JOHN D. PADEN 2335 Irving Hill Rd Cell Phone: (303) 818-6406 Lawrence, KS 66045 Work Phone: (785) 864-1692 Email: [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

JOHN D. PADEN 2335 Irving Hill Rd Cell Phone: (303) 818-6406 Lawrence, KS 66045 Work Phone: (785) 864-1692 Email: Paden@Ku.Edu JOHN D. PADEN 2335 Irving Hill Rd Cell Phone: (303) 818-6406 Lawrence, KS 66045 Work Phone: (785) 864-1692 Email: [email protected] EDUCATION: Ph.D. Electrical Engineering, University of Kansas, 2006 (with honors) Dissertation Title: “Synthetic Aperture Radar for Imaging the Basal Conditions of the Polar Ice Sheets.” M.S. Electrical Engineering, University of Kansas, 2003 (with honors) B.S. Computer Engineering, University of Kansas, 1999 RESEARCH AND PROFESSIONAL INTERESTS: SAR signal processing and related technologies; signal and image processing; sensor design and development; system engineering. PROFESSIONAL EXPERIENCE: 2012-Present: Associate Scientist, University of Kansas, Center for Remote Sensing of Ice Sheets. Primary responsibilities are the same. 2010-2012: Research Assistant Professor, University of Kansas, Center for Remote Sensing of Ice Sheets. Primary responsibilities: Lead radar signal processing efforts Lead radar data processing efforts Lead field work in Antarctica and Greenland Advise on radar system engineering and software engineering tasks Advise undergraduate and graduate students working in the signal and data processing areas 2006-2010: SAR/Systems Engineer, Vexcel Corporation. Primary responsibilities: System architect for SAR related technologies. Developed a prototype ground based 3D-SAR and complementary software processing tools. Managed and developed a SAR-tag SBIR phase II program. Analysis, design, and development of SAR sensors and supporting technologies. Analyze and process data from satellite SAR systems. Implementation of digital signal processing algorithms on field programmable gate arrays. Application of photogrammetry to the generation of digital elevation models of natural surfaces 2001-2006: Graduate Research Assistant, Center for Remote Sensing of Ice Sheets (also Radar Systems and Remote Sensing Laboratory), Department of Electrical Engineering and Computer Science, University of Kansas. Primary responsibilities: Design and lead development of synthetic aperture radars for imaging the base of polar ice sheets. Developed ground based and airborne versions of the system. Design and develop software for radar control and calibration, bistatic synchronization, and SAR processing. Modeling ice sheets using rough surface scattering theory and dielectric models of ice sheets. Help direct undergraduate and graduate students on work related to polar remote sensing. 1999-2000: Graduate Research Assistant, Information and Telecommunications Technology Center (ITTC), Department of Electrical Engineering and Computer Science, University of Kansas. Primary responsibilities: Design and develop comprehensive database solution for ITTC. 1996-1999: Undergraduate Research Assistant, Information and Telecommunications Technology Center, Department of Electrical Engineering and Computer Science, University of Kansas. Primary responsibilities: Design and test PCI interface card and Linux device driver software for data/control between computer and radio. Develop interface and error control coding hardware for high-speed radio. 