Swallowing and Esophageal Disorders
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
THE DIGESTIVE SYSTEM: Introduction and Upper GI
THE DIGESTIVE SYSTEM: Introduction and upper GI Dalay Olson Ph.D Office: Jackson Hall 3-120 Office hours: Monday 2-3pm INTRODUCTION TO GI LEARNING OBJECTIVES 3 Distinguish between the wall layers of the esophagus and those classically represented by the small intestine. ESOPHAGUS STRUCTURE UPPER THIRD ESOPHAGUS STRUCTURE LOWER TWO-THIRDS 4 Describe the voluntary and reflex components of swallowing. PHASES OF SWALLOWING Swallowing is integrated in the medulla oblongata. Voluntary Phase Pharyngeal Phase Esophageal Phase The swallowing reflex requires input from sensory afferent nerves, somatic motor nerves and autonomic nerves. VOLUNTARY PHASE The tongue pushes the bolus of food back and upwards towards the back of the mouth. Once the food touches the soft palate and the back of the mouth it triggers the swallowing reflex. This is the stimulus! PHARYNGEAL PHASE • Once the food touches the soft palate and the back of the mouth it triggers the swallowing reflex. This is the stimulus! • The medulla oblongata (control center) then initiates the swallowing reflex causing the soft palate to elevate, closing of the glottis and opening of the esophageal sphincter (response). • Once the food moves into the esophagus the sphincter closes once again. The glottis then opens again and breathing resumes. ESOPHAGEAL PHASE 1. Food moves along the esophagus by peristalsis (waves of smooth muscle contractions) • If the food gets stuck, short reflexes will continue peristalsis. • Myogenic reflex (you will learn about this later) produces contractions that move food forward. 2. As the bolus of food moves toward the stomach the lower esophageal sphincter relaxes and opens allowing the food to move into the stomach. -
Fecal Incontinence/Anal Incontinence
Fecal Incontinence/Anal Incontinence What are Fecal incontinence/ Anal Incontinence? Fecal incontinence is inability to control solid or liquid stool. Anal incontinence is the inability to control gas and mucous in addition to the inability to control stool. The symptoms range from mild release of gas to a complete loss of control. It is a common problem affecting 1 out of 13 women under the age of 60 and 1 out of 7 women over the age of 60. Men can also be have this condition. Anal incontinence is a distressing condition that can interfere with the ability to work, do daily activities and enjoy social events. Even though anal incontinence is a common condition, people are uncomfortable discussing this problem with family, friends, or doctors. They often suffer in silence, not knowing that help is available. Normal anatomy The anal sphincters and puborectalis are the primary muscles responsible for continence. There are two sphincters: the internal anal sphincter, and the external anal sphincter. The internal sphincter is responsible for 85% of the resting muscle tone and is involuntary. This means, that you do not have control over this muscle. The external sphincter is responsible for 15% of your muscle tone and is voluntary, meaning you have control over it. Squeezing the puborectalis muscle and external anal sphincter together closes the anal canal. Squeezing these muscles can help prevent leakage. Puborectalis Muscle Internal Sphincter External Sphincter Michigan Bowel Control Program - 1 - Causes There are many causes of anal incontinence. They include: Injury or weakness of the sphincter muscles. Injury or weakening of one of both of the sphincter muscles is the most common cause of anal incontinence. -
Mixing Alcohol with Your Diabetes You Can Drink If Your Blood Sugar Is Well Controlled – and You Take the Right Steps to Be Safe
