1, Nikos Papandroulakis 3 and Elena Sarropoulou 3 1 Department of Biology, University of Patras, Rio 26504 Patras, Greece; [email protected] 2 Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University and Research, 6700AH Wageningen, The Netherlands; [email protected] 3 Biotechnology, and Aquaculture, Hellenic Center for Marine Research, Institute of Marine Biology, P.O. Box 2214, 71003 Heraklion Crete, Greece; [email protected] (N.P.); [email protected] (E.S.) * Correspondence: [email protected]; Tel.: +30-2610-969224 Abstract: The target of this study was to use indigenous probiotic bacteria in the rearing of seabass larvae. A Phaeobacter sp. strain isolated from bonito yolk-sac larvae (Sarda sarda) and identified by amplification of 16S rDNA showed in vitro inhibition against Vibrio anguillarum. This Phaeobacter sp. strain was used in the rearing of seabass larvae (Dicentrarchus labrax L.) in a large-scale trial. The survival of seabass after 60 days of rearing and the specific growth rate at the late exponential growth phase were significantly higher in the treatment receiving probiotics (p < 0.05). Microbial community richness as determined by denaturing gradient gel electrophoresis (DGGE) showed an increase in bacterial diversity with fish development. Changes associated with the administration of probiotics were observed 11 and 18 days after hatching but were not apparent after probiotic administration Citation: Makridis, P.; Kokou, F.; stopped.
    [Show full text]
  • Isolation of an Antimicrobial Compound Produced by Bacteria Associated with Reef-Building Corals
    Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals Jean-Baptiste Raina1,2,3,4,5, Dianne Tapiolas2, Cherie A. Motti2, Sylvain Foret3,6, Torsten Seemann7, Jan Tebben8,9, Bette L. Willis3,4 and David G. Bourne2,4 1 Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia 2 Australian Institute of Marine Science, Townsville, QLD, Australia 3 Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia 4 Marine Biology and Aquaculture, College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia 5 AIMS@JCU, James Cook University, Townsville, QLD, Australia 6 Research School of Biology, Australian National University, Canberra, ACT, Australia 7 Victorian Life Sciences Computation Initiative, University of Melbourne, Melbourne, Victoria, Australia 8 Section Chemical Ecology, Alfred Wegener Institute, Bremerhaven, Germany 9 University of New South Wales, Sydney, NSW, Australia ABSTRACT Bacterial communities associated with healthy corals produce antimicrobial compounds that inhibit the colonization and growth of invasive microbes and potential pathogens. To date, however, bacteria-derived antimicrobial molecules have not been identified in reef-building corals. Here, we report the isolation of an antimicrobial compound produced by Pseudovibrio sp. P12, a common and abundant coral-associated bacterium. This strain was capable of metabolizing dimethylsulfoniopropionate (DMSP), a sulfur molecule produced in high concentrations by reef-building corals and playing a role in structuring their bacterial communities. Bioassay-guided fractionation coupled with nuclear Submitted 15 May 2016 magnetic resonance (NMR) and mass spectrometry (MS), identified the Accepted 19 July 2016 antimicrobial as tropodithietic acid (TDA), a sulfur-containing compound likely Published 18 August 2016 derived from DMSP catabolism.
    [Show full text]
  • Phaeobacter Leonis Sp. Nov., an Alphaproteobacterium
    International Journal of Systematic and Archimer Evolutionary Microbiology http://archimer.ifremer.fr September 2013, Volume 63, Pages 3301-3306 http://dx.doi.org/10.1099/ijs.0.046128-0 © 2013 IUMS Printed in Great Britain Phaeobacter leonis sp. nov., an alphaproteobacterium from is available on the publisher Web site Webpublisher the on available is Mediterranean Sea sediments Frédéric Gaboyer1,2,3, Brian J. Tindall4, Maria-Cristina Ciobanu1,2,3, Frédérique Duthoit1,2,3, Marc Le Romancer1,2,3 and Karine Alain1,2,3 authenticated version authenticated - 1 Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) – UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France 2 CNRS, IUEM – UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Place Nicolas Copernic, F-29280 Plouzané, France 3 Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle Pointe du diable, F-29280 Plouzané, France 4 DSMZ – Deutsche Sammlung von Mikroorganismem und Zellkulturen Gmbh. Inhoffenstr. 7bN D-38124 Braunschweig. Germany *: Corresponding author : Frédéric Gaboyer, email address : [email protected] owing peer review. The definitive publisherdefinitive The review. owing peer Abstract: A novel Gram-stain-negative, strictly aerobic, heterotrophic bacterium, designated 306T, was isolated from near-surface (109 cm below the sea floor) sediments of the Gulf of Lions, in the Mediterranean Sea. Strain 306T grew at temperatures between 4 and 32 °C (optimum 17–22 °C), from pH 6.5 to 9.0 (optimum 8.0–9.0) and between 0.5 and 6.0 % (w/v) NaCl (optimum 2.0 %).