1995-1996: Undergraduate Research Assistant, Unified Network Informatics for Education, School of Education, University of Kansas. Primary responsibilities: Continued development on a Macintosh web browser and built client/server interface to education resources database. TEACHING EXPERIENCE Fall 1999: Graduate Teaching Assistant for EECS 388 Computer Systems and Assembly Language Laboratory. Spring 2000: Graduate Teaching Assistant for EECS 212 Circuits II Laboratory; co- developed labs for this course (first time offered by department). Fall 2000: Graduate Teaching Assistant and Grader for EECS 562 Introduction to Communication Systems Laboratory. Spring 2001: Graduate Teaching Assistant for EECS 420 Electromagnetics II Laboratory. Spring 2002: Grader for EECS 863 Analysis of Communication Networks. Fall 2015: Guest Lecturer for 2 week workshop on SAR processing for EECS 826 InSAR and Applications. GRANTS 2016-2019: Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers, NSF, Award No. (FAIN): ANT-1543530, $440,000, Paden is Co-Investigator. The objective of this research is to gain a better understanding of glacier ice flow in the transition region from grounded ice to floating ice shelves. The research targets three glaciers in the West Antarctic and will investigate whether ongoing changes in these glaciers will lead to long-term mass loss or whether these glaciers will stabilize. The CReSIS contribution to the proposal is to generate fine resolution bed topographic maps to capture smaller-scale bed features that may control the flow of these glaciers and to support radar image analysis to recover additional geophysical parameters of the bed interface. 2015-2019: Airborne Radar Surveys of Land and Sea Ice and Data Processing Using CReSIS Instrumentation to Support IceBridge Observations, NASA Award: FED0074770/ NNX16AH54G, $6,111,162, Paden is Co-Investigator. 2013-2017 NASA Adaptation of the Snow Radar for NASA Global Hawk and Ikhana Unmanned Aircraft in Support of Operation Ice Bridge with internal match of $30K from KUCR and CReSIS, NASA, $490,000, Award Number: FED0071958, Federal Award Number: NNX13AQ30A, Principle Investigator. 2015-2016 Multi-agent Airborne Laboratory for Cryospheric Remote Sensing, Paul G Allen Family Foundation, $199,356, Paden is Co-Investigator. 2014-2015 Airborne Ultrawide Radars for Sounding and Imaging of Ice Sheets And Fine resolution Mapping of Internal Layers, Alfred Wegener Institute for Polar and Marine Research, $2,643,500, Paden is Co-Investigator. 2014-2019 NSF CIF21 DIBBs: High Performance Scalable Interoperable Data Analytics Libraries: Abstractions, Communities, Exemplars (SPIDAL project), Principal Investigator: Geoffrey Fox at Indiana University, $256,569 + $7,452 + $8,430 (subaward + 2015 REU supplement + 2016 REU supplement), Project Number: UNI0070344 + UNI0075021, Federal Award Number: ACI-1443054, Subaward Number: BL-4848800- UK, Paden is Subaward Principle Investigator. The goal for the SPIDAL project is to create software abstractions to help connect communities together with applications in different scientific fields, letting us collaborate and use other communities’ tools without having to understand all of their details. The project will integrate features of traditional high-performance computing, such as scientific libraries, communication and resource management middleware, with the rich set of capabilities found in the commercial Big Data ecosystem. The latter includes many important software systems, such as Hadoop, available from the Apache open source community. CReSIS contribution to SPIDAL is to use HPC computing to solve large global optimization problems related to internal layer tracking and generation of ice bed digital elevation models from 3-D images generated from the petabyte-scale CReSIS radar dataset. 2012-2016 NSF MRI: Development of a high-power, large antenna array and ultrawideband radar for a Basler for sounding and imaging of fast-flowing glaciers and mapping internal layers, Principal Investigator: Richard Hale, $2,546,171, Federal Award Number: ANT-1129716, Paden is Co-Investigator. Intellectual Merit: The development of an ultra-wideband (150-600 MHz) radar with a large cross-track array of 24 elements for basal and englacial imaging of ice sheets and glaciers. Broader Impacts: The application of the developed technology to other geophysical studies, including sea ice, permafrost, soil moisture, vegetation, and snow thickness over land. Resulted in 3 peer-reviewed presentations and 1 peer reviewed articles (Wang 2015) with several other articles. One MS thesis completed. 