Diabetes Education – #16 Mixing Alcohol with Your Diabetes You can drink if your blood sugar is well controlled – and you take the right steps to be safe. If you have diabetes, you may think that drinking is off limits. Not so! Keeping an eye on how much and what you drink can help you drink more safely. You can avoid the alcohol-related pitfalls: • low blood sugar • weight gain • high blood pressure. Before you have a drink, ask yourself the 3 questions below. The ADA (American Diabetes Association) suggests these: • Is my diabetes in good control? • Does my health care team agree that I can have alcohol? • Do I know how alcohol can affect me and my blood sugar? If you can answer "yes" to all 3 questions, it is likely OK to have a drink. But make sure you know the potential effects of drinking. And, make sure you know your personal limits. What happens when you drink? Between meals and while you sleep, the liver makes new glucose (sugar). The liver then sends this sugar into the bloodstream. Here, it helps to prevent or slow down a low blood sugar reaction. When you drink, it disrupts the process. Substances form when alcohol breaks down in the liver. These substances block the liver from making new glucose. Blood sugars fall and you can quickly become too low. Diabetes Education – #16 Treat hypoglycemia quickly Drinking can affect your blood sugar for up to 12 hours. So test your blood sugar before going to bed. If it is in the 100 – 140 mg/dL range, you may be fine. -
Lung Anatomy
Lung anatomy Breathing Breathing is an automatic and usually subconscious process which is controlled by the brain. The brain will determine how much oxygen we require and how fast we need to breathe in order to supply our vital organs (brain, heart, kidneys, liver, stomach and bowel), as well as our muscles and joints, with enough oxygen to carry out our normal daily activities. In order for breathing to be effective we need to use our lungs, breathing muscles and blood system efficiently. This leaflet should help you to better understand the process of breathing and how we get the much needed oxygen into our bodies. The lungs You have two lungs, one in the right side and one in the left side of your chest. The right lung is bigger than the left due to the position of the heart (which is positioned in the left side of the chest). Source: Pulmonary Rehabilitation Reference No: 66354-1 Issue date: 13/2/20 Review date: 13/2/23 Page 1 of 5 Both lungs are covered by 2 thin layers of tissue called the pleura. The pleura stop the surface of the lungs rubbing together as we breathe in and out. The lungs are protected by the ribcage. The airways Within the lungs there is a vast network of airways (tubes) which help to transport the oxygen into the lungs and the carbon dioxide out. These tubes branch into smaller and smaller tubes the further they go into the lungs. Page 2 of 5 Trachea (windpipe): This tube connects your nose and mouth to your lungs. -
Obstructive Sleep Apnea
ObSTruCTIve Sleep ApneA provider’s guide to diagnose and code sleep apnea Sleep apnea is a common disorder that by When reviewing these symptoms it is helpful definition is characterized by a reduction in to clarify the history with the patient’s sleeping normal breathing during hours of sleep, often partner, when available. The most useful symptom related to the collapse of the soft tissues in the for identifying patients with OSA is nocturnal back of the throat. Obstructive sleep apnea (OSA) choking or gasping. Snoring alone is not a is the most common sleeping disorder. It has been diagnostic predictor for OSA. However, the lack diagnosed in 3 to 7% of Americans. It is estimated of snoring and/or presence of apnea reduce the that 20% of the entire American population has not likelihood of an OSA diagnosis. been diagnosed. Quantification of the patient’s perception Independent risk factors for of daytime sleepiness and/or fatigue is an important historical finding. This can be developing OSA include: determined by using the Epworth Sleepiness › Obesity (BMI > 30 kg/m2) Scale (epworthsleepinessscale.com). A score of 10 supports the hypothesis of excessive daytime › African – American race sleepiness, which should prompt the clinician to › Male gender have the patient tested for OSA. › Advancing age › Cranio – facial anomalies The physical examination should focus on: Smoking › 1. Review of the oral airway, specifically: › Controlled substance use and alcohol intake the size of the uvula and tonsils, and › Chronic medical conditions such as: the presence of nasal septal deviation end-stage renal disease, congestive heart failure, 2. -
PYLORIC STENOSIS of INFANCY-PERSPECTIVES Different Views from Different Bridges
