Moduli Spaces of Pseudo-Holomorphic Disks and Floer Theory of Cleanly Intersecting Immersed Lagrangians

Total Page:16

File Type:pdf, Size:1020Kb

Moduli Spaces of Pseudo-Holomorphic Disks and Floer Theory of Cleanly Intersecting Immersed Lagrangians MODULI SPACES OF PSEUDO-HOLOMORPHIC DISKS AND FLOER THEORY OF CLEANLY INTERSECTING IMMERSED LAGRANGIANS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ken Yin Kwan Chan August 2010 © 2010 by Yin Kwan Chan. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/bz202yk0512 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Eleny Ionel, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Yakov Eliashberg I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Soren Galatius Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract In this thesis we investigate moduli spaces of pseudo-holomorphic disks with La- grangian boundary conditions, in which the Lagrangians are immersed with clean self-intersections. We then discuss the compactification of these moduli spaces, and show that under specific assumptions, the moduli spaces can be oriented. Finally, we use these moduli spaces to construct and compute Lagrangian Floer cohomology for sphere and orientation covers of RPn embedded as a Lagrangian submanifold of CPn. iv Preface There have been tremendous interests in pseudo-holomorphic curves with Lagrangian boundary conditions. For instance, they enter in the definition of Floer's homol- ogy theory of Lagrangian intersections, and constitute the major framework of \La- grangian intersection Floer theory { anomaly and obstruction" [FOOO06], in which Fukaya, Oh, Ohta and Ono laid the foundations for constructing the derived Fukaya Category of a symplectic manifold. The later plays an essential role in Kontsevich's Homological Mirror Symmetry Conjecture. While significant steps were taken to understand the Fukaya Category in Fukaya et. al. [FOOO06] , defining it in complete generality and making rigorous the alge- braic structures involved is a long term and technically involved project. Na¨ıvely, the objects in the category are embedded Lagrangians with extra information. Insofar, morphisms between pairs of transversely intersecting Lagrangians are defined. They are induced from the intersections of the Lagrangians, with algebraic operations de- termined by the information extracted from pseudo-holomorphic discs bounding these Lagrangians. But this only leads to an `precategory' as morphisms are merely defined for pairwise transversely intersecting objects. That said, to obtain a `category', one is led to consider immersed Lagrangians, and allow for intersections other than pairwise transverse ones. Akaho and Joyce took the initial step in [AJ08] to investigate immersed Lagrangians whose self-intersections are transverse double points. This motivates the author to take a further step in extending their work to cover a broader class of immersed Lagrangians, which may possess certain non-transverse self-intersections. It is an on-going project built on the technical machinery of [FOOO06]. v Closely related to the Fukaya Category is the Donaldson-Fukaya Category. It is defined at the (co)-homology level with Floer cohomologies as morphisms, which are associative. This makes it technically more tractable, but at cost of losing information required for Mirror Symmetry after passing to cohomology. Nevertheless, it justifies the attention on Lagrangian Floer cohomology, which can be viewed as one of the by-products of the moduli spaces the author proposes to investigate. vi Acknowledgment First and foremost, I would like to thank my thesis advisor, Eleny Ionel. Over the years, she has been extremely generous with her time, and her advice was always remarkably insightful. I am certainly indebted to her for her patience and her constant encouragement. I would also like to thank Yasha Eliashberg for introducing me to the beautiful subject of symplectic topology, and Sam Lisi for many interesting and helpful discussions. I am deeply appreciative of all those who has given me support and encouragement during my time at Stanford. vii Contents Abstract iv Preface v Acknowledgment vii 1 Introduction 1 1.1 Clean self-intersections . 1 1.2 A local model for clean self-intersections . 