Langerhans Cells Dendritic Cells Is a Direct Precursor of Subset of Human Blood + /Cd11c + a Cd1a
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Duffy, and Mnss Group Systems
Blood Groups – Duffy, and MNSs Group Systems Qun Lu, MD Assistant Professor Division of Transfusion Medicine Department of Pathology and Laboratory Medicine UCLA, School of Medicine Los Angeles, California 2009-03-12 Duffy Blood Group System History . 1950: Mrs. Duffy, a multiply transfused hemophiliac woman, developed an antibody not reacting with the known RBC antigens. Corresponding antigen was named after Mrs. Duffy . 1951: Fyb antibody was described in a woman with 3 pregnancies. 1955: Majority of blacks tested Fy(a-b-) . 1975: Fy(a-b-) RBCs were shown to resist infection by malaria organism Plasmodium vivax. Later: more Duffy antigens (Fy3, Fy4, Fy5, Fy6) were discovered . ISBT: 008 for the Duffy Blood Group Duffy Antigens . Most common: Fya and Fyb. Present at 6 weeks of gestation, well developed at birth – anti- Fy can cause hemolytic disease of newborn . Duffy antigens can be destroyed by enzymes such as ficin, papain, bromelain, chymotrypsin, ZZAP . When compared to Rh or Kell antigens, Duffy antigens are not very immunogenic. So, anti-Fya or anti-Fyb is not common. Fy (a-b-) is not Fy null, but homozygous for Fyb gene, they express Fyb antigen in other tissues, but not on RBCs → only will produce anti-Fya, not anti-Fyb. Fy (a-b-) is negative for Fy6 antigen which is the receptor for P. vivax (Fy6 is + when Fya + or Fyb+) Duffy Antigens . Phenotype Frequencies Chinese Phenotype Whites % Blacks % % Fy (a+b-) 17 9 90.8 Fy (a+b+) 49 1 8.9 Fy (a-b+) 34 22 0.3 Fy (a-b-) rare 68 0 White donor population: Fya: 66% Caucasians, 10% Blacks, 99% Asians Fya – units: 35% Fyb: 83% Caucasians, 23% Blacks, 18.5% Asians Fyb – units: 15% Fy3: 100% Caucasians, 32% Blacks, 99.9% Asians Duffy Antigens . -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Identification of a Receptor Required for the Anti-Inflammatory Activity of IVIG
Identification of a receptor required for the INAUGURAL ARTICLE anti-inflammatory activity of IVIG Robert M. Anthonya, Fredrik Wermelinga,b, Mikael C. I. Karlssonb, and Jeffrey V. Ravetcha,1 aThe Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065; and bDepartment of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 25, 2006. Contributed by Jeffrey V. Ravetch, October 11, 2008 (sent for review October 1, 2008) The anti-inflammatory activity of intravenous Ig (IVIG) results from patients suffering from autoimmune diseases (3). Monomeric IgG, a minor population of the pooled IgG molecules that contains purified from the serum of thousands of healthy donors (IVIG) is terminal ␣2,6-sialic acid linkages on their Fc-linked glycans. These a commonly administered at high doses (1–2 g/kg) for the treatment anti-inflammatory properties can be recapitulated with a fully of a number of autoimmune diseases, including immune-mediated recombinant preparation of appropriately sialylated IgG Fc frag- thrombocytopenia, chronic inflammatory demyelinating polyneu- ments. We now demonstrate that these sialylated Fcs require a ropathy, Kawasaki Disease and Guillain-Barre syndrome, and is specific C-type lectin, SIGN-R1, (specific ICAM-3 grabbing non- widely used in other autoimmune disorders (4–6). integrin-related 1) expressed on macrophages in the splenic mar- A number of hypotheses have been advanced to explain the ginal zone. Splenectomy, loss of SIGN-R1؉ cells in the splenic paradoxical activity of high dose IgG, and include models that marginal zone, blockade of the carbohydrate recognition domain attribute the activity to the polyclonal binding specificities, encoded (CRD) of SIGN-R1, or genetic deletion of SIGN-R1 abrogated the in the variable domains of the administered antibodies that may anti-inflammatory activity of IVIG or sialylated Fc fragments. -
Regulation of Macrophage Development and Function in Peripheral Tissues
REVIEWS Regulation of macrophage development and function in peripheral tissues Yonit Lavin, Arthur Mortha, Adeeb Rahman and Miriam Merad Abstract | Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. Mononuclear phagocyte Macrophages are key components of the innate immune characterized the transcriptional and epigenetic pro- system system that reside in tissues, where they function as grammes of tissue-resident macrophages and revealed (MPS). A group of bone immune sentinels. They are uniquely equipped to sense the extent of diversity in these populations1,8. In addi- marrow-derived cells and respond to tissue invasion by infectious microorgan- tion to differences in ontogeny, locally derived tissue (monocytes, macrophages and isms and tissue -
Stroma-Free, Serum-Free Expansion and Differentiation of Hematopoietic Stem and Progenitor Cells to the T Cell Lineage Nooshin Tabatabaei-Zavareh1, Tim A