2010-2013: NASA Deployment of a radar instrumentation suite to monitor land and sea ice in support of Operation ICE Bridge, $3,434,875, Paden is Co-Investigator. 2010: Microsoft Research, Digital Elevation Maps of the Dry Valleys of Antarctica, $7,793, Principle Investigator. PUBLICATIONS – PEER REVIEWED (41 ACCEPTED, 6 IN REVIEW/PREP) L. An, E. Rignot, S. Elief, M. Morlighem, J. Mouginot, D. M. Holland, D. Holland, J. Paden, Bed elevation of Jakobshavn Isbrae, West Greenland from high-resolution airborne gravity and other data, submitted to Geophysical Research Letters Oct 2016. Maryam Rahnemoonfar, Geoffrey Fox, Masoud Yari, John Paden, “Automatic Bedrock and Ice Layer Boundaries Estimation in Radar Imagery Based on Level Set Approach,” accepted with major revisions Oct 2016 to IEEE Transactions on Geoscience and Remote Sensing. A. Winter, D. Steinhage, E. J. Arnold, D. D. Blankenship, M. G. P. Cavitte, H. F. J. Corr, J. D. Paden, S. Urbini, D. A. Young, and O. Eisen, “Radio-echo sounding measurements and ice-core synchronization at Dome C, Antarctica,” submitted Jun 2016 to The Cryosphere, tc-2016-147. Nanna B. Karlsson, Olaf Eisen, Dorthe Dahl-Jensen, Johannes Freitag, Sepp Kipfstuhl, Lisbeth T. Nielsen, John D. Paden, Anna Winter, Frank Wilhelms, “700a accumulation rates in North Central Greenland derived from radar data,” Frontiers in Earth Science, vol. 4, article 97, Nov 16, 2016. Thomas Jordan, Jonathan Bamber, Chris Williams, John Paden, Martin Siegert, Philippe Huybrechts, Olivier Gagliardini, and Fabien Gillet-Chaulet, An ice-sheet wide framework for englacial attenuation and basal reflection from ice penetrating radar data, accepted Jun 2016 to The Cryosphere. Joseph MacGregor, Mark Fahnestock, Ginny Catania, Andy Aschwanden, Gary Clow, William Colgan, Siva Prasad
Recommended publications
  • Mass Balance of East Antarctic Glaciers and Ice Shelves from Satellite Data
    Annals of Glaciology 34 2002 # InternationalGlaciological Society Massbalance ofEast Antarctic glaciers and ice shelves fromsatellite data Eric Rignot JetPropulsion Laboratory,California Institute ofTechnology,4800OakGrove Drive,Pasadena, CA9 1109-8099,U.S.A. ABSTRACT.Thevelocity and mass dischargeof nine ma jorEast Antarcticglaciers not draininginto the Ross orFilchner^R onneI ce Shelvesis investigatedusing interferometric synthetic aperture radar(InSAR) datafrom the EuropeanR emote-sensing Satellite1and2 (ERS-1/2)andRAD ARSAT-1.Theglaciers are: David, Ninnis, Mertz,Totten,Scott, Denman, Lambert, Shiraseand Stancom b-Wills. InSARis used tolocate their groundingline with pre- cision.Ice velocityis measured witheither InSARor aspeckle-trackingtechnique. Ice thickness is deducedfrom prior -determined ice-shelf elevationassuming hydrostatic equi- librium.Mass fluxesare calculated both at the groundingline and at a fluxgate located downstream.The grounding-line flux is comparedto a mass inputcalculated from snow accumulationto deduce the glaciermass balance.The calculation is repeatedat the flux gatedownstream of the groundingline to estimate the averagebottom melt rate ofthe ice shelf understeady-state conditions.The main results are:( 1)Groundinglines arefound severaltens ofkm upstream ofprior-identified positions, not because of a recent ice-sheet retreat butbecause of the inadequacyof prior-determined grounding-linepositions. ( 2)No grossim balancebetween outflow and inflow is detected onthe nineglaciers being investi- gated,with an uncertainty of 10^20%.Prior-determined, largelypositive mass imbalances weredue to an incorrect localizationof the groundingline. ( 3)High rates ofbottommelting (24 7 m ice a^1)areinferred neargrounding zones, where ice reaches the deepest draft.A few§glaciers exhibit lower bottom melt rates (4 7 m ice a^1).Bottommelting, however , appearsto be a majorsource ofmass loss onAntarctic § ice shelves.
