Worms, Leeches, Scorpions, Snails, Ticks, Centipedes, and Spiders E

Total Page:16

File Type:pdf, Size:1020Kb

Worms, Leeches, Scorpions, Snails, Ticks, Centipedes, and Spiders E amr Review Article Bugs as Drugs, Part Two: Worms, Leeches, Scorpions, Snails, Ticks, Centipedes, and Spiders E. Paul Cherniack, MD Abstract and Roman texts.1-3 !e popularity of the use of In this second of a two-part series analyzing the evidence for leeches in the 18th and 19th century in Europe the use of organisms as medicine, the use of a number of caused them to become scarce.1,4 di!erent “bugs” (worms, leeches, snails, ticks, centipedes, and Leeches are placed on the skin and guided to the spiders) is detailed. Several live organisms are used as desired site by applying a sucrose solution.5 !ey treatments: leeches for plastic surgery and osteoarthritis and can be prevented from migrating by cutting a hole the helminths Trichuris suis and Necator americanus for in the center of a piece of gauze, where the head of in"ammatory bowel disease. Leech saliva is the source of a the leech is inserted. Leeches are then allowed to number of anticoagulants, including the antithrombin agent feed for 10-20 minutes, after which they stop on hirudin and its synthetic analogues, which have been their own and detach from the site. Although a approved for human use. Predatory arthropods, such as leech only consumes about 5 mL of blood, once certain species of snails, spiders, scorpions, centipedes, and they are removed they can cause leakage of blood ticks provide a trove of potential analgesic peptides in their from the host for a number of hours.5 venom. A synthetic analogue of a snail venom peptide, ziconotide, has been approved for human use and is used as Wound Healing an alternative to opioids in severe pain cases. Arthropods, such Leeches have been used to aid wound healing as ticks, have venom that contains anticoagulants and after plastic surgery. In certain parts of the world, centipede venom has a protein that corrects abnormalities in leeches are commonly applied to treat venous lipid metabolism. congestion at surgical wound sites. A questionnaire (Altern Med Rev 2011:16(1):50-58) given to 62 plastic surgery units in Great Britain and Ireland found that 80 percent had used leeches Introduction 10 times per year on the average.2 !e majority of Part one of this series delineated the use of surgical units provided patient education prior to insects as a source of medical therapy. However, application, and in only 10 percent of cases did many other organisms are present on earth in vast patients refuse leeches. Safety precautions E. Paul Cherniack, MD – The Geriatrics Institute, University quantities and, like insects, have been used globally included written protocols about the use of leeches, of Miami Miller School of in traditional medicine for centuries (Figure 1). In wound disinfection prior to use, nurse monitoring Medicine, Division of Geri- some cases, whole live arthropods or extracts have (including remaining during the whole course of atrics and Gerontology, and the Geriatrics and Extended been utilized; in others, individual substances have treatment), and leech counting before and after use Care Service and Geriatric been refined. In addition, as with insects, other to make sure none remained in the wound. Research Education, and organisms might potentially be a source of new Leech therapy is appropriate in plastic surgical Clinical Center (GRECC) of the Miami Veterans A!airs medicines or be more readily available in some situations in which there is more arterial repair Medical Center parts of the world than conventional medicines. than venous repair, such as fingers, auricles, and Correspondence address: skin flaps.1 Leeches have also been used after Miami VA Medical Center, Room 1D200, 1201 NW 16th Leeches breast surgery to relieve the possible complication Street, Miami, FL 33125 Leeches have been used to treat human illness of venous congestion at the nipple.6 An additional Email: for centuries. !e tombs of Egyptian pharaohs use of leeches in plastic surgery is in the treatment [email protected] contained pictures of leeches, and descriptions of of ring avulsion injuries.7 leech medical treatments appear in ancient Greek Volume 16, Number 1 Alternative Medicine Review 50 Copyright © 2011 Alternative Medicine Review, LLC. All Rights Reserved. No Reprint Without Written Permission. Review Article amr Figure 1. Therapeutic Bene"ts of Various Organisms and Their Products Leeches Snails Scorpions Surgical Wounds Osteoarthritis Hematomas Whipworm/Hookworm Pain Anticoagulants Pain Inflammation Hirudin Lepirudin Ticks Inflammatory Bowel Disease Allergies Anticoagulants Earthworms Centipedes Spiders Anticoagulants Hyperlipidemia Pain While there are many descriptions of leech use, subjects did not receive leeches.12 All subjects were there are no published clinical trials of the efficacy able to have physical therapy and take pain of leeches in surgery. Leech therapy can also cause medication as they desired. One month later, the infections, which occur in 2.4-20 percent