Mathématiques Denis AUROUX

Total Page:16

File Type:pdf, Size:1020Kb

Mathématiques Denis AUROUX Th`ese pr¶esent¶ee pour obtenir le titre de DOCTEUR DE L'ECOLE¶ POLYTECHNIQUE Sp¶ecialit¶e : Math¶ematiques par Denis AUROUX Titre : Th¶eor`emes de structure des vari¶et¶es symplectiques compactes via des techniques presque complexes. soutenue le 22 janvier 1999 devant le jury compos¶e de : M. Jean Pierre BOURGUIGNON M. Mikhael GROMOV M. Fran»cois LAUDENBACH M. Dietmar SALAMON M. Jean-Claude SIKORAV M. Claude VITERBO Rapporteurs : M. Simon DONALDSON et Mme Dusa McDUFF Remerciements Je tiens a` remercier Jean Pierre Bourguignon et Misha Gromov pour leur soutien constant tout au long de la r¶ealisation de ce travail ; Christophe Margerin et Pierre Pansu qui ont pris sur leur temps pour r¶epondre `a mes questions ; Fran»cois Lauden- bach pour l'accueil qui m'a ¶et¶e r¶eserv¶e au Centre de Math¶ematiques ; et en¯n tous ceux qui par des discussions enrichissantes ont contribu¶e a` ma compr¶ehension du sujet : tout particuli`erement Simon Donaldson, Cli® Taubes et Jean-Claude Sikorav, ainsi que Fabrice Lembrez, Emmanuel Ferrand et Stefano Vidussi. Adresse de l'auteur : Denis AUROUX Centre de Math¶ematiques, Ecole Polytechnique 91128 Palaiseau Cedex, France. e-mail : [email protected] Table des mati`eres Chapitre I. Introduction 3 1. Introduction 3 2. Sous-vari¶et¶es symplectiques : ¶enonc¶es et exemples 5 2 3. Rev^etements rami¯¶es de CP 8 Chapitre II. Asymptotically Holomorphic Families of Symplectic Submanifolds 11 1. Introduction 11 2. The local result 14 3. The globalization process 17 3.1. Statement of the result 17 3.2. Local coordinates and sections 17 3.3. General setup and strategy of proof 18 3.4. Obtaining transversality near a point of Sj 19 3.5. Constructing σt;k;j+1 from σt;k;j 22 = 3.6. Transversality to 0 over Uk 23 4. The main result 23 4.1. Proof of Theorem 2 23 4.2. Symplectic isotopies 24 5. Properties of the constructed submanifolds 25 5.1. Proof of Proposition 2 25 5.2. Homology and Chern numbers of the submanifolds 26 5.3. Geometry of the submanifolds 27 6. Conclusion 30 2 Chapitre III. Symplectic 4-manifolds as branched coverings of CP 31 1. Introduction 31 2. Nowhere vanishing sections 36 2.1. Non-vanishing of sk 36 2.2. Non-vanishing of @fk 40 2.3. Proof of Proposition 2 42 3. Transversality of derivatives 46 3.1. Transversality to 0 of Jac(fk) 46 3.2. Nondegeneracy of cusps 50 1 2 TABLE DES MATIERES` 4. Dealing with the antiholomorphic part 58 4.1. Holomorphicity in the neighborhood of cusp points 58 4.2. Holomorphicity at generic branch points 63 4.3. Proof of the main theorems 65 5. Generic tame maps and branched coverings 66 5.1. Structure near cusp points 66 5.2. Structure near generic branch points 70 5.3. Proof of Theorem 3 72 6. Further remarks 73 2 6.1. Branched coverings of CP 73 6.2. Symplectic Lefschetz pencils 75 6.3. Symplectic ampleness 77 Bibliographie 79 CHAPITRE I Introduction 1. Introduction Une approche de la topologie symplectique qui s'est r¶ev¶el¶ee extr^emement fruc- tueuse au ¯l des ann¶ees a pour point de d¶epart l'observation suivante : toute vari¶et¶e symplectique (X; !) peut ^etre munie d'une structure presque-complexe compatible avec la structure symplectique, c’est-`a-dire un endomorphisme J du ¯br¶e tangent T X, v¶eri¯ant J 2 = 1, et tel que la forme bilin¶eaire g(x; y) = !