Stroma-free, serum-free expansion and differentiation of hematopoietic stem and progenitor cells to the T cell lineage Nooshin Tabatabaei-Zavareh1, Tim A. Le Fevre1, Alexander J.Y. Man1, Evan A. Karas1, Stephen J. Szilvassy1, Terry E. Thomas1 , Allen C. Eaves1,2, and Albertus W. Wognum1 1 STEMCELL Technologies Inc., Vancouver, BC, Canada 2 Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada Introduction The use of T cells for cancer immunotherapy and other therapeutic applications relies on the isolation of T cells from peripheral blood and their subsequent activation and expansion in culture. T cells can also be generated from hematopoietic stem and/or progenitor cells (HSPCs) in cord blood (CB) or bone marrow (BM). This approach not only offers a renewable source of T cells, but also provides a model system to study disease mechanisms or validate new drugs that affect T cell development and/or function. Differentiation of HSPCs to T cells typically requires co-culture with stromal cell lines that have been engineered to express a Notch-ligand. In such cultures, CD34+CD38-/lo HSPCs develop into CD7+CD5+ pro-T cells that further differentiate to T lineage-committed progenitor cells (pre-T cells) characterized by the expression of CD1a. CD7+CD1a+ pre-T cells can then differentiate to express CD4 and become CD4 immature single-positive (CD4ISP) cells. CD4ISP cells give rise to CD4+CD8+ double positive (DP) cells. These finally mature into CD4 and CD8 single-positive (SP) CD3+TCRαβ+ T cells. Here we describe a serum-free culture method that recapitulates these differentiation steps in the absence of stromal cells and generates large numbers of functional T lineage cells from a limited number of purified CD34+ CB cells. -
Flow Reagents Single Color Antibodies CD Chart
CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n -
Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease
Molecular Neurobiology (2019) 56:5009–5024 https://doi.org/10.1007/s12035-018-1421-1 Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease Anna Bartoletti-Stella1 & Patrizia Corrado2 & Nicola Mometto2 & Simone Baiardi2 & Pascal F. Durrenberger3 & Thomas Arzberger4,5 & Richard Reynolds6 & Hans Kretzschmar5 & Sabina Capellari1,2 & Piero Parchi1,7 Received: 18 July 2018 /Accepted: 1 November 2018 /Published online: 16 November 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/ inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regu- lation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). -
A Single Wave of Monocytes Is Sufficient to Replenish the Long-Term
bioRxiv preprint doi: https://doi.org/10.1101/617514; this version posted April 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A single wave of monocytes is sufficient to replenish the long-term Langerhans cell network after immune injury Ivana R. Ferrer1,2,a, Heather C. West1,2,a, Stephen Henderson2, Dmitry S. Ushakov3, Pedro Santos e Sousa1,2, Jessica Strid4, Ronjon Chakraverty1,2, Andrew J. Yates5, and Clare L. Bennett1,2 1Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK 2Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK. 3Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, New Hunt’s House, Newcomen St, London SE1 1UL, UK 4Division of Immunology and Inflammation, Imperial College London, Hammersmith campus, London W12 0NN, UK. 5Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY10032, USA. aThese authors contributed equally to this work Abstract • Immune injury and inefficient repopulation by Embryo-derived Langerhans cells (eLC) are maintained within monocyte-derived cells lead to a permanently altered the sealed epidermis without contribution from circulating cells. LC niche. When the network is perturbed by transient exposure to ultra- violet light, short-term LC are temporarily reconstituted from an initial wave of monocytes, but thought to be superseded by more permanent repopulation with undefined LC precur- sors. However, the extent to which this mechanism is relevant to immune-pathological processes that damage LC population integrity is not known. -
Quantitation of the Number of Molecules of Glycophorins C and D on Normal Red Blood Cells Using Radioiodinatedfab Fragments of Monoclonal Antibodies
Quantitation of the Number of Molecules of Glycophorins C and D on Normal Red Blood Cells Using RadioiodinatedFab Fragments of Monoclonal Antibodies By Jon Smythe, Brigitte Gardner, andDavid J. Anstee Two rat monoclonal antibodies (BRAC 1 and BRAC 1 1 ) cytes. Fabfragments of BRAC 1 1 and ERIC 10 gave values have been produced. BRAC 1 recognizes an epitope com- of 143,000 molecules GPC per red blood cell (RBC). Fab mon to the human erythrocyte membrane glycoproteins fragments of BRAC1 gave 225,000 molecules of GPC and glycophorin C (GPC) and glycophorin D (GPD). BRAC 11 GPD per RBC. These results indicate that GPC and GPD is specific for GPC. Fabfragments of these antibodies and together are sufficiently abundantto provide membrane at- BRlC 10, a murine