of plastic subjects who received the leeches had a signifi- surgical repairs.8 Aeromonas hydrophila, a symbiote cantly lower pain score (1.3 on a 0-10 scale, found in the leech gut that aids in blood digestion, p<0.001), while those not receiving leeches did not is the most common organism found in these improve. infections.8-11 In a second study, 51 subjects with knee osteoar- thritis were provided either leech therapy or topical Post-phlebitis Syndrome diclofenac.13 Subjects assigned to leech application Leeches have also been used to alleviate post- were treated as in the pilot study; control subjects phlebitis syndrome, in which venous valves are applied diclofenac gel to their knees twice a day for obliterated by a deep vein thrombosis.1 In an 28 days. Subjects rated their symptoms using the uncontrolled case series, 40 patients had 7-12 Western Ontario and McMaster Universities leeches placed on their legs every 3-4 weeks. After Osteoarthritis Index (WOMAC) scale for pain, leech treatment, 70 percent of subjects claimed stiffness, and function. !ose individuals who they could walk further, 52 percent stated they had received leech therapy had a 12-point better score less pain, 40 percent had better leg skin color, and than those who applied diclofenac (p=0.0317). 12 percent had reduced leg swelling. !ere were no After one week, there was a significant difference infections or significant blood loss. between groups in pain score; but, by the end of Key words: arthropod, insect, leech, worm, snail, tick, three months, the differences in scores were no scorpion, centipede, spider, Osteoarthritis longer significant. helminth Leeches can treat osteoarthritis pain. In a small In an additional investigation, 113 individuals pilot trial, four leeches were applied for 60-90 with knee osteoarthritis were divided into three minutes to the joints of 10 subjects (mean age 69) groups: (1) subjects received a single application of with osteoarthritis of the knee, while six control leeches, (2) subjects received two leech treatments, 51 Alternative Medicine Review Volume 16, Number 1 Copyright © 2011 Alternative Medicine Review, LLC. All Rights Reserved. No Reprint Without Written Permission. amr Review Article and (3) subjects received a simulated leech therapy individuals tested had restoration of normal consisting of a needle prick and a wet gauze platelet levels. However, there was no lower risk of wrapped up to simulate the size and shape of a bleeding in these subjects than in historical leech.14 Both leech therapy groups had significantly controls.21 In a multi-center investigation of 155 better pain scores on the WOMAC scale than the individuals with deep vein thrombosis, lepirudin- control group. Adverse effects of leech therapy treated subjects had fewer new pulmonary emboli were not observed in any of the three osteoarthri- than heparin-treated subjects (3% for 1.25/mg/ tis studies. kg/12h lepirudin versus 27% for heparin).22 Lepirudin and another modified hirudin, desirudin, Therapeutic Substances from Leeches have been produced by yeast and used as antico- !e therapeutic capacity of the leech is based on agulants in subjects with renal insufficiency.23 secreted anticoagulants that are released while A topical cream manufactured from hirudin was feeding. Specific substances have been refined and used to shrink hematomas caused by musculoskel- utilized in situations where it is necessary to etal injuries.24 Sixty individuals (ages 18-65), who prevent thrombosis.15 Unlike conventional antico- had a bruise created by musculoskeletal injury, and agulants, these anticoagulants have the advantage pain, warmth, or discoloration rated greater than of being selective for specific clotting factors, 50 on a 0-100 visual analogue scale, were random- without affecting others. At least 14 different ized to the hirudin or a placebo cream for five days. anticoagulants have been obtained from leeches.1 Although both creams resulted in a significant Hirudin, which is a specific inhibitor for throm- reduction in hematoma symptoms, the hirudin bin, was initially isolated from the leech salivary cream resulted in a larger absolute reduction in gland.15 It has been applied in the treatment of visual analogue scale score. coronary ischemic syndromes, heparin-induced thrombocytopenia, and disseminated intravascular Worms coagulation (DIC). Probably the most widespread Earthworms provide another source of medici- use in clinical investigation has been its use to treat nally-useful products. Baked earthworms with coronary ischemia.16 In the Organization to Assess bread have been used to treat
Recommended publications
  • Scorpion Venom: New Promise in the Treatment of Cancer