    [Show full text]
  • Profile of Eric Rignot PROFILE Brian Doctrow, Science Writer
    PROFILE Profile of Eric Rignot PROFILE Brian Doctrow, Science Writer Sometimes taking a step back helps to see things more clearly. Eric Rignot, a glaciologist at the Univer- sity of California, Irvine, has found that when studying the behavior of glaciers and ice sheets, it helps to take a giant step back, all of the way into space. His use of satellite radar imaging has provided extraordinarily detailed information about how fast the ice sheets are melting and how much they contribute to sea-level rise. Rignot’s findings have shown the impact of cli- mate change on the ice sheets and how little time there may be to stop it. His work has earned him nu- merous honors, including fellowship in the American Geophysical Union in 2013 and membership in the National Academy of Sciences in 2018. Finding His Calling Eric Rignot grew up in what he describes as a rugged part of the French countryside, near the city of St. Etienne. Rignot partly attributes his interest in polar environments to the rough winter weather he experi- enced growing up. As a child, he enjoyed reading novels about polar adventures. He also recalls reading about Nobel Prize winners in an encyclopedia as a kid, which exposed him to the explosion of scientific knowledge that emerged in the early 20th century. Eric Rignot. Image credit: Ian Fenty (NASA/JPL-Caltech, Pasadena, CA). This kindled a lifelong fascination with science and the natural world. to realize the value of having an education with a broad As a student, Rignot pursued studies in mathe- foundation, because it gave him the flexibility to branch matics, in part because in the French educational out into new fields.
    [Show full text]
  • Observing Antarctic Glaciers
    Observing Antarctic glaciers Eric Rignot Dept. Earth System Science University of California Irvine & Caltech’s Jet Propulsion Laboratory Pasadena CA “The Antarctic ice sheet is likely to gain mass because of enhanced precipitation, while the Greenland ice sheet is likely to lose mass because the increase in runoff will exceed the precipitation increase.” IPCC 2001. MWP1a: SLR > 40 mm/yr Alley et al. 2005 P ~ 24 cm/yr SLR ~7 m Annual TO ~ 510 Gt/yr or 1.4 mm/yr SLR P ~ 17 cm/yr 1.5 xUSA SLR ~ 60 m7 xGrIS Annual TO ~ 2,500 Gt/yr or 6 mm/yr SLR Ice sheet mass balance techniques Radar/Laser Altimetry Time-variable gravity Perimeter flux vs snow accumulation Davis et al., 2005 Velicogna and Wahr, 2006 Rignot and Thomas, 2002 Height change: Time-variable gravity: SMB – Discharge 1992-2012 ERS + Envisat SRA 2002-present (GRACE) 1957/1975 IGY-Landsat 2003-2008 ICESat 1992-present (InSAR-RACMO) 2009-2016 OIB GRACE follow-on 2017? 2010-present Cryosat Sentinel-1 2014; DESDynI 2020 2016 ICESat-2; 2016 Sentinel-2 ALOS-2 2014 Satellite Radar Altimetry: 1992 Wingham et al., 1998 Shepherd et al., 2001 Laser altimetry over ice sheets: 2003 Pritchard et al., 2012 Pritchard et al., 2011 SAR Interferometry Goldstein et al., 1993 Grounding lines Rignot et al., 2011 Rignot, 1998 Collapse of Larsen A: 1995 Rott et al., 2002 Acceleration of major Antarctic glaciers Rignot et al., 2002 Amundsen Bay Embayment collapse: 1996‐2008 2008‐1996 Glacier response to ice shelf collapse De Angelis and Svarka, 2003. Rignot et al.
    [Show full text]
  • Basal Conditions at the Grounding Zone of Whillans Ice Stream, 10.1002/2015JF003806 West Antarctica, from Ice-Penetrating Radar
    Journal of Geophysical Research: Earth Surface RESEARCH ARTICLE Basal conditions at the grounding zone of Whillans Ice Stream, 10.1002/2015JF003806 West Antarctica, from ice-penetrating radar Key Points: 1 2 3 4 4 • Radar basal reflectivity in a grounding Knut Christianson , Robert W. Jacobel , Huw J. Horgan , Richard B. Alley , Sridhar Anandakrishnan , zone embayment is lower than David M. Holland5, and Kevin J. DallaSanta5 that expected from an ice-seawater interface 1Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA, 2Physics Department, • Radar amplitude and waveform Saint Olaf College, Northfield, Minnesota, USA, 3Antarctic Research Centre, Victoria University of Wellington, Wellington, modeling suggests that basal 4 reflectivity is reduced by entrained New Zealand, Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, sediment and basal roughness University Park, Pennsylvania, USA, 5Courant Institute of Mathematical Sciences, New York University, New York, • A reflectivity increase downflow of New York, USA the grounding line suggests that sediment deposition in grounding zones occurs via basal debris melt-out Abstract We present a comprehensive ice-penetrating radar survey of a subglacial embayment and adjacent peninsula along the grounding zone of Whillans Ice Stream, West Antarctica. Through basal Correspondence to: waveform and reflectivity analysis, we identify four distinct basal interfaces: (1) an ice-water-saturated till K. Christianson, [email protected] interface inland of grounding; (2) a complex interface in the grounding zone with variations in reflectivity and waveforms caused by reflections from fluting, sediment deposits, and crevasses; (3) an interface of anomalously low-reflectivity downstream of grounding in unambiguously floating areas of the embayment Citation: Christianson, K., R.