3 2 Moduli spaces 5 2.1 Definition of the moduli spaces . 6 2.1.1 Lagrangian boundary conditions . 6 2.1.2 Evaluation maps on Mm+1(J; I; ) ............... 8 2.2 Compactification and boundary . 8 2.2.1 Lagrangian boundary conditions for stable maps . 9 2.2.2 Evaluation maps on Mm+1(J; I; ) . 12 2.3 The linearization . 13 2.4 The virtual dimension . 17 3 Orientability of the moduli spaces 25 3.1 Preliminary definitions . 25 3.2 Orientation of the moduli spaces . 28 viii 4 Lagrangian Floer cohomology 31 4.1 A brief overview . 31 5 Examples and computations 34 5.1 Sphere double covers of RPn in CPn ................... 34 zk 5.2 The moduli spaces M2 ( ) with one jump . 36 5.2.1 Regularity of D@J0 ........................ 37 zk 5.2.2 Orienting the moduli spaces M2 ( j ) . 40 5.3 Morse-Bott Floer cohomology of the sphere covers of RPn . 42 5.3.1 Novikov Ring . 43 5.3.2 Floer coboundary operators . 44 5.3.3 Spectral sequence and Floer cohomology . 47 5.4 Morse-Bott Floer cohomology of the orientation covers of RPn . 55 5.4.1 Floer coboundary operators and M2( ) . 57 6 Further directions 61 6.1 Obstructions to Lagrangian Floer cohomology . 61 6.2 Hamiltonian equivalence . 61 A Spin and relatively spin structures 63 References 66 ix Chapter 1 Introduction The spaces under consideration are a 2n-dimensional symplectic manifold (X; !) with a symplectic structure !, and a smooth n-dimensional manifold L. Throughout this thesis, all manifolds are smooth and without boundary, unless otherwise stated. Sup- pose : L # X is a proper Lagrangian immersion whose image (L) lies in X. By a Lagrangian immersion we mean is a proper immersion with ∗! = 0. The immersion identifies the tangent bundle TL of L with a Lagrangian subbundle of the symplec- tic bundle (∗T X; ∗!). When (X; J; !) is almost K¨ahlerwith a compatible almost complex structure J, one can show that an immersion : L # X is Lagrangian if and only if ∗J maps TL to the normal bundle NL of L in ∗TX. 1.1 Clean self-intersections In [BW97], Bates and Weinstein define the clean intersection of two maps to the same target manifold in terms of their fiber product. We adapt their definition to the case of two identical maps: consider the fiber product, pr2 L×L / L (1.1) FF F prX pr1 FF FF F" L / X 1 CHAPTER 1. INTRODUCTION 2 where pr1 and pr2 are projections on the first and on the second factors respectively. In other words, L×L is the pre-image of the diagonal ΔX :X,! X ×X under the map pr1×pr2. It follows that the fiber product L×L contains a component consisting i of the diagonal ΔL of L . In this and subsequent sections, R will denote the closed ii set (L×L) n ΔL, and K will be the set pr1(R), which is identical to pr2(R) , with an image (K) under . L×L can then be expressed as the disjoint union ΔLqR. If the fiber product L×L happens to be a smooth submanifold of L×L, then for any tangent vector (vx; wy) in T(x;y)(L×L), d(×)(x;y) (vx; wy) is tangent to the diagonal ΔX in X×X, which implies that dx(vx) = dy(wy). But d(pr1)x (vx; wy) = vx, and d(pr1)x (vx; wy) = 0 only when vx = 0. In this case, dx(vx) = dy(wy) = 0. It then follows that the projection pr1 is an immersion. Similarly, pr2 is also an immersion as well. Therefore, we conclude that the projection prX : L×L −! X is itself an immersion if L×L is a smooth submanifold of L×L, in which case the image of L×L under prX is an immersed submanifold of X. This observation motivates the following definition of clean self-intersections. Definition 1.1. An immersion : L # X is said to intersect itself cleanly provided that the fiber product L×L is a smooth submanifold of L×L, and for any point (x; y) in L×L, dx(TxL) \ dy(TyL) = d( ∘ pr1)(x;y)T(x;y) (L×L) (1.2) ∗ as subbundles of ( ∘ pr1) TX. This requires R to be a smooth submanifold of L×L, and consequently L×L is diffeomorphic to LqR. In general, the fiber product L×L may consist of components of possibly different dimensions, which by condition (1.2) are bounded above by the dimension of L. In the special case where -1(p), for all points p in X and a cleanly self-intersecting immersion , has at most two distinct points, the set R, considered i The closeness of (L×L) n ΔL in L×L follows from being an immersion. ii Since there is an involution : L×L ! L×L given by (x; y) = (y; x).