    Acta Biológica Colombiana ISSN: 0120-548X ISSN: 1900-1649 Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología SCORPION VENOM: NEW PROMISE IN THE TREATMENT OF CANCER GÓMEZ RAVE, Lyz Jenny; MUÑOZ BRAVO, Adriana Ximena; SIERRA CASTRILLO, Jhoalmis; ROMÁN MARÍN, Laura Melisa; CORREDOR PEREIRA, Carlos SCORPION VENOM: NEW PROMISE IN THE TREATMENT OF CANCER Acta Biológica Colombiana, vol. 24, no. 2, 2019 Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología Available in: http://www.redalyc.org/articulo.oa?id=319060771002 DOI: 10.15446/abc.v24n2.71512 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Revisión SCORPION VENOM: NEW PROMISE IN THE TREATMENT OF CANCER Veneno de escorpión: Una nueva promesa en el tratamiento del cáncer Lyz Jenny GÓMEZ RAVE 12* Institución Universitaria Colegio Mayor de Antioquia, Colombia Adriana Ximena MUÑOZ BRAVO 12 Institución Universitaria Colegio Mayor de Antioquia, Colombia Jhoalmis SIERRA CASTRILLO 3 [email protected] Universidad de Santander, Colombia Laura Melisa ROMÁN MARÍN 1 Institución Universitaria Colegio Mayor de Antioquia, Colombia Carlos CORREDOR PEREIRA 4 Acta Biológica Colombiana, vol. 24, no. 2, 2019 Universidad Simón Bolívar, Colombia Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología Received: 04 April 2018 ABSTRACT: Cancer is a public health problem due to its high worldwide Revised document received: 29 December 2018 morbimortality. Current treatment protocols do not guarantee complete remission, Accepted: 07 February 2019 which has prompted to search for new and more effective antitumoral compounds. Several substances exhibiting cytostatic and cytotoxic effects over cancer cells might DOI: 10.15446/abc.v24n2.71512 contribute to the treatment of this pathology.
    [Show full text]
  • Felipe Jun Fuzita Molecular Physiology of Digestion In
    FELIPE JUN FUZITA MOLECULAR PHYSIOLOGY OF DIGESTION IN ARACHNIDA: FUNCTIONAL AND COMPARATIVE-EVOLUTIONARY APPROACHES Thesis presented to the Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, to obtain the Title of Doctor in Biotechnology. São Paulo 2014 FELIPE JUN FUZITA MOLECULAR PHYSIOLOGY OF DIGESTION IN ARACHNIDA: FUNCTIONAL AND COMPARATIVE-EVOLUTIONARY APPROACHES Thesis presented to the Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, to obtain the Title of Doctor in Biotechnology. Concentration area: Biotechnology Advisor: Dr. Adriana Rios Lopes Rocha Corrected version. The original electronic version is available either in the library of the Institute of Biomedical Sciences and in the Digital Library of Theses and Dissertations of the University of Sao Paulo (BDTD). São Paulo 2014 DADOS DE CATALOGAÇÃO NA PUBLICAÇÃO (CIP) Serviço de Biblioteca e Informação Biomédica do Instituto de Ciências Biomédicas da Universidade de São Paulo © reprodução total Fuzita, Felipe Jun. Molecular physiology of digestion in Arachnida: functional and comparative-evolutionary approaches / Felipe Jun Fuzita. -- São Paulo, 2014. Orientador: Profa. Dra. Adriana Rios Lopes Rocha. Tese (Doutorado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan. Área de concentração: Biotecnologia. Linha de pesquisa: Bioquímica, biologia molecular, espectrometria de massa. Versão do título para o português: Fisiologia molecular da digestão em Arachnida: abordagens funcional e comparativo-evolutiva. 1. Digestão 2. Aranha 3. Escorpião 4. Enzimologia 5. Proteoma 6. Transcriptoma I. Rocha, Profa. Dra. Adriana Rios Lopes I. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan III.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • I Regulations
    23.2.2007 EN Official Journal of the European Union L 56/1 I (Acts adopted under the EC Treaty/Euratom Treaty whose publication is obligatory) REGULATIONS COUNCIL REGULATION (EC) No 129/2007 of 12 February 2007 providing for duty-free treatment for specified pharmaceutical active ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation and specified products used for the manufacture of finished pharmaceuticals and amending Annex I to Regulation (EEC) No 2658/87 THE COUNCIL OF THE EUROPEAN UNION, (4) In the course of three such reviews it was concluded that a certain number of additional INNs and intermediates used for production and manufacture of finished pharmaceu- ticals should be granted duty-free treatment, that certain of Having regard to the Treaty establishing the European Commu- these intermediates should be transferred to the list of INNs, nity, and in particular Article 133 thereof, and that the list of specified prefixes and suffixes for salts, esters or hydrates of INNs should be expanded. Having regard to the proposal from the Commission, (5) Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Common Customs Tariff (1) established the Combined Nomenclature Whereas: (CN) and set out the conventional duty rates of the Common Customs Tariff. (1) In the course of the Uruguay Round negotiations, the Community and a number of countries agreed that duty- (6) Regulation (EEC) No 2658/87 should therefore be amended free treatment should be granted to pharmaceutical accordingly, products falling within the Harmonised System (HS) Chapter 30 and HS headings 2936, 2937, 2939 and 2941 as well as to designated pharmaceutical active HAS ADOPTED THIS REGULATION: ingredients bearing an ‘international non-proprietary name’ (INN) from the World Health Organisation, specified salts, esters or hydrates of such INNs, and designated inter- Article 1 mediates used for the production and manufacture of finished products.