    [Show full text]
  • No Stopping the Collapse of West Antarctic Ice Sheet
    NEWS&ANALYSIS chairs. “She is one of our young stars,” says society” and for “moral damage incurred Science, Maged Said, a senior associate in the Tarek Shawki, AUC’s dean of the School of [by] MUST.” Tahoun Law Offi ce, the Giza, Egypt–based Sciences and Engineering. The lawsuit, “[The case] seems completely un rea- fi rm representing MUST, repeated the initial however, cast a shadow. Rumors that she had sonable to me,” says Gregory Marczynski, a claim that Siam had violated her obligations stolen grant money were rife, Siam says. biochemist at McGill University in Montreal, to the university by depriving it of the grant. In November 2012, a court found in Canada, and Siam’s former graduate adviser, If the verdict is upheld, it would “seriously Siam’s favor, stating that because MUST who describes her work as “cutting-edge” and undermine researchers’ willingness to hadn’t given her an employment contract, “highly collaborative.” Although the order to fi le grants” if they were even considering she was free to leave. MUST appealed and on compensate MUST for missing out on the a career move, says Lisa Rasmussen, a 16 March, Cairo’s Court of Appeal grant may be in the “realm of reason,” adds research ethicist at the University of North overturned the lower court’s verdict, Aly El Shalakany, a partner at the Shalakany Carolina, Charlotte. If scientists are not ruling that Siam had nevertheless broken Law Offi ce in Cairo who is not involved in the free to leave a university, she says, they are “authentic academic values” in not fulfi lling case, “I don’t think it’s fair.” No hearing date merely “agents of their institutions, rather her research duties.
    [Show full text]
  • Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar
    remote sensing Technical Note Velocity Anomaly of Campbell Glacier, East Antarctica, Observed by Double-Differential Interferometric SAR and Ice Penetrating Radar Hoonyol Lee 1 , Heejeong Seo 1,2, Hyangsun Han 1,* , Hyeontae Ju 3 and Joohan Lee 3 1 Department of Geophysics, Kangwon National University, Chuncheon 24341, Korea; [email protected] (H.L.); [email protected] (H.S.) 2 Earthquake and Volcano Research Division, Korea Meteorological Administration, Seoul 07062, Korea 3 Department of Future Technology Convergence, Korea Polar Research Institute, Incheon 21990, Korea; [email protected] (H.J.); [email protected] (J.L.) * Correspondence: [email protected]; Tel.: +82-33-250-8589 Abstract: Regional changes in the flow velocity of Antarctic glaciers can affect the ice sheet mass balance and formation of surface crevasses. The velocity anomaly of a glacier can be detected using the Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR) technique that removes the constant displacement in two Differential Interferometric SAR (DInSAR) images at different times and shows only the temporally variable displacement. In this study, two circular-shaped ice- velocity anomalies in Campbell Glacier, East Antarctica, were analyzed by using 13 DDInSAR images generated from COSMO-SkyMED one-day tandem DInSAR images in 2010–2011. The topography of the ice surface and ice bed were obtained from the helicopter-borne Ice Penetrating Radar (IPR) surveys in 2016–2017. Denoted as A and B, the velocity anomalies were in circular shapes with radii Citation: Lee, H.; Seo, H.; Han, H.; of ~800 m, located 14.7 km (A) and 11.3 km (B) upstream from the grounding line of the Campbell Ju, H.; Lee, J.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model Permalink https://escholarship.org/uc/item/5648g9d2 Author Schlegel, Nicole-Jeanne Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model By Nicole-Jeanne Schlegel A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Earth and Planetary Science in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Kurt Cuffey, Chair Professor William Collins Professor John Chiang Spring 2011 Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model Copyright 2011 by Nicole-Jeanne Schlegel 1 Abstract Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model by Nicole-Jeanne Schlegel Doctor of Philosophy in Earth and Planetary Science University of California, Berkeley Professor Kurt Cuffey, Chair The Greenland Ice Sheet, which extends south of the Arctic Circle, is vulnerable to melt in a warming climate. Complete melt of the ice sheet would raise global sea level by about 7 meters. Prediction of how the ice sheet will react to climate change requires inputs with a high degree of spatial resolution and improved simulation of the ice-dynamical responses to evolving surface mass balance.