monoclonal anti-GPC,were radioiodin- tachment sites for all ofthe protein 4.1 in normal RBCs. ated and used in quantitative binding assays to measure 0 1994 by The American Societyof Hematology. the number of GPC and GPD molecules on normal erythro- HE SHAPE AND deformability of the mature human (200,000)" and those reported for GPC (50,000).7 This nu- Downloaded from http://ashpublications.org/blood/article-pdf/83/6/1668/612763/1668.pdf by guest on 24 September 2021 T erythrocyte is controlled by a flexible two-dimensional merical differencehas led to the suggestion that a significant lattice of proteins, which together comprise the membrane proportion of protein 4.1 in normal erythrocyte membranes skeleton.' The major components of the skeleton are spec- must be bound to sites other than GPC and GPD.3 The trin, actin, ankyrin, and protein 4.1. -
Chapter 6.4 Herpes Simplex Virus Enhances HIV-1 Transmission By
6.4: HSV enhances HIV-1 transmission by LCs Chapter 6.4 Herpes simplex virus enhances HIV-1 transmission by Langerhans cells. Lot de Witte*, Marein A.W.P. de Jong*, Yvette van Kooyk and Teunis B.H. Geijtenbeek. Genital herpes is a risk factor to acquire HIV-1 infection by sexual contact, by increasing both infectivity of an infected person and susceptibility to acquire HIV-1. Here we have investigated the mechanisms that underlie the increased susceptibility to HIV-1 when people have genital herpes. Under steady state conditions, LCs capture HIV-1 through interaction with the C-type lectin Langerin, resulting in viral clearance and protection against HIV-1. During primary genital herpes or recurrent infections, HSV infects epithelial cells and encounters LCs in the mucosal epithelium. We set out to investigate the function of HSV-infected LCs and subepithelial DCs during HIV-1 transmission. We demonstrate that HSV interacts with soluble and cellular Langerin and that infection of LCs decreases expression of this receptor. Notably, LC infection with both HSV-1 and HSV-2 enhances HIV-1 transmission, suggesting an important role for LCs during HIV-1 transmission in the HSV-infected individual. Furthermore our data indicate that HSV infection of DCs and LCs has different outcomes for HIV-1 transmission, and our results suggest that DC-SIGN and Langerin are involved. Future research is needed to confirm the differential role of Langerin and DC-SIGN during HIV-1 transmission in conditions of genital herpes. Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands *Authors contributed equally to this work (Manuscript submitted for publication) 195 Section 6: Risk factors to acquire HIV-1: a role for Langerhans cells? Introduction Genital herpes is a common infection, which is mainly caused by herpes simplex virus type-2 (HSV-2), although an increasing percentage of the genital herpes is caused by HSV-141. -
CD Markers Are Routinely Used for the Immunophenotyping of Cells
ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr. -
Progress in Understanding the Pathogenesis of Langerhans Cell Histiocytosis: Back to Histiocytosis X?
review Progress in understanding the pathogenesis of Langerhans cell histiocytosis: back to Histiocytosis X? Marie-Luise Berres,1,2,3,4 Miriam Merad1,2,3 and Carl E. Allen5,6 1Department of Oncological Sciences, Mount Sinai School of Medicine, 2Tisch Cancer Institute, Mount Sinai School of Medicine, 3Immunology Institute, Mount Sinai School of Medicine, New York, NY, USA, 4Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany, 5Texas Children’s Cancer Center, and 6Baylor College of Medicine, Houston, TX, USA Summary Langerhans cell histiocytosis (LCH) is the most common his- tiocytic disorder, arising in approximately five children per Langerhans cell histiocytosis (LCH), the most common million, similar in frequency to paediatric Hodgkin lym- histiocytic disorder, is characterized by the accumulation of phoma and acute myeloid leukaemia (AML) (Guyot-Goubin CD1A+/CD207+ mononuclear phagocytes within granuloma- et al, 2008; Stalemark et al, 2008; Salotti et al, 2009). The tous lesions that can affect nearly all organ systems. Histori- median age of presentation is 30 months, though LCH is cally, LCH has been presumed to arise from transformed or reported in adults in approximately one adult per million, pathologically activated epidermal dendritic cells called Lan- both as unrecognized chronic paediatric disease and de novo gerhans cells. However, new evidence supports a model in disease (Baumgartner et al, 1997). There are occasional which LCH occurs as a consequence of a misguided differen- reports of affected non-twin siblings and multiple cases in tiation programme of myeloid dendritic cell precursors. one family, though it is not clear if this is significantly more Genetic, molecular and functional data implicate activation frequent than one would expect by chance (Arico et al, of the ERK signalling pathway at critical stages in myeloid 2005).