Species Status Assessment for the Cape Sable Orchid (Trichocentrum Undulatum)

Total Page:16

File Type:pdf, Size:1020Kb

Species Status Assessment for the Cape Sable Orchid (Trichocentrum Undulatum) Species Status Assessment for the Cape Sable Orchid (Trichocentrum undulatum) Version 1.2 Photo by Keith Bradley Prepared by U.S. Fish and Wildlife Service South Florida Ecological Services Office 1339 20th Street, Vero Beach, FL 32960 ACKNOWLEDGEMENTS This document was prepared by the U.S. Fish and Wildlife Service’s Cape Sable orchid Species Status Assessment Team. We would also like to recognize and thank the following individuals who provided substantive information and/or insights for our SSA. Valuable input into the analysis and reviews of a draft of this document were provided by Jimi Sadle, and Hong Liu. We appreciate their input and comments, which resulted in a more robust status assessment and final report. Suggested reference: U.S. Fish and Wildlife Service. 2020. Species status assessment report for Cape Sable orchid (Trichocentrum undulatum). Version 1.2. August 2020. Atlanta, GA. ii VERSION UPDATES Changes from Version 1.0 to Version 1.2 are the following: • We added more detailed maps of worldwide occurrence records for Cape Sable orchid. • In the Summary and Conclusions, we added text to emphasize the synergistic relationship between SLR, saltwater intrusion, and storm surge events. iii EXECUTIVE SUMMARY This Species Status Assessment presents a compilation of the best available scientific and commercial data for Cape Sable orchid. Cape Sable orchid (Trichocentrum undulatum) is widely distributed in Mexico, Central and South America, and the West Indies (Bahamas, Greater Antilles, and Lesser Antilles). In Florida, Cape Sable orchid is rare, occurring at one site, Everglades National Park (ENP), in Monroe County (Gann 2014, p.1). The current population size at ENP is estimated at 500 to 1,000 plants (Gann 2015, p.10). The Florida population is considered one representative unit. Florida is the most northerly occurrence of the species worldwide. Cape Sable orchid is listed as endangered by the State of Florida. The species is listed as ‘critically imperiled’ in Florida by the Florida Natural Areas Inventory ([FNAI] 2018, p.9). The ‘global rank’ of the species is classified as ‘apparently secure’, defined as ‘uncommon but not rare’, with some causes for concern due to declines or other factors by NatureServe (NatureServe 2017, p.1). A recent publication included it as a ‘Species of Management Concern’ in ENP (Gann 2105, p.10). The stressors on the species and its habitats are habitat loss and modification due to sea level rise (SLR), saltwater intrusion, and increasing storm surge impacts. Loss of habitat to development, poaching, and predation by insects are factors for the species but do not rise to the level of stressor for the purposes of this SSA. We analyzed 3 scenarios incorporating National Oceanic and Atmospheric Administration (NOAA) ‘Intermediate’ (scenario A-decreasing greenhouse gases (GHG) in 2060), ‘Intermediate-High’ (scenario B-(decreasing GHG in 2080), and ‘High’ (scenario C (Business as Usual) projected rates of SLR National Oceanographic and Atmospheric Administration ([NOAA] 2017, pp. 21-28), and projected increase in hurricane intensity to forecast the future viability of the species for 10 generations or approximately 80 years (to 2100). We also consider increased storm surge and saltwater intrusion to project the timing of vegetation changes that precede inundation. In all of the scenarios, the main driver of species viability is habitat loss and modification due to sea level rise, storm surge, and saltwater intrusion. Scenario A projects SLR of 3.3 feet (ft) (1 meter (m)) and forecasts inundation of the coastal habitat occupied by the sole population at ENP by 2100. We anticipate significant effects to the species as early as 2050, and extirpation of the species in Florida as early as 2070, under Scenario C (the most likely scenario). However, the species is likely to persist through SLR outside of Florida because it occurs at higher elevations of 30 to 3,100 ft (10 to 950 m) (Tropicos 2017, p.1) and more inland locations outside the United States, although we did not have information to analyze and determine the effect of other possible stressors. iv TABLE OF CONTENTS EXECUTIVE SUMMARY ........................................................................................................... iv ACKNOWLEDGEMENTS .............................................................................................................v SUMMARY OF CHANGES FROM VERSION 1.0 TO VERSION 1.1 ......................................... vi CHAPTER 1: INTRODUCTION ....................................................................................................1 CHAPTER 2: SPECIES RESOURCE NEEDS AND POPULATIONS .........................................2 SPECIES DESCRIPTION ..........................................................................................................2 TAXONOMY ..........................................................................................................................2 Life History .................................................................................................................................... 2 HABITAT ....................................................................................................................................................... 4 Historical Range and Distribution ............................................................................................... 5 INDIVIDUAL NEEDS .............................................................................................................................................................................. 