Automated Testing of Firmware Installation and Update Scenarios for Peripheral Devices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Testing E-Commerce Systems: a Practical Guide - Wing Lam
Testing E-Commerce Systems: A Practical Guide - Wing Lam As e-customers (whether business or consumer), we are unlikely to have confidence in a Web site that suffers frequent downtime, hangs in the middle of a transaction, or has a poor sense of usability. Testing, therefore, has a crucial role in the overall development process. Given unlimited time and resources, you could test a system to exhaustion. However, most projects operate within fixed budgets and time scales, so project managers need a systematic and cost- effective approach to testing that maximizes test confidence. This article provides a quick and practical introduction to testing medium- to large-scale transactional e-commerce systems based on project experiences developing tailored solutions for B2C Web retailing and B2B procurement. Typical of most e-commerce systems, the application architecture includes front-end content delivery and management systems, and back-end transaction processing and legacy integration. Aimed primarily at project and test managers, this article explains how to · establish a systematic test process, and · test e-commerce systems. The Test Process You would normally expect to spend between 25 to 40 percent of total project effort on testing and validation activities. Most seasoned project managers would agree that test planning needs to be carried out early in the project lifecycle. This will ensure the time needed for test preparation (establishing a test environment, finding test personnel, writing test scripts, and so on) before any testing can actually start. The different kinds of testing (unit, system, functional, black-box, and others) are well documented in the literature. -
Interpreting Reliability and Availability Requirements for Network-Centric Systems What MCOTEA Does
Marine Corps Operational Test and Evaluation Activity Interpreting Reliability and Availability Requirements for Network-Centric Systems What MCOTEA Does Planning Testing Reporting Expeditionary, C4ISR & Plan Naval, and IT/Business Amphibious Systems Systems Test Evaluation Plans Evaluation Reports Assessment Plans Assessment Reports Test Plans Test Data Reports Observation Plans Observation Reports Combat Ground Service Combat Support Initial Operational Test Systems Systems Follow-on Operational Test Multi-service Test Quick Reaction Test Test Observations 2 Purpose • To engage test community in a discussion about methods in testing and evaluating RAM for software-intensive systems 3 Software-intensive systems – U.S. military one of the largest users of information technology and software in the world [1] – Dependence on these types of systems is increasing – Software failures have had disastrous consequences Therefore, software must be highly reliable and available to support mission success 4 Interpreting Requirements Excerpts from capabilities documents for software intensive systems: Availability Reliability “The system is capable of achieving “Average duration of 716 hours a threshold operational without experiencing an availability of 95% with an operational mission fault” objective of 98%” “Mission duration of 24 hours” “Operationally Available in its intended operating environment “Completion of its mission in its with at least a 0.90 probability” intended operating environment with at least a 0.90 probability” 5 Defining Reliability & Availability What do we mean reliability and availability for software intensive systems? – One consideration: unlike traditional hardware systems, a highly reliable and maintainable system will not necessarily be highly available - Highly recoverable systems can be less available - A system that restarts quickly after failures can be highly available, but not necessarily reliable - Risk in inflating availability and underestimating reliability if traditional equations are used. -
QA and Testing Have Become More of a Concurrent Process
Special Feature: SW Testing “QA and testing have become more of a concurrent process rather than an end of lifecycle process” Manish Tandon, VP & Head– Independent Validation and Testing Solutions, Infosys Interview by: Anil Chopra, PCQuest n an exclusive interview with the PCQuest Editor, Manish talks become a software tester? about the global trends in software testing, skillsets required Software testing has evolved into a very special function and Ito enter the field, how technology has evolved in this area to anybody wanting to enter the domain requires two special provide higher ROI, and much more. An IIT and IIM graduate, skillsets. One is deep functional or domain skills to understand Manish is responsible for formulating and executing the business the functionality. Plus, you need specialized technical skills strategy for Independent Validation and Testing Solutions practice as well because you want to do automation, middleware, and at Infosys. He mentors the unit specifically in meeting business performance testing. It’s a unique combination, and we focus goals and targets. In addition, he manages critical relationships very strongly on both these dimensions. A good software tester with client executives, industry analysts, deal consultants, and should always have an eye for detail. So people who have a slightly anchors the training and development of key personnel. Provided critical eye and are willing to dig deeper always make much better here are his expert comments on the subject. testers than people who want to fly at 30k feet. Q> What are some of the global trends in the software Q> You mentioned that software testing is now required testing business? How do you see the market moving? for front-end applications. -
