Journal of Geophysical Research: Earth Surface RESEARCH ARTICLE Basal conditions at the grounding zone of Whillans Ice Stream, 10.1002/2015JF003806 West Antarctica, from ice-penetrating radar Key Points: 1 2 3 4 4 • Radar basal reflectivity in a grounding Knut Christianson , Robert W. Jacobel , Huw J. Horgan , Richard B. Alley , Sridhar Anandakrishnan , zone embayment is lower than David M. Holland5, and Kevin J. DallaSanta5 that expected from an ice-seawater interface 1Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA, 2Physics Department, • Radar amplitude and waveform Saint Olaf College, Northfield, Minnesota, USA, 3Antarctic Research Centre, Victoria University of Wellington, Wellington, modeling suggests that basal 4 reflectivity is reduced by entrained New Zealand, Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, sediment and basal roughness University Park, Pennsylvania, USA, 5Courant Institute of Mathematical Sciences, New York University, New York, • A reflectivity increase downflow of New York, USA the grounding line suggests that sediment deposition in grounding zones occurs via basal debris melt-out Abstract We present a comprehensive ice-penetrating radar survey of a subglacial embayment and adjacent peninsula along the grounding zone of Whillans Ice Stream, West Antarctica. Through basal Correspondence to: waveform and reflectivity analysis, we identify four distinct basal interfaces: (1) an ice-water-saturated till K. Christianson,
[email protected] interface inland of grounding; (2) a complex interface in the grounding zone with variations in reflectivity and waveforms caused by reflections from fluting, sediment deposits, and crevasses; (3) an interface of anomalously low-reflectivity downstream of grounding in unambiguously floating areas of the embayment Citation: Christianson, K., R.