Recommended publications
  • 2006-2007 Graduate Studies in Mathematics Handbook
    2006-2007 GRADUATE STUDIES IN MATHEMATICS HANDBOOK TABLE OF CONTENTS 1. INTRODUCTION .................................................................................................................... 1 2. DEPARTMENT OF MATHEMATICS ................................................................................. 2 3. THE GRADUATE PROGRAM.............................................................................................. 5 4. GRADUATE COURSES ......................................................................................................... 8 5. RESEARCH ACTIVITIES ................................................................................................... 24 6. ADMISSION REQUIREMENTS AND APPLICATION PROCEDURES ...................... 25 7. FEES AND FINANCIAL ASSISTANCE............................................................................. 25 8. OTHER INFORMATION..................................................................................................... 27 APPENDIX A: COMPREHENSIVE EXAMINATION SYLLABI ............................................ 31 APPENDIX B: APPLIED MATHEMATICS COMPREHENSIVE EXAMINATION SYLLABI ............................................................................................................................................................. 33 APPENDIX C: PH.D. DEGREES CONFERRED FROM 1994-2006........................................ 35 APPENDIX D: THE FIELDS INSTITUTE FOR RESEARCH IN MATHEMATICAL SCIENCES........................................................................................................................................
    [Show full text]
  • J-Holomorphic Curves and Quantum Cohomology
    J-holomorphic Curves and Quantum Cohomology by Dusa McDuff and Dietmar Salamon May 1995 Contents 1 Introduction 1 1.1 Symplectic manifolds . 1 1.2 J-holomorphic curves . 3 1.3 Moduli spaces . 4 1.4 Compactness . 5 1.5 Evaluation maps . 6 1.6 The Gromov-Witten invariants . 8 1.7 Quantum cohomology . 9 1.8 Novikov rings and Floer homology . 11 2 Local Behaviour 13 2.1 The generalised Cauchy-Riemann equation . 13 2.2 Critical points . 15 2.3 Somewhere injective curves . 18 3 Moduli Spaces and Transversality 23 3.1 The main theorems . 23 3.2 Elliptic regularity . 25 3.3 Implicit function theorem . 27 3.4 Transversality . 33 3.5 A regularity criterion . 38 4 Compactness 41 4.1 Energy . 42 4.2 Removal of Singularities . 43 4.3 Bubbling . 46 4.4 Gromov compactness . 50 4.5 Proof of Gromov compactness . 52 5 Compactification of Moduli Spaces 59 5.1 Semi-positivity . 59 5.2 The image of the evaluation map . 62 5.3 The image of the p-fold evaluation map . 65 5.4 The evaluation map for marked curves . 66 vii viii CONTENTS 6 Evaluation Maps and Transversality 71 6.1 Evaluation maps are submersions . 71 6.2 Moduli spaces of N-tuples of curves . 74 6.3 Moduli spaces of cusp-curves . 75 6.4 Evaluation maps for cusp-curves . 79 6.5 Proofs of the theorems in Sections 5.2 and 5.3 . 81 6.6 Proof of the theorem in Section 5.4 . 82 7 Gromov-Witten Invariants 89 7.1 Pseudo-cycles .
    [Show full text]
  • A Survey of Symplectic and Contact Topology
    Indian J. Pure Appl. Math., 50(3): 665-679, September 2019 °c Indian National Science Academy DOI: 10.1007/s13226-019-0348-1 A SURVEY OF SYMPLECTIC AND CONTACT TOPOLOGY Mahuya Datta¤ and Dheeraj Kulkarni¤¤ ¤Statistics and Mathematics Unit, Indian Statistical Institute 203, B.T. Road, Calcutta 700 108, India ¤¤ Department of Mathematics, Indian Institute of Science Education and Research, Bhopal, India e-mails: [email protected]; [email protected] In this article, we give a brief survey of major historical developments in the field of Contact and Symplectic Geometry. This field has grown into an area in its own right due to rapid progress seen in the last five decades. The community of Indian mathematicians working on this field is small but steadily growing. The contribution from Indian mathematicians to this field is noted in the article. Key words : Contact geometry; symplectic geometry. 1. INTRODUCTION Symplectic geometry has its origin in the Hamiltonian formulation of classical mechanics while con- tact geometry appears on constant energy surfaces in the phase space of classical mechanics. Contact geometry is also the mathematical language of thermodynamics, geometric optics and fluid dynam- ics. Symplectic and contact geometry in the simplest terms can be best described as the geometry of differential forms. In recent times, this has grown into an independent subject in its own right. It has also found applications in important problems of low dimensional topology, complex geometry, algebraic geometry, foliation theory and has given new directions in dynamics. A symplectic form on a manifold M is a non-degenerate 2-form ! which is also closed.