Central Annals of Pediatrics & Child Health Perspective *Corresponding author IAN M. ROGERS, Department of Surgery, AIMST University, 46 Whitburn Road, Cleadon, Tyne and Wear, SR67QS, Kedah, Malaysia, Tel: 01915367944; PYLORIC STENOSIS OF INFANCY- 07772967160; Email: [email protected] Submitted: 18 March 2020 PERSPECTIVES Different views Accepted: 27 March 2020 Published: 30 March 2020 ISSN: 2373-9312 from different bridges Copyright © 2020 ROGERS IM IAN M ROGERS* OPEN ACCESS Department of Surgery, AIMST University, Malaysia Keywords Abstract • Neonatal hyperacidity; Neonatal hypergastrinaemia; Baby and parents perspectives of diagnosis Introduction: The differing experiences of the surgeon, he parent and the baby and treatment; Spectrum of presentation of are discussed in terms of what is presently known about the pathogenesis of pyloric pyloric stenosis of infancy; Primary hyperacidity stenosis of infancy (PS). pathogenesis of pyloric stenosis Methods: The experiences are culled from personal experience and from the comments made on online pressure and support groups for pyloric stenosis of infancy. These comments are reviewed from the standpoint of the Primary Hyperacidity pathogenesis of cause. Conclusion: The present perspectives of the PS surgeon and the difficulties experienced by the PS family fit well which the basic tenets of the Primary Hyperacidity theory. Reference to this theory allows a satisfactory explanation for difficulties in diagnosis and for the variability of presentation. INTRODUCTION In 1961 this theme was further developed by Dr Jacob. He again recognised the milder forms-those in which a long- term The Surgeon cure could similarly be achieved without surgery. A 1% mortality Everybody knows: For progressive pyloric stenosis of infancy in 100 patients was achieved with the usual medical measures (PS), pyloromyotomy reigns supreme! Impending catastrophe of which a reduced feeding regime was judged to be especially transformed safely, in a few minutes, into an enduring cure. -
Mouth Esophagus Stomach Rectum and Anus Large Intestine Small
1 Liver The liver produces bile, which aids in digestion of fats through a dissolving process known as emulsification. In this process, bile secreted into the small intestine 4 combines with large drops of liquid fat to form Healthy tiny molecular-sized spheres. Within these spheres (micelles), pancreatic enzymes can break down fat (triglycerides) into free fatty acids. Pancreas Digestion The pancreas not only regulates blood glucose 2 levels through production of insulin, but it also manufactures enzymes necessary to break complex The digestive system consists of a long tube (alimen- 5 carbohydrates down into simple sugars (sucrases), tary canal) that varies in shape and purpose as it winds proteins into individual amino acids (proteases), and its way through the body from the mouth to the anus fats into free fatty acids (lipase). These enzymes are (see diagram). The size and shape of the digestive tract secreted into the small intestine. varies in each individual (e.g., age, size, gender, and disease state). The upper part of the GI tract includes the mouth, throat (pharynx), esophagus, and stomach. The lower Gallbladder part includes the small intestine, large intestine, The gallbladder stores bile produced in the liver appendix, and rectum. While not part of the alimentary 6 and releases it into the duodenum in varying canal, the liver, pancreas, and gallbladder are all organs concentrations. that are vital to healthy digestion. 3 Small Intestine Mouth Within the small intestine, millions of tiny finger-like When food enters the mouth, chewing breaks it 4 protrusions called villi, which are covered in hair-like down and mixes it with saliva, thus beginning the first 5 protrusions called microvilli, aid in absorption of of many steps in the digestive process. -
Hemoptysis in Children