    [Show full text]
  • Antarctica Losing Six Times More Ice Mass Annually Now Than 40 Years Ago 14 January 2019
    Antarctica losing six times more ice mass annually now than 40 years ago 14 January 2019 Techniques used to estimate ice sheet balance included a comparison of snowfall accumulation in interior basins with ice discharge by glaciers at their grounding lines, where ice begins to float in the ocean and detach from the bed. Data was derived from fairly high-resolution aerial photographs taken from a distance of about 350 meters via NASA's Operation IceBridge; satellite radar interferometry from multiple space agencies; and the ongoing Landsat satellite imagery series, begun in the early 1970s. The team was able to discern that between 1979 and 1990, Antarctica shed an average of 40 gigatons of ice mass annually. From 2009 to 2017, Credit: CC0 Public Domain about 252 gigatons per year were lost. The pace of melting rose dramatically over the four- decade period. From 1979 to 2001, it was an Antarctica experienced a sixfold increase in yearly average of 48 gigatons annually per decade. The ice mass loss between 1979 and 2017, according rate jumped 280 percent to 134 gigatons for 2001 to a study published today in Proceedings of the to 2017. National Academy of Sciences. Glaciologists from the University of California, Irvine, NASA's Jet Rignot said that one of the key findings of the Propulsion Laboratory and the Netherlands' project is the contribution East Antarctica has made Utrecht University additionally found that the to the total ice mass loss picture in recent decades. accelerated melting caused global sea levels to rise more than half an inch during that time.
    [Show full text]
  • Improved Estimation of the Mass Balance of Glaciers Draining Into the Amundsen Sea Sector of West Antarctica from the CECS/NASA 2002 Campaign
    Annals of Glaciology 39 2004 231 Improved estimation of the mass balance of glaciers draining into the Amundsen Sea sector of West Antarctica from the CECS/NASA 2002 campaign Eric RIGNOT,1 Robert H. THOMAS,2 Pannir KANAGARATNAM,3 Gino CASASSA,4 Earl FREDERICK,5 Sivaprasad GOGINENI,3 William KRABILL,5 Andre`s RIVERA,4 Robert RUSSELL,5 John SONNTAG,5 Robert SWIFT,5 James YUNGEL5 1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA E-mail: [email protected] 2EG&G Services, NASA Wallops Flight Facility, Building N-159, Wallops Island, VA 23337, USA 3The University of Kansas, 2291 Irving Hill Road, Lawrence, KS 66045-2969, USA 4Centro de Estudios Cientifı´cos, Avenida Arturo Prat 514, Casilla 1469, Valdivia, Chile 5NASA Wallops Flight Facility, Wallops Island, VA 23337, USA ABSTRACT. In November–December 2002, a joint airborne experiment by Centro de Estudios Cientifı´cos and NASA flew over the Antarctic ice sheet to collect laser altimetry and radio-echo sounding data over glaciers flowing into the Amundsen Sea. A P-3 aircraft on loan from the Chilean Navy made four flights over Pine Island, Thwaites, Pope, Smith and Kohler glaciers, with each flight yielding 1.5–2 hours of data. The thickness measurements reveal that these glaciers flow into deep troughs, which extend far inland, implying a high potential for rapid retreat. Interferometric synthetic aperture radar data (InSAR) and satellite altimetry data from the European Remote-sensing Satellites (ERS-1/-2) show rapid grounding-line retreat and ice thinning of these glaciers.