    [Show full text]
  • Gromov's Alternative, Contact Shape, and C^ 0-Rigidity of Contact
    GROMOV’S ALTERNATIVE, CONTACT SHAPE, AND C0-RIGIDITY OF CONTACT DIFFEOMORPHISMS STEFAN MULLER¨ AND PETER SPAETH Abstract. We prove that the group of contact diffeomorphisms is closed in the group of all diffeomorphisms in the C0-topology. By Gromov’s alternative, it suffices to exhibit a diffeomorphism that can not be approximated uniformly by contact diffeomorphisms. Our construction uses Eliashberg’s contact shape. 1. Introduction and main result Let (W 2n,ω) be a connected symplectic manifold, and ωn be the corresponding canonical volume form. We assume throughout this paper that all diffeomorphisms and vector fields are compactly supported in the interior of a given manifold. A symplectic diffeomorphism obviously preserves the volume form ωn, and thus so does a diffeomorphism that is the uniform limit of symplectic diffeomorphisms. In the early 1970s, Gromov discovered a fundamental hard versus soft alternative [Gro86]: either the group Symp(W, ω) of symplectic diffeomorphisms is C0-closed in the group Diff(W ) of all diffeomorphisms (hardness or rigidity), or its C0-closure is (a subgroup of finite codimension in) the group Diff(W, ωn) of volume preserving diffeomorphisms (softness or flexibility). See section 2 for a more precise statement. Gromov’s alternative is a fundamental question that concerns the very existence of symplectic topology [MS98, DT90]. That rigidity holds was proved by Eliashberg in the late 1970s [Eli82, Eli87]. One of the most geometric expressions of this C0- rigidity is Gromov’s non-squeezing theorem. Denote by B2n(r) a closed ball of 2n 2 2n−2 radius r in R with its standard symplectic form ω0, and by B (R) × R = Z2n(R) ⊂ R2n a cylinder of radius R so that the splitting R2 ×R2n−2 is symplectic.
    [Show full text]
  • GAUGED FLOER HOMOLOGY for HAMILTONIAN ISOTOPIES I: DEFINITION of the FLOER HOMOLOGY GROUPS Contents 1. Introduction 1 2. Basic S
    GAUGED FLOER HOMOLOGY FOR HAMILTONIAN ISOTOPIES I: DEFINITION OF THE FLOER HOMOLOGY GROUPS GUANGBO XU Abstract. We construct the vortex Floer homology group VHF (M; µ; H) for an aspherical Hamil- tonian G-manifold (M; !) with moment map µ and a class of G-invariant Hamiltonian loop Ht, following the proposal of [3]. This is a substitute for the ordinary Hamiltonian Floer homology of the symplectic quotient of M. We achieve the transversality of the moduli space by the classical perturbation argument instead of the virtual technique, so the homology can be defined over Z or Z2. Contents 1. Introduction 1 2. Basic setup and outline of the construction7 3. Asymptotic behavior of the connecting orbits 14 4. Fredholm theory 21 5. Compactness of the moduli space 28 6. Floer homology 31 Appendix A. Transversality by perturbing the almost complex structure 37 References 46 1. Introduction 1.1. Background. Floer homology, introduced by Andreas Floer (see [8], [9]), has been a great triumph of J-holomorphic curve technique invented by Gromov [17] in many areas of mathemat- ics. Hamiltonian Floer homology gives new invariants of symplectic manifolds and its Lagrangian submanifolds and has been the most important approach towards the solution to the celebrated Arnold conjecture initiated in the theory of Hamiltonian dynamics; the Lagrangian intersection Floer homology is the basic language in defining the Fukaya category of a symplectic manifold and stating Kontsevich's homological mirror symmetry conjecture; several Floer-type homology theory, including the instanton Floer homology ([7], [4]), Heegaard-Floer theory ([29]), Seiberg- Witten Floer homology ([22]), ECH theory ([20], [21]), has become tools of understanding lower dimensional topology.
