Treewidth of display graphs: bounds, brambles and applications Remie Janssen1, Mark Jones1, Steven Kelk2, Georgios Stamoulis2, Taoyang Wu3 1 Delft Institute for Applied Mathematics, Delft University of Technology, Netherlands.
[email protected],
[email protected] 2 Department of Data Science and Knowledge Engineering (DKE), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
[email protected],
[email protected] 3 School of Computing Sciences, University of East Anglia, United Kingdom.
[email protected] Abstract. Phylogenetic trees and networks are leaf-labelled graphs used to model evolu- tion. Display graphs are created by identifying common leaf labels in two or more phylo- genetic trees or networks. The treewidth of such graphs is bounded as a function of many common dissimilarity measures between phylogenetic trees and this has been leveraged in fixed parameter tractability results. Here we further elucidate the properties of display graphs and their interaction with treewidth. We show that it is NP-hard to recognize display graphs, but that display graphs of bounded treewidth can be recognized in linear time. Next we show that if a phylogenetic network displays (i.e. topologically embeds) a phylogenetic tree, the treewidth of their display graph is bounded by a function of the treewidth of the original network (and also by various other parameters). In fact, using a bramble argument we show that this treewidth bound is sharp up to an additive term of 1. We leverage this bound to give an FPT algorithm, parameterized by treewidth, for determining whether a network displays a tree, which is an intensively-studied problem in the field.