Powershell Core Ja Sitä Edeltävät Komentorivi- Pohjaiset Hallintatyökalut
Ismail Belmostefa PowerShell Core ja sitä edeltävät komentorivi- pohjaiset hallintatyökalut Metropolia Ammattikorkeakoulu Insinööri (AMK) Tietotekniikan koulutusohjelma Insinöörityö 12.12.2016 Tiivistelmä Tekijä Ismail Belmostefa Otsikko PowerShell Core ja sitä edeltävät komentorivipohjaiset hallin- tatyökalut Sivumäärä 38 sivua + 2 liitettä Aika 12.12.2016 Tutkinto Insinööri (AMK) Koulutusohjelma Tietotekniikka Suuntautumisvaihtoehto Ohjelmistotekniikka Ohjaaja Kari Sundberg Ohjaajat Yliopettaja Markku Nuutinen Insinöörityön aiheena oli PowerShell Core ja sitä edeltävät komentorivipohjaiset hallinta- työkalut. Tavoite oli ymmärtää näiden asennusympäristö, alla käytetyt teknologiat ja niihin liittyvä terminologia. Tutkimustyö syntyi harjoittelutyön muistiinpanojen lopputuloksena sekä tutkimalla alan kirjallisuutta ja verkkomateriaalia. Insinöörityössä selvitettiin PowerShell Coren ja sitä edeltävien komentorivipohjaisten hal- lintatyökalujen alla käytetyt teknologiat, terminologia, käyttökohteet ja motivaatio niiden syntyyn. Koska komentorivipohjaiset hallintatyökalut on rakennettu asennusympäristön tar- joamien palveluiden päälle, palveluiden toiminnan hahmottaminen edesauttaa komentori- vin käyttöä ja soveltamista. Tutkimustyötä on hyödynnetty tietokoneen ylläpidossa, ohjel- moinnissa ja peruskäytössä. Tutkimustyö osoitti asennusympäristön kokonaiskuvan hallit- semisen tärkeyden komentorivipohjaisten työkalujen käytössä. Avainsanat DDE, OLE, COM, .NET, CMD.EXE, COMMAND.COM, WSH, MOM, PowerShell Abstract Author Ismail Belmostefa Title -
A Framework for Evaluating Performance of Software Testing Tools
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616 A Framework For Evaluating Performance Of Software Testing Tools Pramod Mathew Jacob, Prasanna Mani Abstract: Software plays a pivotal role in this technology era. Due to its increased applicable domains, quality of the software being developed is to be monitored and controlled. Software organization follows many testing methodologies to perform quality management. Testing methodologies can be either manual or automated. Automated testing tools got massive acceptability among software professionals due to its enhanced features and functionalities than that of manual testing. There are hundreds of test automation tools available, among which some perform exceptionally well. Due to the availability of large set of tools, it is a herculean task for the project manager to choose the appropriate automation tool, which is suitable for their project domain. In this paper, we derive a software testing tool selection model which evaluates the performance aspects of a script-based testing tool. Experimental evaluation proves that, it can be used to compare and evaluate various performance characteristics of commercially accepted test automation tools based on user experience as well as system performance. Index Terms: Automated testing, Software testing, Test script, Testing Tool, Test bed, Verification and Validation. —————————— ◆ —————————— 1 INTRODUCTION S OFTWARE is advanced in recent days by enhancing its applicable domains. Software is embedded in almost all electronic gadgets and systems. In this scenario the quality of the software plays a significant role. The customer or end – user should be satisfied which is primarily depended on quality and capability of the software being developed. -
Usage of Prototyping in Software Testing
Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ) ISSUE (14), Nov (2018) www.mescj.com USAGE OF PROTOTYPING IN SOFTWARE TESTING 1st Khansaa Azeez Obayes Al-Husseini Babylon Technical Insitute , Al-Furat Al-Awsat Technical University,51015 Babylon,Iraq. 1st [email protected] 2nd Ali Hamzah Obaid Babylon Technical Insitute , Al-Furat Al-Awsat Technical University,51015 Babylon,Iraq. 2nd [email protected] Abstract: Prototyping process is an important part of software development. This article describes usage of prototyping using Question – and – Answer memory and visual prototype diesign to realize Prototyping software development model. It also includes review of different models of software lifecycle with comparison them with Prototyping model. Key word: Question – and – Answer , Prototype, Software Development, RAD model. 1. Introduction One of the most important parts of software development is project design. Software project designing as a process of project creation can be divided in two large parts (very conditional): design of the functionality and design of user interface. To design the functionality, tools such as UML and IDEF0 are used, which have already become industry standards for software development. In the design of the graphical user interface there are no established standards, there are separate recommendations, techniques, design features, traditions, operating conditions for software, etc. At the same time, an important, but not always properly performed, part of this process is prototyping, i.e. the creation of a prototype or prototype of a future system. Prototypes can be different: paper, presentation, imitation, etc., up to exact correspondence to the future program. Most of the modern integrated development environments for software (IDE) allows to create something similar to prototypes, but it is connected with specific knowledge of IDE and programming language. -