5 Microsites for Growth and Reproduction .................................................................................. 5 POPULATION NEEDS ............................................................................................................................................................................ 5 Delineating Populations .............................................................................................................. 5 Undisturbed Natural Areas ........................................................................................................... 5 Hydrology ....................................................................................................................................... 5 Pollinators ....................................................................................................................................... 5 SPECIES’ NEEDS .................................................................................................................................. 6 Habitat and Species Migration Corridors and Translocation .................................................. 6 CHAPTER 3: CURRENT CONDITIONS ............................................................................................. 6 Current Distribution ...................................................................................................................... 6 How This SSA Defines a Resilient Population ......................................................................... 6 Population Trends ......................................................................................................................... 6 CHAPTER 4: FACTORS AFFECTING THE VIABILITY OF THE SPECIES ............................ 13 STRESSORS ......................................................................................................................................... 13 Habitat Destruction and Modification ...................................................................................... 13 Habitat Fragmentation ................................................................................................................ 13 Hydrologic Modification ............................................................................................................ 13 Small Population Size and Isolation ......................................................................................... 13 Nonnative Plant Competition .................................................................................................... 13 Poaching ....................................................................................................................................... 14 CLIMATE CHANGE-ASSOCIATED FACTORS ....................................................................14 Scenarios, Models, and Uncertainty .......................................................................................... 14 Increased Temperature ............................................................................................................... 14 Sea Level Rise ............................................................................................................................. 14 Storm Surge.................................................................................................................................. 14 Saltwater Intrusion ......................................................................................................................... 15 v Sea Level Rise Scenarios .......................................................................................................... 15 Ecological Implications for Sea Level Rise and Saltwater Intrusion .................................. 16 STOCHASTIC EVENTS ..................................................................................................................... 16 Hurricanes and Storm Surge .....................................................................................................
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Salt Marsh Plants of Long Island Sound R
    Connecticut College Digital Commons @ Connecticut College Bulletins Connecticut College Arboretum 2015 Bulletin No. 40: Salt Marsh Plants of Long Island Sound R. Scott aW rren Juliana Barrett Margaret Van Patten Follow this and additional works at: http://digitalcommons.conncoll.edu/arbbulletins Part of the Botany Commons, Environmental Studies Commons, and the Natural Resources and Conservation Commons Recommended Citation Warren, R. Scott; Barrett, Juliana; and Van Patten, Margaret, "Bulletin No. 40: Salt Marsh Plants of Long Island Sound" (2015). Bulletins. Paper 39. http://digitalcommons.conncoll.edu/arbbulletins/39 This Article is brought to you for free and open access by the Connecticut College Arboretum at Digital Commons @ Connecticut College. It has been accepted for inclusion in Bulletins by an authorized administrator of Digital Commons @ Connecticut College. For more information, please contact [email protected]. The views expressed in this paper are solely those of the author. SALT MARSH PLANTS of Long Island Sound revised second edition To order additional copies of this publicaton, please contact: Connecticut Sea Grant 1080 Shennecossett Road Groron, CT 06340-6048 Tel. 860-405-9128 http://seagrant. ucon n.edu or Can necticut College Arboretum Box 5201 270 Mohegan Avenue New London, CT 06320 Tel. 860-439-5020 http://www. can ncoll.edul the-arboreeu m Long • -Island Sound SmGifutt Study Connecticut O ©20 15 Connecticut Sea Grant and Connecticut College Arboretum First edition published in 2009 CTSG-15·14 Salt Marsh Plants of Long Island Sound by R. Scott Warren, Juliana Barrett, and Margaret S. Van Patten Second edition Revised 2015 , Salt Marsh Plants of Long Island Sound Long .