    [Show full text]
  • Topological Persistence in Geometry and Analysis
    Applied VOLUME 74 UNIVERSITY LECTURE SERIES Mathematics Topological Persistence in Geometry and Analysis Leonid Polterovich Daniel Rosen Karina Samvelyan Jun Zhang 10.1090/ulect/074 Topological Persistence in Geometry and Analysis UNIVERSITY LECTURE SERIES VOLUME 74 Topological Persistence in Geometry and Analysis Leonid Polterovich Daniel Rosen Karina Samvelyan Jun Zhang EDITORIAL COMMITTEE Robert Guralnick William P. Minicozzi II (Chair) Emily Riehl Tatiana Toro 2010 Mathematics Subject Classification. Primary 55U99, 58Cxx, 53Dxx. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-74 Library of Congress Cataloging-in-Publication Data Names: Polterovich, Leonid, 1963- author. | Rosen, Daniel, 1980- author. | Samvelyan, Karina, 1988- author. | Zhang, Jun, 1988- author. Title: Topological persistence in geometry and analysis / Leonid Polterovich, Daniel Rosen, Karina Samvelyan, Jun Zhang. Description: Providence, Rhode Island : American Mathematical Society, [2020] | Series: Univer- sity lecture series, 1047-3998 ; volume 74 | Includes bibliographical references and index. Identifiers: LCCN 2019059052 | ISBN 9781470454951 (paperback) | ISBN 9781470456795 (ebook) Subjects: LCSH: Algebraic topology. | Homology theory. | Combinatorial topology. | Symplectic geometry. | Mathematical analysis. | AMS: Algebraic topology – Applied homological alge- bra and category theory [See also 18Gxx]. | Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory,
    [Show full text]
  • Symposium on Symplectic Geometry 1997-2000 Report
    MATHEMATICS RESEARCH CENTRE SYMPOSIUM ON SYMPLECTIC GEOMETRY 1997-2000 REPORT JOHN RAWNSLEY DIETMAR SALAMON GR/L17009/01 Contents 1 Overview 2 The Programme 2.1 Workshops 2.2 Lecture courses 2.3 Seminars Appendices A Research Overview A.1 Floer homology A.2 Seiberg-Witten invariants and smooth 4-manifolds A.3 Quantization A.4 Moment maps and symplectic reduction A.5 Topics in symplectic topology A.6 Topics in contact geometry A.7 Topics in algebraic geometry A.8 Topics in Hamiltonian dynamics B List of Lectures C List of Publications C.1 Books worked on during the Symposium C.2 Papers worked on during the Symposium C.3 Other recent papers by participants D List of participants E A selection of comments by visitors F Programmes of Workhops Detailed Report 1 Overview The symposium activities in 1997-98 centered around four main workshops, and included several lecture courses, seminar series, lecture series by visitors, some short meetings and an LMS Spitalfields Day. A closing workshop was held in July 2000 at the end of the three year grant period which gave the opportunity to cover the new developments resulting from Kontsevich's work in deformation theory. There were three visitors for the whole year (Véronique Chloup-Arnould, Laurent Lazzarini, Joachim Weber) financed by other sources, a number of long term visitors (including Shigeru Mukai, Nagoya, who came for five months from October 1997 to April 1998), and 225 registered particpants for the longer activities as well as many who came to talks from nearby institutions. In addition to the EPSRC grant of £ 80,000 visitors were also supported by EC funds for two TMR fellowships (Laurent Lazzarini, £ 24,344 for 16 months, and Joachim Weber, £ 20,943 for 14 months).