    [Show full text]
  • 1 Monitoring of the Bioencapsulation of a Probiotic Phaeobacter Strain In
    *Manuscript Click here to view linked References 1 2 Monitoring of the bioencapsulation of a probiotic Phaeobacter strain in the rotifer 3 Brachionus plicatilis using denaturing gradient gel electrophoresis 4 5 José Pintado1*, María Pérez-Lorenzo1,2, Antonio Luna-González1,3, Carmen G. Sotelo1, 6 María J. Prol1 and Miquel Planas1 7 8 1Instituto de Investigacións Mariñas (CSIC), Eduardo Cabello nº 6, 36208 Vigo, 9 Galicia, Spain. 10 2 Present address: Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 11 36310 Vigo, Galicia, Spain. 12 3 Present address: Centro Interdisciplinario de Investigación para el Desarrollo Integral 13 Regional-Instituto Politécnico Nacional, Unidad Sinaloa. Boulevard Juan de Dios Bátiz 14 Paredes 250, Guasave, Sinaloa 81101, México 15 16 17 *Corresponding author: Phone +34986231930. Fax +34986292762. E-mail address: 18 [email protected]. 19 20 Abstract 21 22 The bioencapsulation of the probiotic bacteria Phaeobacter 27-4 in the rotifer 23 Brachionus plicatilis was monitored by culture methods and denaturing gradient gel 24 electrophoresis (DGGE) of PCR-amplified 16S rDNA. 25 In a first experiment, the permanence of the probiotic bacteria in clear water and green 26 water was studied. Phaeobacter 27-4 added to the water of the tanks (107 CFU ml-1) 27 remained at levels around 106 CFU ml-1 for 72 h and was not affected by the presence of 28 the algae added (Isochrysis galbana, 105 cells ml-1). The DGGE fingerprints showed a 29 temporal predominance of the probiont in the water and the presence of bacteria 30 belonging to the Flavobacteria, -proteobacteria, and Sphingobacteria groups.
    [Show full text]
  • Diatom Modulation of Select Bacteria Through Use of Two Unique Secondary Metabolites
    Diatom modulation of select bacteria through use of two unique secondary metabolites Ahmed A. Shibla, Ashley Isaaca,b, Michael A. Ochsenkühna, Anny Cárdenasc,d, Cong Feia, Gregory Behringera, Marc Arnouxe, Nizar Droue, Miraflor P. Santosa,1, Kristin C. Gunsaluse,f, Christian R. Voolstrac,d, and Shady A. Amina,2 aMarine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates; bInternational Max Planck Research School of Marine Microbiology, University of Bremen, Bremen 28334, Germany; cDepartment of Biology, University of Konstanz, Konstanz 78467, Germany; dRed Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; eCenter for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates; and fCenter for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003 Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 10, 2020 (received for review June 12, 2020) Unicellular eukaryotic phytoplankton, such as diatoms, rely on shown to heavily rely on phycosphere DOM to support their microbial communities for survival despite lacking specialized growth (14, 15) and must use motility, chemotaxis, and/or at- compartments to house microbiomes (e.g., animal gut). Microbial tachment to chase and colonize the phycosphere (16). Recent communities have been widely shown to benefit from diatom research has shown that a variety of interactions spanning mu- excretions that accumulate within the microenvironment sur- tualism, commensalism, and parasitism occur between diatoms rounding phytoplankton cells, known as the phycosphere.
    [Show full text]
  • A059p283.Pdf
    Vol. 59: 283–293, 2010 AQUATIC MICROBIAL ECOLOGY Published online April 21 doi: 10.3354/ame01398 Aquat Microb Ecol High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains Yunyun Fu1,*, Dawne M. MacLeod1,*, Richard B. Rivkin2, Feng Chen3, Alison Buchan4, Andrew S. Lang1,** 1Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, Newfoundland A1B 3X9, Canada 2Ocean Sciences Centre, Memorial University of Newfoundland, Marine Lab Road, St. John’s, Newfoundland A1C 5S7, Canada 3Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 236-701 East Pratt St., Baltimore, Maryland 21202, USA 4Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, Tennessee 37914, USA ABSTRACT: Genes encoding gene transfer agent (GTA) particles are well conserved in bacteria of the order Rhodobacterales. Members of this order are abundant in diverse marine environments, fre- quently accounting for as much as 25% of the total bacterial community. Conservation of the genes encoding GTAs allows their use as diagnostic markers of Rhodobacterales in biogeographical stud- ies. The first survey of the diversity of Rhodobacterales based on the GTA major capsid gene was con- ducted in a warm temperate estuarine ecosystem, the Chesapeake Bay, but the biogeography of Rhodobacterales has not been explored extensively. This study investigates Rhodobacterales diver- sity in the cold subarctic water near Newfoundland, Canada. Our results suggest that the subarctic region of the North Atlantic contains diverse Rhodobacterales communities in both winter and sum- mer, and that the diversity of the Rhodobacterales community in the summer Newfoundland coastal water is higher than that found in the Chesapeake Bay, in either the summer or winter.