    [Show full text]
  • Orchid of the Month for June, 2015 Oncidium Longipes by Bruce Adams
    Orchid of the Month for June, 2015 Oncidium Longipes by Bruce Adams Figure 1: Oncidium longipes When I first fell in love with orchids, about forty years ago, Oncidium was my favorite genus. I loved the intricate flowers on long sprays, often with a wonderful fragrance. At that time, I worked as a volunteer in the orchid house at Planting Fields Arboretum. After repotting plants, I had the opportunity to take home back bulbs, and received pieces of Oncidium sphacelatum, O. flexuosum, and others that I can no longer remember. Every year they had an orchid auction, and for the extravagant price of five dollars, I purchased a multi-lead plant of O. ornithorhyncum. I became familiar with many of the various species, and at the time was a bit of an Oncidium expert. Forty years later, I’ve forgotten much, and with the recent changes in nomenclature maybe I wasn’t ever really an Oncidium expert, but rather a Trichocentrum, Gomesa, and Tolumnia expert! What hasn’t changed is my fondness for this vast genus (or group of genera). Plants can get quite large, such as Oncidium sphacelatum, which can easily can fill a twelve-inch pot, sending out three foot spikes with hundreds of flowers. But there are also miniatures like Oncidium harrisonianum, which can be contained in a three or four inch pot and sports short sprays of pretty little yellow flowers with brown spots. In fact, most Oncidium flowers are a variation of yellow and brown, although Oncidium ornithorhyncum produces pretty purple pink flowers, while Oncidium phalaenopsis and its relatives have beautiful white to red flowers, often spotted with pink.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Leaf Morphological Strategies of Seedlings and Saplings Of
    Leaf morphological strategies of seedlings and saplings of Rhizophora mangle (Rhizophoraceae), Laguncularia racemosa (Combretaceae) and Avicennia schaueriana (Acanthaceae) from Southern Brazil Andressa Pelozo1, Maria Regina T. Boeger2, Carolina Sereneski-de-Lima3 & Patricia Soffiatti4* 1. Universidade Federal do Paraná, Programa de Pós-Graduação em Botânica, Departamento de Botânica, SCB, Centro Politécnico, Caixa Postal 19031, Curitiba, PR. Brazil, CEP 81.531-880; [email protected] 2. Programa de Pós-Graduação em Ecologia, SCB, Centro Politécnico, Caixa Postal 19031, Curitiba, PR, Brazil, CEP 81.531-880; [email protected] 3. Programa de Pós-Graduação em Ecologia, SCB, Centro Politécnico, Caixa Postal 19031, Curitiba, PR, Brazil, CEP 81.531-880; [email protected] 4. Universidade Federal do Paraná, Departamento de Botânica, SCB, Centro Politécnico, Caixa Postal 19031, Curitiba, PR. Brazil, CEP 81.531-880; [email protected] * Correspondence Received 26-I-2015. Corrected 27-VII-2015. Accepted 25-VIII-2015. Abstract: The initial phase of a plant life cycle is a short and critical period, when individuals are more vul- nerable to environmental factors. The morphological and anatomical study of seedlings and saplings leaf type enables the understanding of species strategies of fundamental importance in their establishment and survival. The objective of this study was to analyze the structure of seedlings and saplings leaf types of three mangrove species, Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, to understand their early life adap- tive strategies to the environment. A total of 30 fully expanded cotyledons (A. schaueriana and L. racemosa), 30 leaves of seedlings, and 30 leaves of saplings of each species were collected from a mangrove area in Guaratuba Bay, Paraná State, Brazil.