(x; Jy) d¶e¯nit une m¶etrique riemannienne¡ sur X (voir par exemple [McS1], p. 116). L'¶etude des vari¶et¶es symplectiques se pr¶esente alors comme une g¶en¶eralisation naturelle de la g¶eom¶etrie kÄahl¶erienne : en e®et la vari¶et¶e X est kÄahl¶erienne d`es lors que la structure presque-complexe J est int¶egrable, c’est-`a-dire permet de d¶e¯nir localement des coordonn¶ees complexes sur X. Les vari¶et¶es kÄahl¶eriennes fournissent un grand nombre d'exemples de vari¶et¶es symplectiques, puisqu'elles englobent entre autres toutes les vari¶et¶es alg¶ebriques projectives complexes. Toutefois, de nom- breuses vari¶et¶es symplectiques n'admettant pas de structure kÄahl¶erienne ont ¶et¶e construites, notamment par Thurston [Th] et plus r¶ecemment par Gompf [Go]. La donn¶ee d'une structure presque-complexe J sur X conduit naturellement `a ¶etudier les sous-vari¶et¶es de X dont l'espace tangent est en tout point J-invariant, c’est-`a-dire un sous-espace complexe de l'espace tangent `a X. Pour un choix g¶en¶erique de la structure presque-complexe compatible avec !, de telles sous-vari¶et¶es n'existent qu'en dimension complexe 1 : ce sont les c¶el`ebres courbes pseudo-holomorphes, intro- duites par Gromov [Gro1] et dont la th¶eorie a connu de constants d¶eveloppements (voir par exemple [McS2]). Un autre exemple frappant de l'analogie entre vari¶et¶es symplectiques compactes et vari¶et¶es kÄahl¶eriennes compactes est donn¶e par les invariants de Seiberg-Witten (voir par exemple [Mor]), dont l'interpr¶etation en termes de courbes pseudo-holo- morphes r¶ecemment obtenue par Taubes ([T1], [T2] et suivants) pour les vari¶et¶es symplectiques pr¶esente des similarit¶es remarquables avec l'interpr¶etation en termes de courbes complexes donn¶ee par Witten [W] pour les vari¶et¶es kÄahl¶eriennes. N¶eanmoins, certaines constructions de g¶eom¶etrie alg¶ebrique complexe semblaient jusqu’`a r¶ecemment ne pas pouvoir ^etre transpos¶ees dans un contexte symplectique : ainsi, le lieu d'annulation d'une section holomorphe g¶en¶erique d'un ¯br¶e tr`es ample sur une vari¶et¶e projective complexe d¶e¯nit une sous-vari¶et¶e complexe, tandis que la construction analogue ne fonctionne pas en g¶eom¶etrie presque complexe. L'id¶ee introduite par Donaldson [D1] consiste `a autoriser de petites variations de la structure presque-complexe : ainsi, une structure presque-complexe J compatible avec ! ¶etant ¯x¶ee, il s'agit de construire non pas des sous-vari¶et¶es J-holomorphes 3 4 I. INTRODUCTION (qui n'existent en g¶en¶eral pas au-del`a de la dimension 1), mais plut^ot des sous- vari¶et¶es approximativement J-holomorphes. De telles sous-vari¶et¶es sont obtenues comme lieux d'annulation de sections approximativement holomorphes de ¯br¶es convenablement choisis : l'observation fondamentale de Donaldson est que, de m^eme qu'un ¯br¶e holomorphe su±samment positif sur une vari¶et¶e projective admet un grand nombre de sections holomorphes, un ¯br¶e en droites su±samment positif sur une vari¶et¶e symplectique compacte admet de nombreuses sections approximative- ment holomorphes. Toutefois, contrairement au cas projectif ou` un argument facile de transversalit¶e permet d'obtenir imm¶ediatement des hypersurfaces complexes, un raisonnement assez long est n¶ecessaire pour prouver l'existence d'une section dont les propri¶et¶es de transversalit¶e `a la section nulle garantissent que le lieu d'annulation est une sous-vari¶et¶e lisse et approximativement J-holomorphe. Il est ais¶e de v¶eri¯er qu'une sous-vari¶et¶e approximativement J-holomorphe W X est symplectique, c’est-`a-dire que la restriction de ! munit W d'une structure½ symplectique. En outre, il existe une structure presque-complexe J 0 compatible avec !, proche de J (mais d¶ependant de W ), telle que W soit une sous-vari¶et¶e J 0-holomorphe de X. Un int¶er^et majeur du