Lecturer: Ting Wang (王挺)
Lecturer: Ting Wang (王挺) 利物浦大学计算机博士 清华大学计算机博士后 电子信息技术高级工程师 上海外国语大学网络与新媒体副教授 浙江清华长三角研究院海纳认知与智能研究中心主任 New Media Product DevelopmentDesign and Dr. Ting WANG School of Journalism and Communication Haina Cognition and Intelligence Research Center Shanghai International Studies University Yangtze Delta Region Institute of Tsinghua University, Zhejiang An overview to Part 01 software testing Testing in the software development Project Manager (Requirement Analyzer) System Analysis Release Structure Designer System Analysis Quality Assurance Engineer Requirement Analyzer Structure Design Testing Structure Design Programmer Structure Designer V-model Coding Coding Programmer Waterfall model Testing Quality Assurance Engineer Release Project Manager What is software testing? Software Testing Definition according to ANSI/IEEE 1059 standard -- A process of analyzing a software item to detect the differences between existing and required conditions (i.e., defects) and to evaluate the features of the software item. https://www.softwaretestingmaterial.com/software-testing/ “Testing shows the presence, not the absence of bugs.” —Edsger W. Dijkstra Edsger W. Dijkstra (May 11, 1930 - Aug 06, 2002) was a Dutch systems scientist, programmer, software engineer, science essayist, and pioneer in computing science. Bug Fault (also called “defect” or “bug”) is an erroneous hardware or software element of a system that can cause the system to fail. Reasons why software has bugs human mistakes in software design and coding. The longer a software bug exists throughout the product life-cycle, the more it costs. In 2002, software bugs cost the United States economy approximately $59.5 billion. In 2016, that number jumped to $1.1 trillion. https://dzone.com/articles/api-testing-best-practices 20 reasons for software bugs Reasons in development Reasons in testing #1) Miscommunication or No Communication #11) Not having a proper test setup (test environment) for testing all requirements. -
Open WATCOM Programmer's Guide
this document downloaded from... Use of this document the wings of subject to the terms and conditions as flight in an age stated on the website. of adventure for more downloads visit our other sites Positive Infinity and vulcanhammer.net chet-aero.com Watcom FORTRAN 77 Programmer's Guide Version 1.8 Notice of Copyright Copyright 2002-2008 the Open Watcom Contributors. Portions Copyright 1984-2002 Sybase, Inc. and its subsidiaries. All rights reserved. Any part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone. For more information please visit http://www.openwatcom.org/ Portions of this manual are reprinted with permission from Tenberry Software, Inc. ii Preface The Watcom FORTRAN 77 Programmer's Guide includes the following major components: · DOS Programming Guide · The DOS/4GW DOS Extender · Windows 3.x Programming Guide · Windows NT Programming Guide · OS/2 Programming Guide · Novell NLM Programming Guide · Mixed Language Programming · Common Problems Acknowledgements This book was produced with the Watcom GML electronic publishing system, a software tool developed by WATCOM. In this system, writers use an ASCII text editor to create source files containing text annotated with tags. These tags label the structural elements of the document, such as chapters, sections, paragraphs, and lists. The Watcom GML software, which runs on a variety of operating systems, interprets the tags to format the text into a form such as you see here. Writers can produce output for a variety of printers, including laser printers, using separately specified layout directives for such things as font selection, column width and height, number of columns, etc. -
Software Testing Revealed Training Book Second Edition by International Software Test Institute™
SOFTWARE TESTING REVEALED TRAINING BOOK SECOND EDITION BY INTERNATIONAL SOFTWARE TEST INSTITUTE™ www.test-institute.org © COPYRIGHT INTERNATIONAL SOFTWARE TEST INSTITUTE™ Dedication To all of the International Software Test Institute™ students, thank you for inspiring us, keeping us focused, and making sure we do our best to help you grow in your career with your skills and knowhow. Without you, your engagement and your loyal support, International Software Test Institute™ could not come where it is today. TABLE OF CONTENTS CLICKABLE WELCOME ........................................................................................................................6 ABOUT INTERNATIONAL SOFTWARE TEST INSTITUTE™ .....................................................7 Introduction To Software Testing ............................................................................8 What is Software Quality Assurance? ...................................................................12 What Is Software Testing? .......................................................................................18 Fundamentals of Software Testing ........................................................................21 Software Testing Roles and Responsibilities .......................................................30 Software Testing Methods ......................................................................................36 Software Testing Levels ..........................................................................................38 Software Testing -