    [Show full text]
  • Mangrove - Wikipedia, the Free Encyclopedia
    Mangrove - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Mangrove From Wikipedia, the free encyclopedia Mangroves are various types of trees up to medium height and shrubs that grow in saline coastal sediment habitats in the tropics and subtropics – mainly between latitudes 25° N and 25° S. The remaining mangrove forest areas of the world in 2000 was 53,190 square miles (137,760 km²) spanning 118 countries and territories.[1][2] The word is used in at least three senses: (1) most broadly to refer to the habitat and entire plant assemblage or mangal,[3] for which the terms mangrove forest biome, mangrove swamp and mangrove forest are also used, (2) to refer to all trees and large shrubs in the mangrove swamp, and (3) narrowly to refer to the mangrove family of plants, the Rhizophoraceae, or even more A mangrove forest in Palawan, specifically just to mangrove trees of the genus Rhizophora. The term Philippines "mangrove" comes to English from Spanish (perhaps by way of Portuguese), and is likely to originate from Guarani. It was earlier "mangrow" (from Portuguese mangue or Spanish mangle), but this word was corrupted via folk etymology influence of the word "grove". The mangrove biome, or mangal, is a distinct saline woodland or shrubland habitat characterized by depositional coastal environments, where fine sediments (often with high organic content) collect in areas protected from high-energy wave action. The saline conditions tolerated by various mangrove species range from brackish water, through pure seawater (30 to 40 ppt(parts per thousand)), to water concentrated by Pneumatophores penetrate the sand evaporation to over twice the salinity of ocean seawater (up to 90 surrounding a mangrove tree.
    [Show full text]
  • Synopsis of the Trichocentrum-Clade (Orchidaceae, Oncidiinae)
    SyNOPSIS OF THE TRICHOCENTRUM-CLADE (ORCHIDACEAE, ONCIDIINAE) WILLIAM CETZAL-IX,1–3 GERMÁN CARNEVALI,1, 4 AND GUSTAVO ROMERO-GONZÁLEZ1, 4 Abstract: We present a synopsis of the Trichocentrum-clade of Oncidiinae. In this revision, we recognize 85 taxa assigned to four genera: Cohniella with 23 species in five complexes and two natural hybrids; Lophiaris with 27 species and eight natural hybrids, six of which are yet to be named; Trichocentrum with 27 species and two subspecies; and Lophiarella with three species. Cohniella yuroraensis is referred to the synonymy of C. ultrajectina, C. allenii and C. christensoniana to the synonymy of C. nuda, and C. croatii to C. lacera. Trichocentrum perezii is referred to the synonymy of Lophiaris andreana. A key to the genera of the Trichocentrum-clade is presented as well as keys to the complexes or groups of species and, when applicable, natural hybrids of Cohniella, Lophiarella, Lophiaris, and Trichocentrum. Keywords: Cohniella, geographic distribution, Lophiarella, Lophiaris, nomenclature, Trichocentrum The Trichocentrum Poeppig & Endlicher clade of endemic), Venezuela (3 endemic) all with 14 taxa, Honduras Oncidiinae, as circumscribed here, includes four genera: with 12 taxa, and Bolivia (one endemic), Guatemala, and Cohniella Pfitzer, Lophiarella Szlachetko, Mytnik-Ejsmont El Salvador all with 11 taxa. Other countries are represented & Romowicz, Lophiaris Rafinesque, and Trichocentrum by fewer than 10 taxa (Table 1). (Carnevali et al., 2013). Some authors recognize this clade Characters used to recognize taxa and hybrids within as a single genus using a broad definition forTrichocentrum the genera are primarily floral, such as the size and color (Williams et al., 2001; Sosa et al., 2001; Chase, 2009; (especially color patterns) of the flowers, shape and Neubig et al., 2012).