R E V I E W A R T I C L E Hemoptysis in Children G S GAUDE From Department of Pulmonary Medicine, JN Medical College, Belgaum, Karnataka, India. Correspondence to: Dr G S Gaude, Professor and Head, Department of Pulmonary Medicine, J N Medical College, Belgaum 590 010, Karnataka, India. [email protected] Received: November, 11, 2008; Initial review: May, 8, 2009; Accepted: July 27, 2009. Context: Pulmonary hemorrhage and hemoptysis are uncommon in childhood, and the frequency with which they are encountered by the pediatrician depends largely on the special interests of the center to which the child is referred. Diagnosis and management of hemoptysis in this age group requires knowledge and skill in the causes and management of this infrequently occurring potentially life-threatening condition. Evidence acquisition: We reviewed the causes and treatment options for hemoptysis in the pediatric patient using Medline and Pubmed. Results: A focused physical examination can lead to the diagnosis of hemoptysis in most of the cases. In children, lower respiratory tract infection and foreign body aspiration are common causes. Chest radiographs often aid in diagnosis and assist in using two complementary diagnostic procedures, fiberoptic bronchoscopy and high-resolution computed tomography. The goals of management are threefold: bleeding cessation, aspiration prevention, and treatment of the underlying cause. Mild hemoptysis often is caused by an infection that can be managed on an outpatient basis with close monitoring. Massive hemoptysis may require additional therapeutic options such as therapeutic bronchoscopy, angiography with embolization, and surgical intervention such as resection or revascularization. Conclusions: Hemoptysis in the pediatric patient requires prompt and thorough evaluation and treatment. -
IDP Biological Systems Gastrointestinal System
IDP Biological Systems Gastrointestinal System Section Coordinator: Jerome W. Breslin, PhD, Assistant Professor of Physiology, MEB 7208, 504-568-2669, [email protected] Overall Learning Objectives 1. Characterize the important anatomical features of the GI system in relation to GI function. 2. Describe the molecular and cellular mechanisms underlying GI motility. Highlight the neural and endocrine regulatory mechanisms. Characterize the different types of GI motility in different segments of the GI tract. 3. Define the major characteristics and temporally relate the cephalic, gastric, and intestinal phases of GI tract regulation. 4. For carbohydrates, proteins, fats, vitamins, minerals, and oral drugs, differentiate the processes of ingestion, digestion, absorption, secretion, and excretion, including the location in the GI tract where each process occurs. 5. Contrast the sympathetic and parasympathetic modulation of the enteric nervous system and the effector organs of the GI tract. 6. Describe the similarities and differences in regulating gastrointestinal function by nerves, hormones, and paracrine regulators. Include receptors, proximity, and local vs. global specificity. 7. Understand the basic mechanisms underlying several common GI disorders and related treatment strategies. Learning Objectives for Specific Hours: Hour 1 – Essential Concepts: Cellular transport mechanisms and Mechanisms of Force Generation 1. Describe the composition of cell membranes and how distribution of phospholipids and proteins influence membrane permeability of ions, hydrophilic, and hydrophobic compounds. 2. Using a cell membrane as an example, define a reflection coefficient, and explain how the relative permeability of a cell to water and solutes will generate osmotic pressure. Contrast the osmotic pressure generated across a cell membrane by a solution of particles that freely cross the membrane with that of a solution with the same osmolality, but particles that cannot cross the cell membrane. -
Managing a High Output Ostomy: for Patients with an Ileostomy Or Jejunostomy
Form: D-8844 Managing a High Output Ostomy: For patients with an ileostomy or jejunostomy Read this brochure to learn: • what is a high output ostomy • why is a high output ostomy a problem • what foods and drinks can help you manage it What is a high output ostomy? A high output ostomy is when your ostomy output (the amount of waste coming out of your stoma) is more than 1.2 litres (about 5 cups) in a day. Signs of a high output ostomy include: • having to empty your stoma bag more than 8 times a day • having watery output Why is it a problem? You may become dehydrated (your body does not get enough water) if you have too much output. Your body may not absorb fluids well when you have a high output ostomy. Signs of dehydration are: • feeling thirsty • peeing less than usual • having dark yellow pee • losing weight • having dry lips and mouth • having a headache, dizziness or fatigue 2 How can I manage a high output ostomy? Making some changes to how you eat and drink can help manage a high output ostomy. Your health care team may also give you medicine to help manage a high output ostomy. 9 Have a small meal every 2 to 3 hours. This helps your body absorb food better and meet your nutrition needs. 9 Chew your food very well. This makes it easier for your body to break down and use the food you eat. 9 Do not drink fluids while you eat. Wait 30 minutes before and after a meal before drinking fluids. -