r¶esultat de Donaldson est donc de fournir le premier proc¶ed¶e g¶en¶eral de construction d'hypersurfaces symplectiques (codimension r¶eelle 2) dans une vari¶et¶e symplectique compacte arbitraire [D1]. Dans [A1] (voir aussi 2 et chapitre II), ce r¶esultat a ¶et¶e ¶etendu au cas de ¯br¶es de rang sup¶erieur : la constructionx de sections approximativement holomorphes v¶eri¯ant des propri¶et¶es convenables de transversalit¶e permet alors d'obtenir des sous-vari¶et¶es symplectiques (approximativement J-holomorphes) de codimension quelconque, dont on d¶etermine mieux le type topologique que par simple it¶eration du r¶esultat de [D1]. Il a de plus ¶et¶e ¶etabli que, en d¶epit de la grande flexibilit¶e de la construction de Donaldson, les sous-vari¶et¶es que l'on est susceptible d'obtenir `a partir de sections approximativement holomorphes d'un ¯br¶e su±samment positif donn¶e sont uniques a` isotopie symplectique pr`es [A1] (cf. 2 et chapitre II) ; en outre, ce r¶esultat reste vrai m^eme si l'on fait varier la structurex presque-complexe. Cela signi¯e que les sous-vari¶et¶es symplectiques construites `a partir de ¯br¶es suf- ¯samment positifs peuvent ^etre utilis¶ees pour d¶e¯nir des invariants symplectiques de la vari¶et¶e consid¶er¶ee : ainsi des invariants topologiques d¶e¯nis pour des vari¶et¶es de petite dimension (par exemple ceux de Seiberg-Witten en dimension 4) peuvent ^etre utilis¶es pour caract¶eriser des vari¶et¶es symplectiques de dimension sup¶erieure. D'autres r¶esultats classiques de g¶eom¶etrie projective complexe peuvent ^etre transpos¶es a` la g¶eom¶etrie symplectique de fa»con similaire. Ainsi, Donaldson a ¶et¶e le premier `a montrer que deux sections approximativement holomorphes convenable- ment choisies d'un ¯br¶e en droites su±samment positif d¶eterminent une structure de pinceau de Lefschetz symplectique sur une vari¶et¶e symplectique compacte [D2].
Recommended publications
  • 2006-2007 Graduate Studies in Mathematics Handbook
    2006-2007 GRADUATE STUDIES IN MATHEMATICS HANDBOOK TABLE OF CONTENTS 1. INTRODUCTION .................................................................................................................... 1 2. DEPARTMENT OF MATHEMATICS ................................................................................. 2 3. THE GRADUATE PROGRAM.............................................................................................. 5 4. GRADUATE COURSES ......................................................................................................... 8 5. RESEARCH ACTIVITIES ................................................................................................... 24 6. ADMISSION REQUIREMENTS AND APPLICATION PROCEDURES ...................... 25 7. FEES AND FINANCIAL ASSISTANCE............................................................................. 25 8. OTHER INFORMATION..................................................................................................... 27 APPENDIX A: COMPREHENSIVE EXAMINATION SYLLABI ............................................ 31 APPENDIX B: APPLIED MATHEMATICS COMPREHENSIVE EXAMINATION SYLLABI ............................................................................................................................................................. 33 APPENDIX C: PH.D. DEGREES CONFERRED FROM 1994-2006........................................ 35 APPENDIX D: THE FIELDS INSTITUTE FOR RESEARCH IN MATHEMATICAL SCIENCES........................................................................................................................................