    [Show full text]
  • Research Article: Life History and Host Range of Prochoerodes Onustaria, an Unsuitable Classical Biological Control Agent of Brazilian Peppertree
    Biocontrol Science and Technology ISSN: 0958-3157 (Print) 1360-0478 (Online) Journal homepage: http://www.tandfonline.com/loi/cbst20 Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree E. Jones & G. S. Wheeler To cite this article: E. Jones & G. S. Wheeler (2017) Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree, Biocontrol Science and Technology, 27:4, 565-580, DOI: 10.1080/09583157.2017.1325837 To link to this article: http://dx.doi.org/10.1080/09583157.2017.1325837 Published online: 16 May 2017. Submit your article to this journal Article views: 24 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=cbst20 Download by: [University of Florida] Date: 13 July 2017, At: 08:24 BIOCONTROL SCIENCE AND TECHNOLOGY, 2017 VOL. 27, NO. 4, 565–580 https://doi.org/10.1080/09583157.2017.1325837 Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree E. Jonesa,b and G. S. Wheelera aUSDA/ARS Invasive Plant Research Laboratory, Ft Lauderdale, FL, USA; bSCA/AmeriCorps, Ft Lauderdale, FL, USA ABSTRACT ARTICLE HISTORY The life history and host range of the South American defoliator Received 13 January 2017 Prochoerodes onustaria (Lepidoptera: Geometridae) were examined Accepted 26 April 2017 to determine its suitability as a classical biological control agent of KEYWORDS the invasive weed Brazilian Peppertree, Schinus terebinthifolia,in Schinus terebinthifolia; the U.S.A.
    [Show full text]
  • SAOS Newsletter
    NEWSLETTER October 2019 Volume 14 Issue #10 CLUB NEWS October 1 Meeting by Janis Croft Welcome and Thanks. President Tom Sullivan opened the meeting at 7:00 pm with 96 attendees in our new location. Membership VP, Linda Stewart asked all of the September and October VP, Linda Stewart birthday people to raise their hands to receive their free announced our four new raffle ticket. Then she announced that if you know of members, Sara Bruinooge, anyone in need of a cheering up or a get well card, let her Carol Eklund, Rachel know by emailing her at [email protected]. Biello and Ann McKenna Library – If you would like a book, send a request to info@ as well as our visitors. Tom staugorchidsociety.org and Bea will bring the item(s) to the Thanh Nguyen announced that Loretta next meeting. Griffith is moving and we Show Table. Courtney started his review of the show table bid her a sad goodbye. Tom with a story of how someone asked him what kind of climate thanked Dianne for organizing the refreshment table, and do you need to grow orchids and his simple response was Dottie, Dorianna, Mary Ann and Cecilia for bringing in the “Any.” The show table shows that all kinds of orchids can great selection of desserts. Tom then reminded all to drop a be grown in our north Florida climate either outdoors or dollar in the basket while enjoying their refreshments. in greenhouses. The table had five summer blooming Club Business. There are shows in Coral Gables, phalaenopsis that were mostly violet and white with one in Gainesville, Homestead and Delray Beach this month.
    [Show full text]
  • 2020 SBIOS Exhibitor Guide
    The santa barbara international orchid show th santa barbara Welcomes You to Our 75 75th show! international Officers President: Wayne Ferrell Vice President: John Ernest orchid show Treasurer: Don Burkey Directors Joe Ambriz, Joal Clayton, Jr., Michael DeRousse, Gary Gallup, Parry Gripp, Paul Gripp, George Hatfield, Lauris Rose, John Rowe, Jim Sloniker Staff - Show Manager: Nancy Melekian Orchids Publicist: Anderson PR Social Media: Simply Marketing 360 a world of Plant Registrar: Heidi Kirkpatrick Judging Ribbon Judging Chair: Gayle Brodie & Jim Sloniker Adventure AOS Judging Chair: Bryce Augustine CSA Judging Chair: John Rowe Display Judging Chair: Nancy Melekian Art Division Manager: Santa Barbara Art Association Floral Arrangement Chair: Ellis Evans march 13 - 15, 2020 Contact Information 12, 2020 website: www.sborchidshow.com judging: march email: [email protected] publicity: [email protected] phone: 805-403-1533 mailing address: P.O. Box 1223, Carpinteria, California 93014-1223 General Information EXHIBITOR The Santa Barbara International Orchid Show is held at the Earl Warren Showgrounds, located at Las Positas Road and Highway 101. The street GUIDE address is 3400 Calle Real, Santa Barbara, CA 93105. 3 Quick Guide to Registering your Plant for Judging Enter plants for ribbon, AOS or CSA judging (Not entering plants? Skip this page and finish installing your display.) Contents Submit your entry forms EARLY. Obtain entry forms from the Plant Registrar. Online registration is available till 7 PM Tuesday, March 10, 2020. 1. Ribbon Judging—Enter quality plants for ribbons and trophies. Rules and Regulations 2 A. Fill out registration form with your name and address Judging Times 3 and the plant’s name and parentage.