Esophago-Pulmonary Fistula Caused by Lung Cancer Treated with a Covered Self-Expandable Metallic Stent
Abe et al. J Clin Gastroenterol Treat 2016, 2:038 Volume 2 | Issue 4 Journal of ISSN: 2469-584X Clinical Gastroenterology and Treatment Clinical Image: Open Access Esophago-Pulmonary Fistula Caused by Lung Cancer Treated with a Covered Self-Expandable Metallic Stent Takashi Abe1, Takayuki Nagai1 and Kazunari Murakami2 1Department of Gastroenterology, Oita Kouseiren Tsurumi Hospital, Japan 2Department of Gastroenterology, Oita University, Japan *Corresponding author: Takashi Abe M.D., Ph.D., Department of Gastroenterology, Oita Kouseiren Tsurumi Hospital, Tsurumi 4333, Beppu City, Oita 874-8585, Japan, Tel: +81-977-23-7111 Fax: +81-977-23-7884, E-mail: [email protected] Keywords Esophagus, Pulmonary parenchyma, Fistula, lung cancer, Self- expandable metallic stent A 71-year-old man was diagnosed with squamous cell lung cancer in the right lower lobe. He was treated with chemotherapy (first line: TS-1/CDDP; second line: carboplatin/nab-paclitaxel) and radiation therapy (41.4 Gy), but his disease continued to progress. The patient complained of relatively sudden-onset chest pain and high-grade fever. Computed tomography (CT) showed a small volume of air in the lung cancer of the right lower lobe, so the patient was suspected of fistula between the esophagus and the lung parenchyma. Upper gastrointestinal endoscopy revealed an esophageal fistula (Figure 1), which esophagography using water- soluble contrast medium showed overlying the right lower lobe Figure 2: Esophagography findings. Contrast medium is shown overlying the right lower lobe (arrow). (Figure 2). The distance from the incisor teeth to this fistula was 28 cm endoscopically. CT, which was done after esophagography, showed fistulous communication between the esophagus and Figure 1: Endoscopy showing esophageal fistula (arrow). -
Abdominal Pain - Gastroesophageal Reflux Disease
ACS/ASE Medical Student Core Curriculum Abdominal Pain - Gastroesophageal Reflux Disease ABDOMINAL PAIN - GASTROESOPHAGEAL REFLUX DISEASE Epidemiology and Pathophysiology Gastroesophageal reflux disease (GERD) is one of the most commonly encountered benign foregut disorders. Approximately 20-40% of adults in the United States experience chronic GERD symptoms, and these rates are rising rapidly. GERD is the most common gastrointestinal-related disorder that is managed in outpatient primary care clinics. GERD is defined as a condition which develops when stomach contents reflux into the esophagus causing bothersome symptoms and/or complications. Mechanical failure of the antireflux mechanism is considered the cause of GERD. Mechanical failure can be secondary to functional defects of the lower esophageal sphincter or anatomic defects that result from a hiatal or paraesophageal hernia. These defects can include widening of the diaphragmatic hiatus, disturbance of the angle of His, loss of the gastroesophageal flap valve, displacement of lower esophageal sphincter into the chest, and/or failure of the phrenoesophageal membrane. Symptoms, however, can be accentuated by a variety of factors including dietary habits, eating behaviors, obesity, pregnancy, medications, delayed gastric emptying, altered esophageal mucosal resistance, and/or impaired esophageal clearance. Signs and Symptoms Typical GERD symptoms include heartburn, regurgitation, dysphagia, excessive eructation, and epigastric pain. Patients can also present with extra-esophageal symptoms including cough, hoarse voice, sore throat, and/or globus. GERD can present with a wide spectrum of disease severity ranging from mild, intermittent symptoms to severe, daily symptoms with associated esophageal and/or airway damage. For example, severe GERD can contribute to shortness of breath, worsening asthma, and/or recurrent aspiration pneumonia.