    [Show full text]
  • J-Holomorphic Curves and Quantum Cohomology
    J-holomorphic Curves and Quantum Cohomology by Dusa McDuff and Dietmar Salamon May 1995 Contents 1 Introduction 1 1.1 Symplectic manifolds . 1 1.2 J-holomorphic curves . 3 1.3 Moduli spaces . 4 1.4 Compactness . 5 1.5 Evaluation maps . 6 1.6 The Gromov-Witten invariants . 8 1.7 Quantum cohomology . 9 1.8 Novikov rings and Floer homology . 11 2 Local Behaviour 13 2.1 The generalised Cauchy-Riemann equation . 13 2.2 Critical points . 15 2.3 Somewhere injective curves . 18 3 Moduli Spaces and Transversality 23 3.1 The main theorems . 23 3.2 Elliptic regularity . 25 3.3 Implicit function theorem . 27 3.4 Transversality . 33 3.5 A regularity criterion . 38 4 Compactness 41 4.1 Energy . 42 4.2 Removal of Singularities . 43 4.3 Bubbling . 46 4.4 Gromov compactness . 50 4.5 Proof of Gromov compactness . 52 5 Compactification of Moduli Spaces 59 5.1 Semi-positivity . 59 5.2 The image of the evaluation map . 62 5.3 The image of the p-fold evaluation map . 65 5.4 The evaluation map for marked curves . 66 vii viii CONTENTS 6 Evaluation Maps and Transversality 71 6.1 Evaluation maps are submersions . 71 6.2 Moduli spaces of N-tuples of curves . 74 6.3 Moduli spaces of cusp-curves . 75 6.4 Evaluation maps for cusp-curves . 79 6.5 Proofs of the theorems in Sections 5.2 and 5.3 . 81 6.6 Proof of the theorem in Section 5.4 . 82 7 Gromov-Witten Invariants 89 7.1 Pseudo-cycles .
    [Show full text]
  • A Survey of Symplectic and Contact Topology
    Indian J. Pure Appl. Math., 50(3): 665-679, September 2019 °c Indian National Science Academy DOI: 10.1007/s13226-019-0348-1 A SURVEY OF SYMPLECTIC AND CONTACT TOPOLOGY Mahuya Datta¤ and Dheeraj Kulkarni¤¤ ¤Statistics and Mathematics Unit, Indian Statistical Institute 203, B.T. Road, Calcutta 700 108, India ¤¤ Department of Mathematics, Indian Institute of Science Education and Research, Bhopal, India e-mails: [email protected]; [email protected] In this article, we give a brief survey of major historical developments in the field of Contact and Symplectic Geometry. This field has grown into an area in its own right due to rapid progress seen in the last five decades. The community of Indian mathematicians working on this field is small but steadily growing. The contribution from Indian mathematicians to this field is noted in the article. Key words : Contact geometry; symplectic geometry. 1. INTRODUCTION Symplectic geometry has its origin in the Hamiltonian formulation of classical mechanics while con- tact geometry appears on constant energy surfaces in the phase space of classical mechanics. Contact geometry is also the mathematical language of thermodynamics, geometric optics and fluid dynam- ics. Symplectic and contact geometry in the simplest terms can be best described as the geometry of differential forms. In recent times, this has grown into an independent subject in its own right. It has also found applications in important problems of low dimensional topology, complex geometry, algebraic geometry, foliation theory and has given new directions in dynamics. A symplectic form on a manifold M is a non-degenerate 2-form ! which is also closed.
    [Show full text]
  • Gromov's Alternative, Contact Shape, and C^ 0-Rigidity of Contact
    GROMOV’S ALTERNATIVE, CONTACT SHAPE, AND C0-RIGIDITY OF CONTACT DIFFEOMORPHISMS STEFAN MULLER¨ AND PETER SPAETH Abstract. We prove that the group of contact diffeomorphisms is closed in the group of all diffeomorphisms in the C0-topology. By Gromov’s alternative, it suffices to exhibit a diffeomorphism that can not be approximated uniformly by contact diffeomorphisms. Our construction uses Eliashberg’s contact shape. 1. Introduction and main result Let (W 2n,ω) be a connected symplectic manifold, and ωn be the corresponding canonical volume form. We assume throughout this paper that all diffeomorphisms and vector fields are compactly supported in the interior of a given manifold. A symplectic diffeomorphism obviously preserves the volume form ωn, and thus so does a diffeomorphism that is the uniform limit of symplectic diffeomorphisms. In the early 1970s, Gromov discovered a fundamental hard versus soft alternative [Gro86]: either the group Symp(W, ω) of symplectic diffeomorphisms is C0-closed in the group Diff(W ) of all diffeomorphisms (hardness or rigidity), or its C0-closure is (a subgroup of finite codimension in) the group Diff(W, ωn) of volume preserving diffeomorphisms (softness or flexibility). See section 2 for a more precise statement. Gromov’s alternative is a fundamental question that concerns the very existence of symplectic topology [MS98, DT90]. That rigidity holds was proved by Eliashberg in the late 1970s [Eli82, Eli87]. One of the most geometric expressions of this C0- rigidity is Gromov’s non-squeezing theorem. Denote by B2n(r) a closed ball of 2n 2 2n−2 radius r in R with its standard symplectic form ω0, and by B (R) × R = Z2n(R) ⊂ R2n a cylinder of radius R so that the splitting R2 ×R2n−2 is symplectic.