    [Show full text]
  • Quantum and Floer Cohomology Have the Same Ring Structure
    Quantum and Floer cohomology have the same ring structure by Serguei Piunikhin Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the - MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1996 SMassachusetts Institute of Technology 1996. All rights reserved. A uthor .............................................. ... ......... Department of Mathematics May 17, 1996 I'll Certified by.... ...... .... .. .. .. .. .. .. .. .. .. ... .. I. M. Singer Institute Professor Thesis Supervisor Accepted by.. o.w .,..... David Vogan Chairman, Departmental Committee on Graduate Students JUL 0 8 1996 ~'.'f Quantum and Floer cohomology have the same ring structure by Serguei Piunikhin Submitted to the Department of Mathematics on May 17, 1996, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract The action of the total cohomology space H*(M) of an almost-Kahler manifold M on its Floer cohomology, introduced originally by Floer, gives a new ring structure on the cohomology of the manifold. In this thesis we prove that the total cohomology space H*(M), provided with this new ring structure, is isomorphic to the quantum cohomology ring. As a special case, we prove the the formula for the Floer cohomology ring of the complex grassmanians conjectured by Vafa and Witten. Thesis Supervisor: I. M. Singer Title: Institute Professor Acknowledgments I am greatly indebted to my thesis advisor I.M. Singer and to my old friend Vladimir Sadov for introducing me to the problem and for many helpful remarks without which this work would not be possible. This work would not also be possible without Gang Tian who helped me to fix some gaps in the analysis present in the early versions of the manuscript.
    [Show full text]
  • Morse Theory for Periodic Solutions of Hamiltonian Systems and the Maslov Index
    Morse Theory for Periodic Solutions of Hamiltonian Systems and the Maslov Index DIETMAR SALAMON University of Warwick AND EDUARD ZEHNDER ETH-Zentrum, Zurich This paper is dedicated to Natascha A. Brunswick. Abstract In this paper we prove Morse type inequalities for the contractible 1-periodic solutions of time dependent Hamiltonian differential equations on those compact symplectic manifolds M for which the symplectic form and the first Chern class of the tangent bundle vanish over q(M). The proof is based on a version of infinite dimensional Morse theory which is due to Floer. The key point is an index theorem for the Fredholm operator which plays a central role in Floer homology. The index formula involves the Maslov index of nondegenerate contractible periodic solutions. This Maslov index plays the same role as the Morse index of a nondegenerate critical point does in finite dimensional Morse theory. We shall use this connection between Floer homology and Maslov index to establish the existence of infinitely many periodic solutions having integer periods provided that every I-periodic solution has at least one Floquet multiplier which is not equal to 1. 1. Introduction Let (M,o) be a compact symplectic manifold of dimension 2n. Here o is a closed 2-form on M which is nondegenerate and therefore induces an iso- morphism T'M + TM. Thus every smooth, time-dependent Hamiltonian function H : R x A4 + W gives rise to a time-dependent Hamiltonian vector field XH : W x M + TM defined by for < E T,M. Assume that H (and hence X,) is periodic in time H(t + 1,x) = H(t,x) and consider the time-dependent Hamiltonian differential equation Communications on Pure and Applied Mathematics, Vol.
    [Show full text]
  • Mathématiques Denis AUROUX
    Th`ese pr¶esent¶ee pour obtenir le titre de DOCTEUR DE L'ECOLE¶ POLYTECHNIQUE Sp¶ecialit¶e : Math¶ematiques par Denis AUROUX Titre : Th¶eor`emes de structure des vari¶et¶es symplectiques compactes via des techniques presque complexes. soutenue le 22 janvier 1999 devant le jury compos¶e de : M. Jean Pierre BOURGUIGNON M. Mikhael GROMOV M. Fran»cois LAUDENBACH M. Dietmar SALAMON M. Jean-Claude SIKORAV M. Claude VITERBO Rapporteurs : M. Simon DONALDSON et Mme Dusa McDUFF Remerciements Je tiens a` remercier Jean Pierre Bourguignon et Misha Gromov pour leur soutien constant tout au long de la r¶ealisation de ce travail ; Christophe Margerin et Pierre Pansu qui ont pris sur leur temps pour r¶epondre `a mes questions ; Fran»cois Lauden- bach pour l'accueil qui m'a ¶et¶e r¶eserv¶e au Centre de Math¶ematiques ; et en¯n tous ceux qui par des discussions enrichissantes ont contribu¶e a` ma compr¶ehension du sujet : tout particuli`erement Simon Donaldson, Cli® Taubes et Jean-Claude Sikorav, ainsi que Fabrice Lembrez, Emmanuel Ferrand et Stefano Vidussi. Adresse de l'auteur : Denis AUROUX Centre de Math¶ematiques, Ecole Polytechnique 91128 Palaiseau Cedex, France. e-mail : [email protected] Table des mati`eres Chapitre I. Introduction 3 1. Introduction 3 2. Sous-vari¶et¶es symplectiques : ¶enonc¶es et exemples 5 2 3. Rev^etements rami¯¶es de CP 8 Chapitre II. Asymptotically Holomorphic Families of Symplectic Submanifolds 11 1. Introduction 11 2. The local result 14 3. The globalization process 17 3.1. Statement of the result 17 3.2.