Empirical Evaluation of the Effectiveness and Reliability of Software Testing Adequacy Criteria and Reference Test Systems
Empirical Evaluation of the Effectiveness and Reliability of Software Testing Adequacy Criteria and Reference Test Systems Mark Jason Hadley PhD University of York Department of Computer Science September 2013 2 Abstract This PhD Thesis reports the results of experiments conducted to investigate the effectiveness and reliability of ‘adequacy criteria’ - criteria used by testers to determine when to stop testing. The research reported here is concerned with the empirical determination of the effectiveness and reliability of both tests sets that satisfy major general structural code coverage criteria and test sets crafted by experts for testing specific applications. We use automated test data generation and subset extraction techniques to generate multiple tests sets satisfying widely used coverage criteria (statement, branch and MC/DC coverage). The results show that confidence in the reliability of such criteria is misplaced. We also consider the fault-finding capabilities of three test suites created by the international community to serve to assure implementations of the Data Encryption Standard (a block cipher). We do this by means of mutation analysis. The results show that not all sets are mutation adequate but the test suites are generally highly effective. The block cipher implementations are also seen to be highly ‘testable’ (i.e. they do not mask faults). 3 Contents Abstract ............................................................................................................................ 3 Table of Tables ............................................................................................................... -
GUI-Guided Test Script Repair for Mobile Apps
This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3007664 1 GUI-Guided Test Script Repair for Mobile Apps Minxue Pan, Tongtong Xu, Yu Pei, Zhong Li, Tian Zhang, Xuandong Li Abstract—Graphical User Interface (GUI) testing is widely used to test mobile apps. As mobile apps are frequently updated and need repeated testing, to reduce the test cost, their test cases are often coded as scripts to enable automated execution using test harnesses/tools. When those mobile apps evolve, many of the test scripts, however, may become broken due to changes made to the app GUIs. While it is desirable that the broken scripts get repaired, doing it manually can be preventively expensive if the number of tests need repairing is large. We propose in this paper a novel approach named METER to repairing broken GUI test scripts automatically when mobile apps evolve. METER leverages computer vision techniques to infer GUI changes between two versions of a mobile app and uses the inferred changes to guide the repair of GUI test scripts. Since METER only relies on screenshots to repair GUI tests, it is applicable to apps targeting open or closed source mobile platforms. In experiments conducted on 22 Android apps and 6 iOS apps, repairs produced by METER helped preserve 63.7% and 38.8% of all the test actions broken by the GUI changes, respectively. -
Virtual MBX Driver Help
Virtual MBX Driver Help Virtual MBX Driver for Modbus, Modbus Plus and Modbus TCP Networks Version 9 Virtual MBX Driver Help VIRTUAL MBX DRIVER HELP Virtual MBX® Driver for Modbus, Modbus Plus and Modbus TCP Networks Version 9 Copyright © 1994-2017, Cyberlogic® Technologies Inc. All rights reserved. This document and its contents are protected by all applicable copyright, trademark and patent laws and international treaties. No part of this document may be copied, reproduced, stored in a retrieval system or transmitted by any means, electronic, mechanical, photocopying, recording or otherwise, without the express written permission of Cyberlogic Technologies Inc. This document is subject to change without notice, and does not necessarily reflect all aspects of the mentioned products or services, their performance or applications. Cyberlogic Technologies Inc. is not responsible for any errors or omissions in this presentation. Cyberlogic Technologies Inc. makes no express or implied warranties or representations with respect to the contents of this document. No copyright, trademark or patent liability or other liability for any damages is assumed by Cyberlogic Technologies Inc. with respect to the use of the information contained herein by any other party. Cyberlogic®, DHX®, MBX®, WinConX® and Intelligent • Powerful • Reliable® are registered trademarks and DirectAccess™, OPC Crosslink™, OPC Datacenter™, DevNet™ and C-logic™ are trademarks of Cyberlogic Technologies Inc. All other trademarks and registered trademarks belong to their respective