    [Show full text]
  • GAUGED FLOER HOMOLOGY for HAMILTONIAN ISOTOPIES I: DEFINITION of the FLOER HOMOLOGY GROUPS Contents 1. Introduction 1 2. Basic S
    GAUGED FLOER HOMOLOGY FOR HAMILTONIAN ISOTOPIES I: DEFINITION OF THE FLOER HOMOLOGY GROUPS GUANGBO XU Abstract. We construct the vortex Floer homology group VHF (M; µ; H) for an aspherical Hamil- tonian G-manifold (M; !) with moment map µ and a class of G-invariant Hamiltonian loop Ht, following the proposal of [3]. This is a substitute for the ordinary Hamiltonian Floer homology of the symplectic quotient of M. We achieve the transversality of the moduli space by the classical perturbation argument instead of the virtual technique, so the homology can be defined over Z or Z2. Contents 1. Introduction 1 2. Basic setup and outline of the construction7 3. Asymptotic behavior of the connecting orbits 14 4. Fredholm theory 21 5. Compactness of the moduli space 28 6. Floer homology 31 Appendix A. Transversality by perturbing the almost complex structure 37 References 46 1. Introduction 1.1. Background. Floer homology, introduced by Andreas Floer (see [8], [9]), has been a great triumph of J-holomorphic curve technique invented by Gromov [17] in many areas of mathemat- ics. Hamiltonian Floer homology gives new invariants of symplectic manifolds and its Lagrangian submanifolds and has been the most important approach towards the solution to the celebrated Arnold conjecture initiated in the theory of Hamiltonian dynamics; the Lagrangian intersection Floer homology is the basic language in defining the Fukaya category of a symplectic manifold and stating Kontsevich's homological mirror symmetry conjecture; several Floer-type homology theory, including the instanton Floer homology ([7], [4]), Heegaard-Floer theory ([29]), Seiberg- Witten Floer homology ([22]), ECH theory ([20], [21]), has become tools of understanding lower dimensional topology.
    [Show full text]
  • Topological Persistence in Geometry and Analysis
    Applied VOLUME 74 UNIVERSITY LECTURE SERIES Mathematics Topological Persistence in Geometry and Analysis Leonid Polterovich Daniel Rosen Karina Samvelyan Jun Zhang 10.1090/ulect/074 Topological Persistence in Geometry and Analysis UNIVERSITY LECTURE SERIES VOLUME 74 Topological Persistence in Geometry and Analysis Leonid Polterovich Daniel Rosen Karina Samvelyan Jun Zhang EDITORIAL COMMITTEE Robert Guralnick William P. Minicozzi II (Chair) Emily Riehl Tatiana Toro 2010 Mathematics Subject Classification. Primary 55U99, 58Cxx, 53Dxx. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-74 Library of Congress Cataloging-in-Publication Data Names: Polterovich, Leonid, 1963- author. | Rosen, Daniel, 1980- author. | Samvelyan, Karina, 1988- author. | Zhang, Jun, 1988- author. Title: Topological persistence in geometry and analysis / Leonid Polterovich, Daniel Rosen, Karina Samvelyan, Jun Zhang. Description: Providence, Rhode Island : American Mathematical Society, [2020] | Series: Univer- sity lecture series, 1047-3998 ; volume 74 | Includes bibliographical references and index. Identifiers: LCCN 2019059052 | ISBN 9781470454951 (paperback) | ISBN 9781470456795 (ebook) Subjects: LCSH: Algebraic topology. | Homology theory. | Combinatorial topology. | Symplectic geometry. | Mathematical analysis. | AMS: Algebraic topology – Applied homological alge- bra and category theory [See also 18Gxx]. | Global analysis, analysis on manifolds [See also 32Cxx, 32Fxx, 32Wxx, 46-XX, 47Hxx, 53Cxx] {For geometric integration theory,
    [Show full text]
  • Symposium on Symplectic Geometry 1997-2000 Report