    [Show full text]
  • The Marine Bacterium Phaeobacter Inhibens Secures External
    FEMS Microbiology Ecology, 94, 2018, fiy154 doi: 10.1093/femsec/fiy154 Advance Access Publication Date: 17 August 2018 Research Article Downloaded from https://academic.oup.com/femsec/article-abstract/94/10/fiy154/5074353 by und IT-Dienste der Universitaet Oldenburg user on 08 November 2018 RESEARCH ARTICLE The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks Kathleen Trautwein1, Michael Hensler2, Katharina Wiegmann1, Ekaterina Skorubskaya1, Lars Wohlbrand¨ 1,DanielWunsch¨ 1, Christina Hinrichs1, Christoph Feenders3, Constanze Muller¨ 4, Kristina Schell1, Hanna Ruppersberg1, Jannes Vagts1, Sebastian Koßmehl1, Alexander Steinbuchel¨ 5, Philippe Schmidt-Kopplin4, Heinz Wilkes6, Helmut Hillebrand7,8, Bernd Blasius3, Dietmar Schomburg2 and Ralf Rabus1,* 1General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany, 2Bioinformatics and Biochemistry, Institute for Biochemistry and Biotechnology, Technische Universitat¨ Braunschweig, Rebenring 56, Braunschweig 38106, Germany, 3Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany, 4Analytical BioGeoChemistry, HelmholtzZentrum Munchen,¨ German Research Centre for Environmental Health, Ingolstadter¨ Landstr. 1, Neuherberg 85764, Germany, 5Institute for Molecular Microbiology and Biotechnology, WWU Munster,¨ Corrensstr. 3, Munster¨ 48149, Germany, 6Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany, 7Planktology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany and 8Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerlander¨ Heerstr.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Complete Genome Sequence of the Phaeobacter Gallaeciensis Type Strain CIP 105210T (= DSM 26640T= BS107T)
    Frank O, Pradella S, Rohde M, Scheuner C, Klenk HP, Göker M, Petersen J. Complete genome sequence of the Phaeobacter gallaeciensis type strain CIP 105210T (= DSM 26640T= BS107T). Standards in genomic sciences 2014, 9(3), 914-932. Copyright: © BioMed Central. This work is licensed under a Creative Commons Attribution 3.0 License DOI link to article: http://dx.doi.org/10.4056/sigs.5179110 Date deposited: 18/03/2015 This work is licensed under a Creative Commons Attribution 3.0 Unported License Newcastle University ePrints - eprint.ncl.ac.uk Standards in Genomic Sciences (2014) 9: 914--932 DOI:10.4056/sigs.5179110 Complete genome sequence of the Phaeobacter gallae- T T T ciensis type strain CIP 105210 (= DSM 26640 = BS107 ) Oliver Frank1, Silke Pradella1, Manfred Rohde2, Carmen Scheuner1, Hans-Peter Klenk1, Markus Göker1, Jörn Petersen1* 1 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 2 Helmholtz-Centre for Infection Research, Braunschweig, Germany *Correspondence: Jörn Petersen ([email protected]) Keywords: Alphaproteobacteria, Roseobacter group, Plasmid wealth, Replication systems, Sister species, Phaeobacter inhibens. Phaeobacter gallaeciensis CIP 105210T (= DSM 26640T = BS107T) is the type strain of the species Phaeobacter gallaeciensis. The genus Phaeobacter belongs to the marine Roseobacter group (Rhodobacteraceae, Alphaproteobacteria). Phaeobacter species are effective colonizers of marine surfaces, including frequent associations with eukaryotes. Strain BS107T was isolat- ed from a rearing of the scallop Pecten maximus. Here we describe the features of this organ- ism, together with the complete genome sequence, comprising eight circular replicons with a total of 4,448 genes. In addition to a high number of extrachromosomal replicons, the ge- nome contains six genomic island and three putative prophage regions, as well as a hybrid between a plasmid and a circular phage.
    [Show full text]