    [Show full text]
  • Phylogenetic Study of African Combretaceae R. Br. Based on /.../ A
    BALTIC FORESTRY PHYLOGENETIC STUDY OF AFRICAN COMBRETACEAE R. BR. BASED ON /.../ A. O. ONEFELY AND A. STANYS ARTICLES Phylogenetic Study of African Combretaceae R. Br. Based on rbcL Sequence ALFRED OSSAI ONEFELI*,1,2 AND VIDMANTAS STANYS2,3 1Department of Forest Production and Products, Faculty of Renewable Natural Resources, University of Ibadan, 200284 Ibadan, Nigeria. 2Erasmus+ Scholar, Institute of Agricultural and Food Science Vytautas Magnus University, Agricultural Aca- demy, Akademija, LT-53361 Kaunas district, Lithuania. 3Department of Orchard Plant Genetics and Biotechnology, Lithuanian Research Centre for Agriculture and Forestry, Babtai, LT-54333 Kaunas district, Lithuania. *Corresponding author: [email protected], [email protected] Phone number: +37062129627 Onefeli, A. O. and Stanys, A. 2019. Phylogenetic Study of African Combretaceae R. Br. Based on rbcL Se- quence. Baltic Forestry 25(2): 170177. Abstract Combretaceae R. Br. is an angiosperm family of high economic value. However, there is dearth of information on the phylogenetic relationship of the members of this family using ribulose biphosphate carboxylase (rbcL) gene. Previous studies with electrophoretic-based and morphological markers revealed that this family is phylogenetically complex. In the present study, 79 sequences of rbcL were used to study the phylogenetic relationship among the members of Combretaceae of African origin with a view to provide more information required for the utilization and management of this family. Multiple Sequence alignment was executed using the MUSCLE component of Molecular Evolutionary Genetics Version X Analysis (MEGA X). Transition/Transversion ratio, Consistency index, Retention Index and Composite Index were also determined. Phylogenetic trees were constructed using Maximum parsimony (MP) and Neighbor joining methods.
    [Show full text]
  • Poisonous Plants -John Philip Baumgardt TURIST Are Those of the Authors and Are Not Necessarily Tho Se of the Society
    American · ulturist How you spray does make a differenee. Now, more than ever, it's im ­ portant to use just the right amount of spray to rid your garden of harmful insects and disease . This is the kind of precise 12. Right &1pressure: A few 4. Right pattern: Just turn control you get with a Hudson strokes of the pump lets you spray nozzle to get a fine or sprayer. Here's why you get spray at pressure you select coarse spray . Or for close-up best results, help protect the -high for a fine mist (good or long-range spraying. environment: for flowers) or low for a wet 5. Most important, right place: With a Hudson sprayer, 1 L( 1 spra~ (:~Stfor weeds) you place spray right where the trouble is. With its long extension and adjustable noz­ zle, you easily reach all parts I. R;ghl m;" W;lh a Hudson of plant. Especially under the ~ leaves where many insects sprayer, you mix spray exact- . Iy 'as recommended And 3. Right amount: Squeeze hide and most disease starts. that's the way it goes o~ your handle, spray's on. Release, For a more beautiful garden plants-not too strong or too it's off. Spray just to the point -a better environment­ weak. of runoff. C?at the plant, keep you r sprayi ng right on .,.J... IJ:~:1i.~ ,don't drench It. target-with a Hudson spray­ er. Get yours now. How you spray does make a difference! SIGN OF THE BEST BUV SPRAYERS AND DUSTERS .,..~<tlt\O ' P * "'Al Cf O('f"(I,1: ~Good Housekeeping; ""'1,; GU, U N1(( S ~.'" Allow 2 to 4 weeks delivery, Offer expires December 31 , 1972.
    [Show full text]