    [Show full text]
  • Conotoxins As Tools to Understand the Physiological Function of Voltage-Gated Calcium (Cav) Channels
    marine drugs Review Conotoxins as Tools to Understand the Physiological Function of Voltage-Gated Calcium (CaV) Channels David Ramírez 1,2, Wendy Gonzalez 1,3, Rafael A. Fissore 4 and Ingrid Carvacho 5,* 1 Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 3460000 Talca, Chile; [email protected] (D.R.); [email protected] (W.G.) 2 Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, 3460000 Talca, Chile 3 Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile 4 Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA; rfi[email protected] 5 Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, 3480112 Talca, Chile * Correspondence: [email protected]; Tel.: +56-71-220-3518 Received: 8 August 2017; Accepted: 4 October 2017; Published: 13 October 2017 Abstract: Voltage-gated calcium (CaV) channels are widely expressed and are essential for the completion of multiple physiological processes. Close regulation of their activity by specific inhibitors and agonists become fundamental to understand their role in cellular homeostasis as well as in human tissues and organs. CaV channels are divided into two groups depending on the membrane potential required to activate them: High-voltage activated (HVA, CaV1.1–1.4; CaV2.1–2.3) and Low-voltage activated (LVA, CaV3.1–3.3). HVA channels are highly expressed in brain (neurons), heart, and adrenal medulla (chromaffin cells), among others, and are also classified into subtypes which can be distinguished using pharmacological approaches. Cone snails are marine gastropods that capture their prey by injecting venom, “conopeptides”, which cause paralysis in a few seconds.
    [Show full text]
  • Bioactive Mimetics of Conotoxins and Other Venom Peptides
    Toxins 2015, 7, 4175-4198; doi:10.3390/toxins7104175 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Bioactive Mimetics of Conotoxins and other Venom Peptides Peter J. Duggan 1,2,* and Kellie L. Tuck 3,* 1 CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia 2 School of Chemical and Physical Sciences, Flinders University, Adelaide, SA 5042, Australia 3 School of Chemistry, Monash University, Clayton, VIC 3800, Australia * Authors to whom correspondence should be addressed; E-Mails: [email protected] (P.J.D.); [email protected] (K.L.T.); Tel.: +61-3-9545-2560 (P.J.D.); +61-3-9905-4510 (K.L.T.); Fax: +61-3-9905-4597 (K.L.T.). Academic Editors: Macdonald Christie and Luis M. Botana Received: 2 September 2015 / Accepted: 8 October 2015 / Published: 16 October 2015 Abstract: Ziconotide (Prialt®), a synthetic version of the peptide ω-conotoxin MVIIA found in the venom of a fish-hunting marine cone snail Conus magnus, is one of very few drugs effective in the treatment of intractable chronic pain. However, its intrathecal mode of delivery and narrow therapeutic window cause complications for patients. This review will summarize progress in the development of small molecule, non-peptidic mimics of Conotoxins and a small number of other venom peptides. This will include a description of how some of the initially designed mimics have been modified to improve their drug-like properties. Keywords: venom peptides; toxins; conotoxins; peptidomimetics; N-type calcium channel; Cav2.2 1. Introduction A wide range of species from the animal kingdom produce venom for use in capturing prey or for self-defense.