    MATHEMATICS RESEARCH CENTRE SYMPOSIUM ON SYMPLECTIC GEOMETRY 1997-2000 REPORT JOHN RAWNSLEY DIETMAR SALAMON GR/L17009/01 Contents 1 Overview 2 The Programme 2.1 Workshops 2.2 Lecture courses 2.3 Seminars Appendices A Research Overview A.1 Floer homology A.2 Seiberg-Witten invariants and smooth 4-manifolds A.3 Quantization A.4 Moment maps and symplectic reduction A.5 Topics in symplectic topology A.6 Topics in contact geometry A.7 Topics in algebraic geometry A.8 Topics in Hamiltonian dynamics B List of Lectures C List of Publications C.1 Books worked on during the Symposium C.2 Papers worked on during the Symposium C.3 Other recent papers by participants D List of participants E A selection of comments by visitors F Programmes of Workhops Detailed Report 1 Overview The symposium activities in 1997-98 centered around four main workshops, and included several lecture courses, seminar series, lecture series by visitors, some short meetings and an LMS Spitalfields Day. A closing workshop was held in July 2000 at the end of the three year grant period which gave the opportunity to cover the new developments resulting from Kontsevich's work in deformation theory. There were three visitors for the whole year (Véronique Chloup-Arnould, Laurent Lazzarini, Joachim Weber) financed by other sources, a number of long term visitors (including Shigeru Mukai, Nagoya, who came for five months from October 1997 to April 1998), and 225 registered particpants for the longer activities as well as many who came to talks from nearby institutions. In addition to the EPSRC grant of £ 80,000 visitors were also supported by EC funds for two TMR fellowships (Laurent Lazzarini, £ 24,344 for 16 months, and Joachim Weber, £ 20,943 for 14 months).
    [Show full text]
  • Moduli Spaces of Pseudo-Holomorphic Disks and Floer Theory of Cleanly Intersecting Immersed Lagrangians
    MODULI SPACES OF PSEUDO-HOLOMORPHIC DISKS AND FLOER THEORY OF CLEANLY INTERSECTING IMMERSED LAGRANGIANS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ken Yin Kwan Chan August 2010 © 2010 by Yin Kwan Chan. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/bz202yk0512 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Eleny Ionel, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Yakov Eliashberg I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Soren Galatius Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract In this thesis we investigate moduli spaces of pseudo-holomorphic disks with La- grangian boundary conditions, in which the Lagrangians are immersed with clean self-intersections.
    [Show full text]
  • Quantum and Floer Cohomology Have the Same Ring Structure
    Quantum and Floer cohomology have the same ring structure by Serguei Piunikhin Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the - MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1996 SMassachusetts Institute of Technology 1996. All rights reserved. A uthor .............................................. ... ......... Department of Mathematics May 17, 1996 I'll Certified by.... ...... .... .. .. .. .. .. .. .. .. .. ... .. I. M. Singer Institute Professor Thesis Supervisor Accepted by.. o.w .,..... David Vogan Chairman, Departmental Committee on Graduate Students JUL 0 8 1996 ~'.'f Quantum and Floer cohomology have the same ring structure by Serguei Piunikhin Submitted to the Department of Mathematics on May 17, 1996, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract The action of the total cohomology space H*(M) of an almost-Kahler manifold M on its Floer cohomology, introduced originally by Floer, gives a new ring structure on the cohomology of the manifold. In this thesis we prove that the total cohomology space H*(M), provided with this new ring structure, is isomorphic to the quantum cohomology ring. As a special case, we prove the the formula for the Floer cohomology ring of the complex grassmanians conjectured by Vafa and Witten. Thesis Supervisor: I. M. Singer Title: Institute Professor Acknowledgments I am greatly indebted to my thesis advisor I.M. Singer and to my old friend Vladimir Sadov for introducing me to the problem and for many helpful remarks without which this work would not be possible. This work would not also be possible without Gang Tian who helped me to fix some gaps in the analysis present in the early versions of the manuscript.