    [Show full text]
  • Radar Interferometry and Applications
    SNWG SAR TUTORIAL Copyright 2019 California Institute of Technology. Government sponsorship acknowledged. Radar Interferometry and Applications Paul A Rosen Project Scientist March 17, 2020 Copyright 2019 California Institute of Technology. Government sponsorship acknowledged. Phase and Radar Interferometry The phase of the radar signal Cycle number Collection of is the number of cycles of 0 1 random path oscillation that the wave 2 … lengths jumbles executes between the radar the phase of the and the surface and back echo again. Range Dr 2p 4p The total phase is two-way range measured 1 l 2 l in wave cycles + random component from the surface Δρ φ = 2π λ Radians per wavelength Number of wavelengths € Radar Interferometry for Topography • The two radar (SAR) antennas act as coherent sources • When imaging a surface, the phase fronts from the two sources interfere • The surface topography slices the interference pattern • The measured phase differences record the topographic information 4π 4π Δφ = (ρ(s )− ρ(s )) = Δρ + noise λ 1 2 λ topo Shuttle Radar Topography Mission (SRTM) B ρ + δρ θ ρ 3-dimensional SRTM view of Los Angeles (with h Landsat overlay) showing San Andreas fault • Mapped 80% of Earth’s Land Surface • 30 m horizontal data points z • < 10 m vertical accuracy 3 Interferometry for Surface Change First SecondPass Pass Observation Radar in space First Pass Second Pass Radar flies over a patch of ground to measure reflection Phase is distance along path Radar wavelength Radar flies again over the patch of ground to
    [Show full text]
  • 1 Ice Melt, Sea Level Rise and Superstorms: Evidence From
    Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2°C Global Warming is Dangerous James Hansen1, Makiko Sato1, Paul Hearty2, Reto Ruedy3,4, Maxwell Kelley3,4, Valerie Masson-Delmotte5, Gary Russell4, George Tselioudis4, Junji Cao6, Eric Rignot7,8, Isabella Velicogna8,7, Blair Tormey9, Bailey Donovan10, Evgeniya Kandiano11, Karina von Schuckmann12, Pushker Kharecha1,4, Allegra N. Legrande4, Michael Bauer13,4, Kwak-Wai Lo3,4 Abstract. We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth’s energy imbalance and heat flux into most of the global ocean’s surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40 year range, but the record is too short to confirm the nature of the response.
    [Show full text]
  • Four Decades of Antarctic Ice Sheet Mass Balance from 1979–2017
    Four decades of Antarctic Ice Sheet mass balance from INAUGURAL ARTICLE 1979–2017 Eric Rignota,b,1,Jer´ emie´ Mouginota,c, Bernd Scheuchla, Michiel van den Broeked, Melchior J. van Wessemd, and Mathieu Morlighema aDepartment of Earth System Science, University of California, Irvine, CA 92697; bJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; cInstitut des Geosciences de l’Environment, Universite Grenoble Alpes, CNRS, 38058 Grenoble, France; and dInstitute for Marine and Atmospheric Research Utrecht, Utrecht University, 3508 TA Utrecht, The Netherlands This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2018. Contributed by Eric Rignot, December 4, 2018 (sent for review July 30, 2018; reviewed by Richard R. Forster and Leigh A. Stearns) We use updated drainage inventory, ice thickness, and ice veloc- ments for the time periods 1992–2011 and 1992–2017, except for ity data to calculate the grounding line ice discharge of 176 basins East Antarctica, where uncertainties remain. draining the Antarctic Ice Sheet from 1979 to 2017. We compare Here, we present results from the component method updated the results with a surface mass balance model to deduce the to 2017 and extending back to 1979, or four decades of observa- ice sheet mass balance. The total mass loss increased from 40 ± tions. We use improved annual time series of ice sheet veloc- 9 Gt/y in 1979–1990 to 50 ± 14 Gt/y in 1989–2000, 166 ± 18 Gt/y ity, updated ice thickness, modeled reconstructions of surface in 1999–2009, and 252 ± 26 Gt/y in 2009–2017.
    [Show full text]