    [Show full text]
  • The Discovery and Development of Analgesics: New Mechanisms, New Modalities
    The discovery and development of analgesics: new mechanisms, new modalities Gillian Burgess, Dic Williams J Clin Invest. 2010;120(11):3753-3759. https://doi.org/10.1172/JCI43195. Review Series Despite intensive research into pain mechanisms and significant investment in research and development, the majority of analgesics available to prescribers and patients are based on mechanistic classes of compounds that have been known for many years. With considerable ingenuity and innovation, researchers continue to make the best of the mechanistic approaches available, with novel formulations, routes of administration, and combination products. Here we review some of the mechanisms and modalities of analgesics that have recently entered into clinical development, which, coupled with advances in the understanding of the pathophysiology of chronic pain, will hopefully bring the promise of new therapeutics that have the potential to provide improved pain relief for those many patients whose needs remain poorly met. Find the latest version: https://jci.me/43195/pdf Review series The discovery and development of analgesics: new mechanisms, new modalities Gillian Burgess and Dic Williams Pain Research Unit, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, United Kingdom. Despite intensive research into pain mechanisms and significant investment in research and development, the majority of analgesics available to prescribers and patients are based on mechanistic classes of compounds that have been known for many years. With considerable
    [Show full text]
  • Rodent Models of Painful Diabetic Neuropathy: What Can We Learn
    abetes & Di M f e o t a l b a o Wattiez et al., J Diabetes Metab 2012, S:5 n l r i s u m o DOI: 10.4172/2155-6156.S5-008 J Journal of Diabetes and Metabolism ISSN: 2155-6156 Review Article Open Access Rodent Models of Painful Diabetic Neuropathy: What Can We Learn from Them? Anne-Sophie Wattiez1,2#, David André Barrière1,2*#, Amandine Dupuis1,2 and Christine Courteix1,2 1Clermont Université, Université d’Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, France 2Inserm, U 1107, Neuro-Dol, F-63001 Clermont-Ferrand, France #Equal Contribution Abstract Diabetic peripheral neuropathy (DPN) is the most common clinical complication of diabetes mellitus, and can be related to type 1 as well as type 2. To date, this highly invalidating neurological impairment is insufficiently known, understood and the treatments proposed by physicians are still empirical and poorly efficient. Animal rodent modeling of clinical DPN offers a powerful tool in order to understand diabetes-mediated peripheral nerve injury. The majority of studies which have investigated DPN in rodent used the streptozotocin-induced rat model which reproduces metabolic lesional mechanisms of Type 1 Diabetes Mellitus (T1DM) and usual symptoms of evoked pain. Although the clinical relevance of this model is challenged due to 1) a high prevalence of type 2- compared to type 1-diabetes in the adult population, 2) the important alteration of the general clinical state of the animals and 3) the lack of morphological changes in peripheral nerves, many studies have contributed to a better pathophysiological and pharmacological understanding of the DPN.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Scorpiones: Iuridae) Venom
    Turkish Journal of Biology Turk J Biol (2018) 42: 490-497 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1804-35 Peptidomic characterization and bioactivity of Protoiurus kraepelini (Scorpiones: Iuridae) venom 1,2 3,4 5 5 5 Tuğba SOMAY DOĞAN , Naşit İĞCİ , Ayşenur BİBER , Selin GEREKÇİ , Hepşen Hazal HÜSNÜGİL , 2 1,5,6, Afife İZBIRAK , Can ÖZEN * 1 Central Laboratory, Middle East Technical University, Ankara, Turkey 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey 3 Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey 4 Science and Technology Research and Application Center, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey 5 Graduate Program of Biotechnology, Middle East Technical University, Ankara, Turkey 6 Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey Received: 12.04.2018 Accepted/Published Online: 01.08.2018 Final Version: 10.12.2018 Abstract: Protoiurus kraepelini is a scorpion species found in parts of Turkey and Greece. In this study, the peptide profile of its venom was determined for the first time. The electrophoretic profile of the crude venom showed a protein distribution from 2 to 130 kDa. MALDI-TOF MS analysis of the venom peptide fraction yielded 27 peptides between 1059 and 4623 Da in mass. Several ion channel- blocking and antimicrobial peptides were identified by peptide mass fingerprinting analysis. Cytotoxic and antimicrobial effects of the venom were also demonstrated on Jurkat cells and Escherichia coli, respectively. As the first peptidomic characterization study on P.
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2019 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]