    [Show full text]
  • Morse Theory for Periodic Solutions of Hamiltonian Systems and the Maslov Index
    Morse Theory for Periodic Solutions of Hamiltonian Systems and the Maslov Index DIETMAR SALAMON University of Warwick AND EDUARD ZEHNDER ETH-Zentrum, Zurich This paper is dedicated to Natascha A. Brunswick. Abstract In this paper we prove Morse type inequalities for the contractible 1-periodic solutions of time dependent Hamiltonian differential equations on those compact symplectic manifolds M for which the symplectic form and the first Chern class of the tangent bundle vanish over q(M). The proof is based on a version of infinite dimensional Morse theory which is due to Floer. The key point is an index theorem for the Fredholm operator which plays a central role in Floer homology. The index formula involves the Maslov index of nondegenerate contractible periodic solutions. This Maslov index plays the same role as the Morse index of a nondegenerate critical point does in finite dimensional Morse theory. We shall use this connection between Floer homology and Maslov index to establish the existence of infinitely many periodic solutions having integer periods provided that every I-periodic solution has at least one Floquet multiplier which is not equal to 1. 1. Introduction Let (M,o) be a compact symplectic manifold of dimension 2n. Here o is a closed 2-form on M which is nondegenerate and therefore induces an iso- morphism T'M + TM. Thus every smooth, time-dependent Hamiltonian function H : R x A4 + W gives rise to a time-dependent Hamiltonian vector field XH : W x M + TM defined by for < E T,M. Assume that H (and hence X,) is periodic in time H(t + 1,x) = H(t,x) and consider the time-dependent Hamiltonian differential equation Communications on Pure and Applied Mathematics, Vol.
    [Show full text]
  • Reflections in a Cup of Coffee
    REFLECTIONS IN A CUP OF COFFEE RAF BOCKLANDT ABSTRACT. Allegedly, Brouwer discovered his famous fixed point theorem while stirring a cup of coffee and noticing that there is always at least one point in the liquid that does not move. In this paper, based on a talk in honour of Brouwer at the University of Amsterdam, we will explore how Brouwer’s ideas about this phenomenon spilt over in a lot of different areas of mathematics and how this eventually led to an intriguing geometrical theory we now know as mirror symmetry. 1. BROUWER’S BEGINNINGS As the nineteenth century drew to a close, the famous French mathematician Henri Poincare´ unleashed a new type of geometry onto the world, which would transform many areas in mathematics and keep mathematicians busy until this very day. Poincare´ used topology —or analysis situs as this new geometry was called in these days— to study solutions of differential equations by looking at the global structure of the spaces on which they were defined [20]. This global information was of a different nature than the classical geometrical prop- erties like distances and angles. Unlike the latter, topological properties of a space do not change under continuous deformations like stretching and bending. They describe more robust features such as the number of holes in a space or the different ways to connect to points. Although some of these concepts were already known before, Poincare´ brought the subject to a new level by demonstrating how they could be used to derive higly nontrivial results in seemingly unrelated research areas.
    [Show full text]
  • J-Holomorphic Curves and Symplectic Topology Second Edition
    American Mathematical Society Colloquium Publications Volume 52 J-holomorphic Curves and Symplectic Topology Second Edition Dusa McDuff Dietmar Salamon J-holomorphic Curves and Symplectic Topology Second Edition http://dx.doi.org/10.1090/coll/052 American Mathematical Society Colloquium Publications Volume 52 J-holomorphic Curves and Symplectic Topology Second Edition Dusa McDuff Dietmar Salamon American Mathematical Society Providence, Rhode Island Editorial Board Lawrence C. Evans Yuri Manin Peter Sarnak (Chair) For the first edition of this book, the first author was supported in part by NSF Grants DMS 0072512 and DMS 0305939. For the second edition of the book, the first author was partially supported by NSF Grant DMS0905191. For the second edition of this book, the second author was partially supported by the Swiss National Science Foundation Grant 200021-127136. Section C.3 of Appendix C will revert to the public domain 28 years from publication. Joel Robbin is the sole author of Section C.3. 2010 Mathematics Subject Classification. Primary 53D05, 53D45, 53D35, 57R17, 37J05, 32Q65; Secondary 53D12, 53D40, 58J05, 14N35. For additional information and updates on this book, visit www.ams.org/bookpages/coll-52 Library of Congress Cataloging-in-Publication Data McDuff, Dusa, 1945– J-holomorphic curves and symplectic topology / Dusa McDuff, Dietmar Salamon – 2nd ed. p. cm. — (American Mathematical Society colloquium publications ; v. 52) Includes bibliographical references and index. ISBN 978-0-8218-8746-2 (alk. paper) 1. Symplectic and contact topology. 2. Symplectic manifolds. 3. Pseudoholomorphic curves. I. Salamon, D. (Dietmar). II. Title. QA613.59.M34 2012 516.36–dc23 2012016161 Copying and reprinting.
    [Show full text]