    [Show full text]
  • Reflections in a Cup of Coffee
    REFLECTIONS IN A CUP OF COFFEE RAF BOCKLANDT ABSTRACT. Allegedly, Brouwer discovered his famous fixed point theorem while stirring a cup of coffee and noticing that there is always at least one point in the liquid that does not move. In this paper, based on a talk in honour of Brouwer at the University of Amsterdam, we will explore how Brouwer’s ideas about this phenomenon spilt over in a lot of different areas of mathematics and how this eventually led to an intriguing geometrical theory we now know as mirror symmetry. 1. BROUWER’S BEGINNINGS As the nineteenth century drew to a close, the famous French mathematician Henri Poincare´ unleashed a new type of geometry onto the world, which would transform many areas in mathematics and keep mathematicians busy until this very day. Poincare´ used topology —or analysis situs as this new geometry was called in these days— to study solutions of differential equations by looking at the global structure of the spaces on which they were defined [20]. This global information was of a different nature than the classical geometrical prop- erties like distances and angles. Unlike the latter, topological properties of a space do not change under continuous deformations like stretching and bending. They describe more robust features such as the number of holes in a space or the different ways to connect to points. Although some of these concepts were already known before, Poincare´ brought the subject to a new level by demonstrating how they could be used to derive higly nontrivial results in seemingly unrelated research areas.
    [Show full text]
  • J-Holomorphic Curves and Symplectic Topology Second Edition
    American Mathematical Society Colloquium Publications Volume 52 J-holomorphic Curves and Symplectic Topology Second Edition Dusa McDuff Dietmar Salamon J-holomorphic Curves and Symplectic Topology Second Edition http://dx.doi.org/10.1090/coll/052 American Mathematical Society Colloquium Publications Volume 52 J-holomorphic Curves and Symplectic Topology Second Edition Dusa McDuff Dietmar Salamon American Mathematical Society Providence, Rhode Island Editorial Board Lawrence C. Evans Yuri Manin Peter Sarnak (Chair) For the first edition of this book, the first author was supported in part by NSF Grants DMS 0072512 and DMS 0305939. For the second edition of the book, the first author was partially supported by NSF Grant DMS0905191. For the second edition of this book, the second author was partially supported by the Swiss National Science Foundation Grant 200021-127136. Section C.3 of Appendix C will revert to the public domain 28 years from publication. Joel Robbin is the sole author of Section C.3. 2010 Mathematics Subject Classification. Primary 53D05, 53D45, 53D35, 57R17, 37J05, 32Q65; Secondary 53D12, 53D40, 58J05, 14N35. For additional information and updates on this book, visit www.ams.org/bookpages/coll-52 Library of Congress Cataloging-in-Publication Data McDuff, Dusa, 1945– J-holomorphic curves and symplectic topology / Dusa McDuff, Dietmar Salamon – 2nd ed. p. cm. — (American Mathematical Society colloquium publications ; v. 52) Includes bibliographical references and index. ISBN 978-0-8218-8746-2 (alk. paper) 1. Symplectic and contact topology. 2. Symplectic manifolds. 3. Pseudoholomorphic curves. I. Salamon, D. (Dietmar). II. Title. QA613.59.M34 2012 516.36–dc23 2012016161 Copying and reprinting.
    [Show full text]